An arterial closure device for use following coronary catherization procedures to close arterial access openings through the arterial wall while permitting post operative flow through the artery includes a housing having proximal and distal ends, and defining a longitudinal axis, first and second arterial tissue everting members mounted adjacent the distal end of the housing and first and second jaw members mounted adjacent the first and second tissue engaging members. The first and second arterial tissue everting members are dimensioned for at least partial positioning within the arterial access opening in the arterial wall and are deployable in at least a radial outward direction relative to the longitudinal axis of the housing to engage respective opposed arterial tissue portions on opposed sides of the opening and move the tissue arterial portions to an everted condition thereof. The first and second jaw members are adapted for relative movement between an open position to facilitate positioning about the arterial tissue portions in the everted condition and a closed position to at least partially draw the arterial tissue portions together to an at least partial approximated condition. An electrode is associated with at least one of the first and second jaw members and arranged to contact the respective arterial tissue portions. The electrode is adapted to be connected to a radio frequency energy source whereby energy is transmitted through the electrode to thermally fuse the arterial tissue positions between the first and second jaw members to substantially close the opening. Preferably, an electrode is associated with each of the first and second jaw members. Each electrode nay be configured as a bipolar electrode.

Patent
   6676685
Priority
Feb 22 1999
Filed
Jun 18 2001
Issued
Jan 13 2004
Expiry
Mar 31 2020
Extension
46 days
Assg.orig
Entity
Large
280
19
EXPIRED
18. A method of closing a vascular opening within a vascular organ, comprising the steps of:
introducing a vascular closure apparatus at least partially within a vascular opening in a vascular organ;
deploying tissue engaging members of the apparatus within the vascular organ;
engaging internal vascular tissue portions adjacent the vascular opening with the tissue engaging members;
approximating the internal vascular tissue portions; and
conducting electrical energy between the jaw members to at least partially fuse the internal vascular tissue portions.
22. An apparatus for closing an opening in tissue, which comprises:
an elongated shaft having proximal and distal ends, and defining a longitudinal axis;
first and second tissue engaging members at least partially disposed in the elongated shaft, each tissue engaging member having a distal engaging portion defining a normal unstressed arcuate condition, the tissue engaging members being adapted for longitudinal movement relative to the elongated shaft to be deployed within the opening in tissue whereby the distal engaging portions engage the tissue portions surrounding the opening to arrange the tissue portions at a desired orientation; and
first and second jaw members mounted about the elongated shaft and adapted for relative movement between an open position to receive the tissue portions and a closed position to approximate the tissue portions, at least one of the jaw members having a thermal transmitting portion adapted to connect to an electrical energy source to thermally fuse the tissue portions.
1. An apparatus for closing a vascular puncture, which comprises:
a housing having proximal and distal ends and defining a longitudinal axis;
at least two tissue engaging members disposed adjacent the distal end of the housing, the tissue engaging members deployable within the vascular puncture and cooperating to engage vascular tissue portions adjacent the vascular puncture, and being dimensioned and configured to arrange the vascular tissue portions to a desired orientation thereof; and
at least two outer jaw members positioned radially outwardly of the tissue engaging members and adapted for relative movement from an open position to facilitate positioning of the jaw members with respect to the vascular tissue portions when in the desired orientation, to a closed position to at least partially approximate the tissue portions, at least one of the jaw members having a thermal transmitting portion adapted to connect to an electrical energy source to transmit thermal energy to thermally fuse the approximated vascular tissue portions.
10. An apparatus for closing a vascular puncture, which comprises:
a housing having proximal and distal ends;
at least two tissue engaging members disposed adjacent the distal end of the housing, the tissue engaging members deployable within the vascular puncture to engage vascular tissue portions adjacent the vascular puncture, and being dimensioned and configured to arrange the vascular tissue portions to a desired orientation thereof;
at least two jaw members mounted adjacent the tissue engaging members and adapted for relative movement from an open position to facilitate positioning of the jaw members with respect to the vascular tissue portions when in the desired orientation, to a closed position to at least partially approximate the tissue portions, at least one of the jaw members having a thermal transmitting portion adapted to connect to an electrical energy source to transmit thermal energy to thermally fuse the vascular tissue portions; and
a thermal energy source connected to the thermal transmitting portion of the one jaw member.
3. An apparatus for closing a vascular puncture, which comprises:
a housing having proximal and distal ends;
at least two tissue engaging members disposed adjacent the distal end of the housing, the tissue engaging members deployable within the vascular puncture to engage vascular tissue portions adjacent the vascular puncture, and being dimensioned and configured to arrange the vascular tissue portions to a desired orientation thereof;
each tissue engaging member having a distal portion comprising a shape memory material adapted to assume a normal unstressed condition upon deployment to be in position to engage the vascular tissue portions to arrange the vascular tissue portions to the desired orientation; and
at least two jaw members mounted adjacent the tissue engaging members and adapted for relative movement from an open position to facilitate positioning of the jaw members with respect to the vascular tissue portions when in the desired orientation, to a closed position to at least partially approximate the tissue portions, at least one of the jaw members having a thermal transmitting portion adapted to connect to an electrical energy source to transmit thermal energy to thermally fuse the vascular tissue portions.
12. An apparatus for closing a vascular opening in a vascular wall, which comprises:
a housing having proximal and distal ends, and defining a longitudinal axis;
first and second tissue engaging members mounted adjacent the distal end of the housing, the first and second tissue engaging members being dimensioned for at least partially positioning within the vascular opening in the vascular wall, the first and second tissue engaging members being deployable from the housing to engage and expose internal vascular tissue portions adjacent the vascular opening and to arrange the vascular tissue portions at a predetermined orientation;
first and second jaw members mounted adjacent the first and second tissue engaging members, the first and second jaw members adapted for relative movement to engage the vascular tissue portions in the predetermined orientation and to substantially approximate the internal vascular tissue portions, at least one of the first and second jaw members having a thermal transmitting region, adapted for communication with a thermal energy source whereby thermal energy is transmitted through the thermal transmitting region to thermally fuse the approximated tissue portions between the first and second jaw members to substantially close the vascular opening;
a manually operable deployment member operatively connected to the first and second tissue engaging members, and being movable to deploy the first and second tissue engaging members; and
an actuator operatively connected to the first and second jaw members, the actuator movable to cause corresponding movement of the first and second jaw members.
13. An apparatus for closing a vascular opening in a vascular wall, which comprises:
a housing having proximal and distal ends, and defining a longitudinal axis;
first and second tissue engaging members mounted adjacent the distal end of the housing, the first and second tissue engaging members being dimensioned for at least partially positioning within the vascular opening in the vascular wall, the first and second tissue engaging members being deployable from the housing to engage and expose internal vascular tissue portions adjacent the vascular opening;
each tissue engaging member includes a distal memory portion comprising a shape memory material, the distal memory portion being adapted to assume a normal unstressed condition upon deployment to engage the vascular tissue portions;
first and second jaw members mounted adjacent the first and second tissue engaging members, the first and second jaw members adapted for relative movement to substantially approximate the internal vascular tissue portions subsequent to deployment of the first and second tissue engaging member, at least one of the first and second jaw members having a thermal transmitting region, adapted for communication with a thermal energy source whereby thermal energy is transmitted through the thermal transmitting region to thermally fuse the tissue portions between the first and second jaw members to substantially close the vascular opening;
a manually operable deployment member operatively connected to the first and second tissue engaging members, and being movable to deploy the first and second tissue engaging members; and
an actuator operatively connected to the first and second jaw members, the actuator movable to cause corresponding movement of the first and second jaw members.
2. The apparatus according to claim 1 wherein each jaw member includes a thermal transmitting portion adapted to connect to the electrical energy source.
4. The apparatus according to claim 3 wherein the distal portion defines a general J-shape.
5. The apparatus according to claim 3 including an elongated shaft at least partially disposed in the housing.
6. The apparatus according to claim 5 wherein the tissue engaging members are at least partially disposed within the elongated shaft, the tissue engaging members adapted for longitudinal movement relative to the elongated shaft between a first position wherein the distal portion of each tissue engaging member is in a stressed condition confined within the elongated shaft, and a second position wherein the distal portion of each tissue engaging member is exposed from the elongated shaft to assume the normal unstressed condition thereof.
7. The apparatus according to claim 6 wherein the elongated shaft includes a longitudinal slot for accommodating the tissue engaging members.
8. The apparatus according to claim 7 wherein the jaw members are adapted for longitudinal movement relative to the elongated shaft to move between the open and closed positions.
9. The apparatus according to claim 8 wherein the elongated shaft includes camming structure which corresponds with corresponding camming structure of the jaw members to move the jaw members to the open position.
11. The apparatus according to claim 10 wherein the thermal energy source is a radio frequency energy source.
14. The apparatus according to claim 13 wherein an electrode is associated with each of the first and second jaw members.
15. The apparatus according to claim 14 wherein each electrode is configured as a bipolar electrode.
16. The apparatus according to claim 13 including an elongated shaft at least partially disposed in the housing.
17. The apparatus according to claim 16 wherein the tissue engaging members are at least partially disposed within the elongated shaft, the tissue engaging members adapted for longitudinal movement relative to the elongated shaft between a first position wherein the distal memory portion of each tissue engaging member is in a stressed condition confined within the elongated shaft, and a second position wherein the distal memory portion of each tissue engaging member is exposed from the elongated shaft to assume the normal unstressed condition thereof.
19. The method according to claim 18 wherein the tissue engaging members comprise a shape memory material, and wherein the step of deploying includes permitting the tissue engaging members to assume a normal unstressed condition so as to be in position to engage the internal vascular tissue portions to arrange the internal vascular tissue portions at a desired orientation.
20. The method according to claim 19 wherein the step of approximating includes engaging the internal vascular tissue portions when in the desired orientation with jaw members of the apparatus and moving the jaw members to an approximated position.
21. The method according to claim 20 wherein the step of conducting electrical energy comprises transmitting radio frequency energy from at least one of the jaw members.
23. The apparatus according to claim 22 wherein the elongated shaft includes camming surfaces to cooperate with camming surfaces of the jaw members to move the jaw members from the open to the closed positions thereof.
24. The apparatus according to claim 22 wherein the jaw members are adapted for longitudinal movement relative to the elongated shaft to move between the open and closed positions thereof.
25. The apparatus according to claim 22 wherein the first and second tissue engaging members are adapted for longitudinal movement between a first position wherein the distal engaging portions are at least partially disposed in a stressed condition within the elongated shaft and a second position wherein the distal engaging portions are deployed to assume the normal unstressed arcuate condition thereof.

This Appln is a con't of Ser. No. 09/503,510 filed Feb. 14, 2000 now U.S. Pat. No. 6,248,124 and claims benefit of Prov. No. 60/121,114 filed Feb. 22, 1999.

1. Technical Field

The present disclosure relates to an arterial closure device used following a coronary catherization procedure for closing an arterial access opening formed through the arterial wall while permitting post operative blood flow through the artery.

2. Background of the Related Art

When performing a catheterization procedure such as for example, an angiography or angioplasty, a sharpened hollow needle is first percutaneously introduced into the vascular system. A guide wire is then inserted through the hollow needle and into the lumen of a selected blood vessel. Subsequently, the needle is removed and a dilator and/or introducer is fed into the vessel along the guide wire. The guide wire is then removed and a suitable catheter is fed through the lumen of the introducer and advanced through the vascular system until the working end thereof is positioned at the operating site. At the conclusion of the catheterization procedure, the catheter is withdrawn, followed by removal of the dilator and/or introducer.

At this point in the procedure, the vessel puncture must be sealed to stem the flow of blood therethrough. Generally, this procedure is extremely difficult due to the nature of the vessel tissue and to the presence of a blood thinning agent which is typically administered prior to the catheterization. A common method of closing the wound is to maintain external pressure over the vessel until the puncture naturally seals. This method of puncture closure typically takes about thirty minutes, with the length of time usually being greater if the patient is hypertensive or anticoagulated. When hand pressure is utilized, it can be uncomfortable for the patient and can use costly professional time on the part of the hospital staff. Other pressure application techniques, such as pressure bandages, sandbags or clamps, have been employed, but these techniques also require the patient to remain motionless for an extended period of time and the patient must be closely monitored to ensure the effectiveness.

Other devices have been disclosed that plug or otherwise provide an obstruction in the area of the puncture. See, for example, U.S. Pat. Nos. 4,852,568 and 4,890,612, wherein a collagen plug is disposed in the blood vessel opening. When the plug is exposed to body fluids, it swells to create a block for the wound in the vessel wall. A potential problem of plugs introduced into the vessel is that plug particles may break off and float downstream to the point where they may lodge in a smaller vessel, causing an infarct to occur. Collagen material also acts as a nidus for platelet aggregation and, therefore, can cause intraluminal deposition of a hemostatic agent, thereby creating the possibility of a thrombosis at the puncture site. Other plug-like devices are disclosed, for example, in U.S. Pat. Nos. 5,342,393; 5,370,660; and 5,411,520.

U.S. Pat. Nos. 5,417,699 and 5,527,322 each to Klein et al. discloses a suture applying device for the percutaneous suturing of a vascular puncture site. These devices include a shaft which carries a pair of needles at its distal end. The needles are joined by a length of suture. The shaft is used to both introduce the needles within the lumen of the vessel and to draw the needle back through the vessel wall leaving a loop of suture behind to close the puncture site.

U.S. Pat. No. 5,810,810 to Tay et al. discloses an apparatus for closing and sealing a vascular puncture utilizing heat to thermally fuse the vascular tissue. The Tay '810 device includes a vessel balloon occluder which is introduced within the lumen of the vessel to occlude the opening and a forceps which are intended to grasp the vascular tissue surrounding the opening. The forceps serve as electrodes and are energized by radiofrequency energy to thermally fuse the tissue grasped therebetween.

Accordingly, the present invention is directed to an arterial closure device used following coronary catherization procedures to close arterial access openings through the arterial wall while permitting post operative flow through the artery. In the preferred embodiment, the apparatus includes a housing having proximal and distal ends, and defining a longitudinal axis, first and second arterial tissue everting members mounted adjacent the distal end of the housing and first and second jaw members mounted adjacent the first and second arterial tissue engaging members. The first and second arterial tissue everting members are dimensioned for at least partial positioning within the arterial access opening in the arterial wall and are deployable in at least a radial outward direction relative to the longitudinal axis of the housing to engage respective opposed arterial tissue portions on opposed sides of the opening and move the arterial tissue portions to an everted condition thereof. The first and second jaw members are adapted for relative movement between an open position to facilitate positioning about the arterial tissue portions in the everted condition and a closed position to at least partially draw the arterial tissue portions together to an at least partial approximated condition. An electrode is associated with at least one of the first and second jaw members and arranged to contact the respective arterial tissue portions. The electrode is adapted to be connected to a radiofrequency energy source whereby energy is transmitted through the electrode to thermally fuse the arterial tissue positions between the first and second jaw members to substantially close the opening. Preferably, an electrode is associated with each of the first and second jaw members. Each electrode may be configured as a bipolar electrode.

Each arterial tissue everting member includes a distal memory portion comprising a shape memory material, the distal memory portion being adapted to assume a normal unstressed condition upon deployment to engage and move the arterial tissue portions to the everted condition. The normal unstressed condition of each arterial tissue everting member may be a general hook-shaped configuration. Preferably, the distal memory portions of the tissue everting members define general hook-shaped configurations in diametrical opposed relation and extending in radial opposite directions.

A manually operable deployment member may be operatively connected to the arterial tissue everting members, and movable to deploy the tissue everting members. An actuator is operatively connected to the first and second jaw members with the actuator movable to cause corresponding movement of the first and second jaw members between the open and closed positions.

The apparatus may include an elongated shaft at least partially disposed within the housing. The elongated shaft has camming structure which cooperates with corresponding camming structure of the first and second jaw members to move the jaw members between the open and closed positions.

Preferred embodiments of the disclosure are described herein with reference to the drawings wherein:

FIG. 1 is a perspective view of the surgical apparatus for facilitating closure of an arterial access opening in the arterial wall in accordance with the principles of the present disclosure;

FIG. 2 is a perspective view with parts separated of the apparatus of FIG. 1;

FIGS. 3-4 are side cross-sectional views of the apparatus in an unactuated position;

FIGS. 5-6 are side cross-sectional views of the apparatus in an actuated position; and

FIGS. 7A-7D are perspective views depicting the sequence of movement of the arterial tissue everters members and the jaw members during movement of the apparatus to the actuated position.

In general, the object of the apparatus is to close an arterial access opening in an arterial wall following a coronary catheterization procedure, to stem the flow of blood through the opening while permitting post operative blood flow through the artery. In the drawings and in the description which follows, the term "proximal", as is traditional, will refer to that end of the apparatus, or component thereof, which is closer to the operator, while the term "distal" will refer to that end of the apparatus, or component thereof, which is more remote from the operator.

Referring now in detail wherein like reference numerals identify similar components throughout the several views, FIG. 1 illustrates in perspective the apparatus in accordance with the principles of the present disclosure. Arterial closure apparatus 10 is configured to close an arterial access opening in an arterial wall. In achieving this objective, arterial apparatus 10 has incorporated therein several mechanisms; namely, 1) an arterial tissue everting mechanism which everts the tissue portions on each side of the arterial opening such that the arterial portions are exposed and arranged at a desired orientation; and 2) an arterial tissue approximating mechanism which draws the everted arterial portions to a general closed approximated position and maintains a predetermined degree of pressure on the arterial portions. A thermal treatment mechanism supplies thermal energy across the approximated everted arterial tissue portions for a desired predetermined time and intensity to effectuate complete thermal fusion of the everted arterial portions.

Referring now to FIGS. 2-4, in conjunction with FIG. 1, the components of apparatus 10 will be discussed in detail. Apparatus 10 includes main housing 12 which accommodates the mechanisms discussed above. Main housing 12 includes outer sleeve 14 and circular flange 16 which is fixedly mounted to the proximal end of outer sleeve 14. Outer sleeve 14 defines longitudinal axis "a" and has a longitudinal opening 14a extending completely therethrough. Circular flange 16 also defines longitudinal opening 16a (FIG. 3) in general alignment with the opening of the outer sleeve 14. Circular flange 16 may be fixedly mounted to outer sleeve 14 by any conventional means including adhesives, snap-groove fit, bayonet coupling etc. Outer sleeve 14 and circular flange 16 may be fabricated from any suitable rigid material including stainless steel titanium, or a rigid polymeric material. Housing 12 further includes central elongated shaft 18 disposed within outer sleeve 14 and mounted for relative longitudinal movement therewithin. Central shaft 18 defines a central lumen 20 dimensioned to receive a guide wire. The remaining features and components of housing 12 will be discussed in greater detail below.

With continued reference to FIGS. 2-4, the components of the arterial tissue approximating mechanism will be discussed. The tissue approximating mechanism includes manually operable actuator 22 which is mounted to outer sleeve 14 in a manner to permit relative longitudinal movement of the actuator 22 and the sleeve 14. Actuator 22 includes main portion 24 defining a central lumen 26 and tubular portion 28 extending from the main portion 24. Main portion 24 defines a pair of manually engageable finger grips 30 extending radially outward from the main portion 24. Finger grips 30 are positioned to be engaged by the user's fingers during use while the user's palm engages circular flange 16. Tubular portion 28 of actuator 22 possesses a pair of resilient legs 32 (FIG. 2) extending in a general longitudinal direction. Resilient legs 32 have radially outwardly extending resilient tabs 34 adjacent their distal ends which are received within corresponding slots 36 of elongated shaft 18 in a snap fit manner to connect the two components. With this arrangement, actuator 22 is longitudinally fixed with respect to elongated shaft 18. Tabs 34 of actuator legs 32 are also accommodated within longitudinal slots 38 of outer sleeve 14 to operatively connect these components. Tabs 34 of actuator legs 32 are capable of sliding within slots 38 to thereby provide relative movement between outer sleeve 14 and actuator 22

With reference still to FIGS. 2-4, the arterial tissue approximating mechanism further includes a pair of jaw members 40. Jaw members 40 are connected to outer sleeve 14 at location "P" (FIG. 4) through a pivot pin arrangement (not shown) and thus are longitudinally fixed with respect to the sleeve 14. Jaw members 40 are adapted to move or pivot from the closed or approximated position depicted in FIG. 3 to the open position depicted in FIG. 5. Jaw members 40 each define an arterial tissue contacting portion 42 adjacent their respective distal ends. Arterial tissue contacting portion 42 each depend radially inwardly and define a planar tissue contacting surface 44. In the closed position of jaw members 40 depicted in FIG. 3, tissue contacting portions 42 are received within corresponding recesses 46 of elongated shaft 18 to define the reduced profile shown. Jaw members 40 further define first and second interior camming surfaces 48. Camming surfaces 48 engage corresponding camming surfaces 50 of elongated shaft 18 to cause the jaw members 40 to assume the open position depicted in FIG. 5 as will be discussed.

The tissue approximating mechanism is normally biased to the closed position of FIG. 3 by coil spring 52. More particularly, coil spring 52 is in engagement with flange 16 of housing 12 and actuator 22 and serves to normally bias the flange 16 and the actuator 22 in opposite directions, thus biasing outer sleeve 14 and jaw members 40 in the opposite (proximal) direction relative to elongated shaft

With continued reference to FIGS. 2-4, the arterial tissue everter mechanism will be discussed. The arterial tissue everter mechanism includes a manually operative lever 54 pivotally mounted to actuator 22 about pivot pin 56 and drive tube 58 which is operatively connected to operative lever 54 through pin 60. With this arrangement, pivotal movement of lever 54 causes drive tube 58 to longitudinally translate. Drive tube 58 includes central opening 62 which receives guide wire "w" and outer longitudinal slots 64 (FIG. 2) defined in the outer wall of the drive tube 58. With reference to FIG. 2, the tissue everter mechanism further includes a pair of arterial tissue everting members 66. In FIGS. 1 and 3-6, everting members 66 are not shown/visible. Tissue everting members 66 are accommodated within longitudinal slots 64 of drive tube 58 and extend distally with elongated shaft 16 through a pair of longitudinal slots 67 (FIG. 2) defined within the outer wall of the elongated shaft 16. Each tissue everting member 66 is fixed to drive tube 58 by conventional means to thereby longitudinally move with the drive tube 58, but, is capable of sliding within slots 67 of elongated shaft 16. Each everting member 66 defines a generally straight proximal portion 68 and a curved distal portion 70. Tissue everting members 66 are fabricated from a shape memory material such as Tinel™. In the normal unstressed condition of tissue everting members, the distal portions 70 assume the opposed hook or J-shaped configuration shown. In this configuration, the distal portions 70 engage the interior arterial portions to surrounding the vessel opening to evert the tissue portions to a desired orientation. The extreme distal end of each tissue everting member is relatively sharp to facilitate engagement with the vessel portion. In the non-deployed position, tissue everting members 66 are received within longitudinal slots 67 of elongated shaft 18 whereby the curved distal portion is straightened by the biasing affects of the elongated shaft

With reference to FIG. 1, in conjunction with FIG. 3, the thermal treatment energy source 100 is shown in block diagram. The thermal treatment energy source does not form part of the invention as a variety of different generators can be utilized to apply thermal energy to the tissue. Preferably, the energy source includes an RF energy source which is capable of supplying RF energy at a frequency ranging between 10 Khz to 300 GHz. One suitable RF energy source is the WeO Fich LT made by Mentor U&O, Inc. Another suitable power source is the Valley Lab Force FX an Force EZ generator. Other RF generators suitable for this use are envisioned as well such as those enumerated in U.S. Pat. No. 5,810,810. The generator selected may depend on the intended use requirements of the surgeons. Also, energy can be supplied at other frequency ranges other than radiofrequency, as well. The energy source needs to be in electrical contact with jaw member 40. In the illustrated embodiment, this is achieved through conventional leads with electrodes associated with jaw members 40. In one embodiment, the contacting surface 44 of each jaw member 40 functions as the RF electrode and is electrically connected through lead lines (not shown) to the RF power source. Preferably, the RF electrodes are each configured as bipolar electrodes to transmit RF energy therebetween. A monopolar arrangement is envisioned as well. It is also envisioned the jaw members 40 may be conductive with the extreme tissue contacting portion 42 left uninsulated to transmit the thermal energy.

The operation of surgical apparatus 10 will now be discussed. Apparatus 10 is used to close an arterial access opening in an arterial wall subsequent to a coronary catherization procedure while permitting blood flow through the artery. The initial position of apparatus 10 is best depicted in FIGS. 3-4.

Surgical apparatus 10 is then advanced along a guide wire which had been previously introduced in connection with the angioplasty procedure to access the surgical site. The guide wire is received within the central lumen 20 of elongated shaft 18 and extends proximally within opening 62 of drive tube 58 where it passes through the opening 16a of flange 16. Apparatus 10 is advanced along the guide wire until the distal hub portion is received within the opening of the arterial wall and at least partially disposed within the vessel lumen. Thereafter, lever 54 is pivoted from its initial position of FIG. 3 to its position of FIG. 5 to cause corresponding movement of drive tube 58 and tissue everting members 66 to advance within slots of elongated shaft 18. Upon deployment from elongated shaft 18, distal portions 70 of tissue everting members 66 assume their normal unstressed condition, i.e., the J-shaped configuration shown in FIG. 7A. In this position, the extreme distal ends of the distal hook portion 70 engage the interior arterial wall portions "a" on each side of the opening "o" to essentially draw the wall portions "a" upwardly to an everted position shown in the Figure. It is noted that at this point the surgeon may slightly "pull-back" the apparatus to exaggerate the everted condition of the arterial portions "a" if desired.

With the arterial portions "a" properly everted, the surgeon thereafter pushes on flange 16 to cause drive sleeve 14 and jaw members 40 to distally move. During such movement, camming surfaces 50 of elongated shaft IS engage camming surfaces 48 of jaw members 40 to cause the jaw members 40 to pivot outwardly to the open position depicted in FIGS. 5 and 7B. In the open position, the jaw members 40 are positioned about the everted wall portions "a" as depicted in FIG. 7C. Thereafter, jaw members 40 are closed by either releasing actuator 22 or flange 16, or a combination of each movement, to cause the jaw members 40 to close or clamp tightly down on the everted wall portions as shown in FIG. 7D.

With the everted wall portions "a" in their proper everted positions clamped by jaw members 40, the RF energy source is energized to cause current to be emitted through the arterial tissue captured by the jaw members 40. Preferably, the energy is for a sufficient period of time and at an appropriate level to thermally treat and fuse the tissue portions to each other. Once fused, the access opening is closed while blood flow through the artery continues. If desirable, the RF energy source may incorporate various means to detect when treatment has been successfully accomplished or when undesired treatment of neighboring tissue areas occurs. Such means may include temperature sensor means, impedance measurement means, etc. appreciated by one skilled in the art. Other types of feedback mechanism or circuits can optimally be provided as part of the energy source if monitoring of specific parameters is desired by the surgeon. It is noted that the clamping pressure provided by jaw members 40 ensures that the tissue portions are approximated thereby facilitating the fusion process. Upon completion, the apparatus may then be removed from the surgical site along the guide wire.

Although certain embodiments and examples have been used to illustrate and describe the apparatus of the present invention, it is intended that the scope of the invention not be limited to the specific embodiments of the apparatus set forth herein. The scope of the invention is to be defined by the claims which follow.

Ratcliff, Keith, Robertson, John C., Pedros, Roberto

Patent Priority Assignee Title
10004486, Feb 15 2008 REX MEDICAL, L P Vascular hole closure delivery device
10004558, Jan 12 2009 Cilag GmbH International Electrical ablation devices
10058318, Mar 25 2011 KARDIUM INC. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
10085753, Jul 01 2005 Abbott Laboratories Clip applier and methods of use
10098527, Feb 27 2013 Cilag GmbH International System for performing a minimally invasive surgical procedure
10098621, Feb 15 2008 Rex Medical, LP. Vascular hole closure delivery device
10098691, Dec 18 2009 Cilag GmbH International Surgical instrument comprising an electrode
10105141, Jul 14 2008 Cilag GmbH International Tissue apposition clip application methods
10108646, Feb 15 2008 REX MEDICAL, L P Vascular hole closure delivery device
10111653, May 31 2012 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
10111664, Jan 05 2000 Integrated Vascular Systems, Inc. Closure system and methods of use
10201340, Feb 21 2002 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
10206709, May 14 2012 Cilag GmbH International Apparatus for introducing an object into a patient
10245013, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
10245022, Sep 26 2003 Abbott Laboratories Device and method for suturing intracardiac defects
10258406, Feb 28 2011 Cilag GmbH International Electrical ablation devices and methods
10278761, Feb 28 2011 Cilag GmbH International Electrical ablation devices and methods
10314603, Nov 25 2008 Cilag GmbH International Rotational coupling device for surgical instrument with flexible actuators
10314649, Aug 02 2012 Ethicon Endo-Surgery, Inc Flexible expandable electrode and method of intraluminal delivery of pulsed power
10342524, Feb 15 2008 REX MEDICAL, L P Vascular hole closure device
10342598, Aug 15 2012 Cilag GmbH International Electrosurgical system for delivering a biphasic waveform
10390807, Feb 15 2008 Rex Medical, L.P. Vascular hole closure device
10390808, Feb 15 2008 REX MEDICAL, L P Vascular hole closure device
10398418, Jan 30 2003 Integrated Vascular Systems, Inc. Clip applier and methods of use
10413288, Dec 23 2003 Abbott Laboratories Suturing device with split arm and method of suturing tissue
10413295, May 16 2008 Abbott Laboratories Engaging element for engaging tissue
10426449, Feb 16 2017 Abbott Cardiovascular Systems, Inc.; ABBOTT CARDIOVASCULAR SYSTEMS, INC Articulating suturing device with improved actuation and alignment mechanisms
10441753, May 25 2012 Arstasis, Inc. Vascular access configuration
10463353, Sep 01 2010 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
10478248, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
10492880, Jul 30 2012 Ethicon Endo-Surgery, Inc Needle probe guide
10537312, Dec 21 2012 Abbott Cardiovascular Systems, Inc. Articulating suturing device
10537313, Jan 09 2009 Abbott Vascular, Inc. Closure devices and methods
10603022, Jun 07 2010 KARDIUM INC. Closing openings in anatomical tissue
10675447, May 25 2012 Arstasis, Inc. Vascular access configuration
10687941, Oct 01 2009 KARDIUM INC. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
10779882, Oct 28 2009 Cilag GmbH International Electrical ablation devices
10813758, Oct 01 2009 KARDIUM INC. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
10980531, May 31 2012 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
11020104, Feb 15 2008 Rex Medical L.P. Vascular hole closure delivery device
11033392, Aug 02 2006 KARDIUM INC System for improving diastolic dysfunction
11064986, Feb 15 2008 REX MEDICAL, L P Vascular hole closure device
11123059, Feb 15 2008 Rex Medical, L.P. Vascular hole closure delivery device
11154293, Apr 10 2012 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
11284918, May 14 2012 Cilag GmbH International Apparatus for introducing a steerable camera assembly into a patient
11344304, Jul 01 2005 Abbott Laboratories Clip applier and methods of use
11369354, Feb 15 2008 Rex Medical L.P. Vascular hole closure delivery device
11399834, Jul 14 2008 Cilag GmbH International Tissue apposition clip application methods
11439378, Jan 09 2009 Abbott Cardiovascular Systems, Inc. Closure devices and methods
11484191, Feb 27 2013 Cilag GmbH International System for performing a minimally invasive surgical procedure
11504105, Jan 25 2019 REX MEDICAL L P Vascular hole closure device
11589856, Jan 30 2003 Integrated Vascular Systems, Inc. Clip applier and methods of use
11647997, Sep 01 2010 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
11672518, Dec 21 2012 Abbott Cardiovascular Systems, Inc. Articulating suturing device
11839351, May 31 2012 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
6939348, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
7008441, Mar 14 2001 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
7115127, Feb 04 2003 CARDIODEX LTD Methods and apparatus for hemostasis following arterial catheterization
7165552, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for treatment of patent foramen ovale
7186251, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
7252666, Feb 03 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Arterial hole closure apparatus
7257450, Feb 13 2003 CoAptus Medical Corporation Systems and methods for securing cardiovascular tissue
7293562, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
7311701, Jun 10 2003 Terumo Kabushiki Kaisha Methods and apparatus for non-invasively treating atrial fibrillation using high intensity focused ultrasound
7320692, Mar 28 2005 Aesculap AG Tissue closure system
7344544, Mar 28 2005 Aesculap AG Vascular closure system
7367975, Sep 27 2004 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
7458978, Mar 28 2005 Aesculap AG Vascular closure system utilizing a staple
7473252, Oct 07 2004 CoAptus Medical Corporation Systems and methods for shrinking and/or securing cardiovascular tissue
7473258, Mar 08 2007 Aesculap AG Surgical stapler
7533790, Mar 08 2007 Aesculap AG Surgical stapler
7637924, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for treatment of patent foramen ovale
7670348, Mar 28 2005 Aesculap AG Heart defect closure apparatus
7727245, Mar 28 2005 Aesculap AG Method for closing an opening in tissue with a splayable staple
7744610, Mar 28 2005 Aesculap AG System for closing a tissue structure from inside
7749249, Feb 21 2006 KARDIUM INC Method and device for closing holes in tissue
7753250, Mar 08 2007 Aesculap AG Surgical stapler with splaying mechanism
7806904, Dec 07 2000 INTEGRATED VASCULAR SYSTEMS, INC Closure device
7837696, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
7841502, Dec 18 2007 Abbott Laboratories Modular clip applier
7842047, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
7842048, Aug 18 2006 Abbott Laboratories Articulating suture device and method
7842049, Dec 31 2002 Abbott Laboratories Systems for anchoring a medical device in a body lumen
7842068, Dec 07 2000 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
7846170, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
7850701, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
7850709, Jun 04 2002 Abbott Vascular Inc Blood vessel closure clip and delivery device
7850797, Dec 17 2003 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
7854810, Dec 31 2002 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
7857828, Jan 30 2003 INTEGRATED VASCULAR SYSTEMS, INC Clip applier and methods of use
7867249, Jan 30 2003 INTEGRATED VASCULAR SYSTEMS, INC Clip applier and methods of use
7875053, Sep 15 2006 Aesculap AG Apparatus and method for closure of patent foramen ovale
7879071, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
7883517, Aug 08 2005 Abbott Laboratories Vascular suturing device
7887555, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
7887563, Jan 22 2003 INTECH DIRECT, INC Surgical staple
7901428, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
7905900, Jan 30 2003 INTEGRATED VASCULAR SYSTEMS, INC Clip applier and methods of use
7914527, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
7918873, Jun 07 2001 Abbott Vascular Inc Surgical staple
7922716, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
7931669, Jan 05 2000 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
7972330, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
7998169, May 12 2004 ARSTASIS, INC Access and closure device and method
8002791, May 12 2004 ARSTASIS, INC Access and closure device and method
8002792, May 12 2004 ARSTASIS, INC Access and closure device and method
8002793, May 12 2004 ARSTASIS, INC Access and closure device and method
8002794, May 12 2005 Arstasis, Inc. Access and closure device and method
8007512, Feb 21 2002 BLACKROCK ADVISORS, LLC Plunger apparatus and methods for delivering a closure device
8012168, May 12 2004 ARSTASIS, INC Access and closure device and method
8021359, Feb 13 2003 CoAptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
8021362, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
8038669, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038671, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038672, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038673, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038688, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
8048092, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
8048108, Dec 23 2005 ABBOTT VASCULAR INC. Vascular closure methods and apparatuses
8052677, Feb 13 2003 CoAptus Medical Corporation Transseptal left atrial access and septal closure
8052678, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8057469, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for treatment of patent foramen ovale
8057491, Mar 04 1999 ABBOTT LABORATORIES, INC Articulating suturing device and method
8066701, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8066720, Feb 08 2007 Aesculap AG Surgical method for stapling tissue
8070747, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8070772, Feb 15 2008 REX MEDICAL, L P Vascular hole closure device
8075554, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8083754, Aug 08 2005 Abbott Laboratories Vascular suturing device with needle capture
8083767, May 12 2005 ARSTASIS, INC Access and closure device and method
8109274, Apr 11 2005 Terumo Kabushiki Kaisha Methods and electrode apparatus to achieve a closure of a layered tissue defect
8128644, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
8133221, Sep 27 2004 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
8137364, Sep 11 2003 Abbott Laboratories Articulating suturing device and method
8172860, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
8182497, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device
8192459, Jun 04 2002 ABBOTT VASCULAR INC. Blood vessel closure clip and delivery device
8202281, Dec 31 2002 Abbott Laboratories Systems for anchoring a medical device in a body lumen
8202283, Dec 31 2002 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
8202293, Jan 30 2003 INTEGRATED VASCULAR SYSTEMS, INC Clip applier and methods of use
8202294, Jan 30 2003 Integrated Vascular Systems, Inc. Clip applier and methods of use
8206415, Feb 22 1999 Tyco Healthcare Group LP Arterial hole closure apparatus
8211122, Sep 26 2003 Abbott Laboratories Device for suturing intracardiac defects
8226681, Jun 25 2007 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
8236026, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
8241325, May 12 2005 ARSTASIS, INC Access and closure device and method
8252008, Aug 18 2006 Abbott Laboratories Articulating suturing device and method
8257368, Sep 26 2003 Abbott Laboratories Device for suturing intracardiac defects
8257390, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
8267947, Aug 08 2005 Abbott Laboratories Vascular suturing device
8303624, Mar 15 2010 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
8313497, Jul 01 2005 Abbott Laboratories Clip applier and methods of use
8313498, Aug 08 2005 Abbott Laboratories Vascular suturing device
8323298, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
8323312, Dec 22 2008 Abbott Laboratories Closure device
8337524, Feb 21 2006 KARDIUM INC. Method and device for closing holes in tissue
8361088, Sep 26 2003 Abbott Laboratories Device and method for suturing intracardiac defects
8366706, Aug 15 2007 CARDIODEX LTD Systems and methods for puncture closure
8372072, Feb 04 2003 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
8398656, Jan 30 2003 INTEGRATED VASCULAR SYSTEMS, INC Clip applier and methods of use
8398676, Oct 30 2008 Abbott Vascular Inc Closure device
8419753, Dec 23 2003 Abbott Laboratories Suturing device with split arm and method of suturing tissue
8430893, Aug 18 2006 Abbott Laboratories Articulating suturing device and method
8435236, Nov 22 2004 CARDIODEX LTD Techniques for heat-treating varicose veins
8449605, Jun 28 2006 KARDIUM INC Method for anchoring a mitral valve
8454650, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
8465485, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8469995, Jun 04 2002 ABBOTT VASCULAR INC. Blood vessel closure clip and delivery device
8486092, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
8486108, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
8491629, Feb 15 2008 REX MEDICAL L P Vascular hole closure delivery device
8518057, Jul 01 2005 Abbott Laboratories Clip applier and methods of use
8529587, Jan 30 2003 Integrated Vascular Systems, Inc. Methods of use of a clip applier
8556930, Jun 28 2006 Abbott Laboratories Vessel closure device
8574244, Jun 25 2007 Abbott Laboratories System for closing a puncture in a vessel wall
8579932, Feb 21 2002 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
8585836, Dec 31 2002 Integrated Vascular Systems, Inc. Methods for manufacturing a clip and clip
8590760, May 25 2004 Abbott Vascular Inc Surgical stapler
8597309, Dec 23 2003 Abbott Laboratories Suturing device with split arm and method of suturing tissue
8597325, Dec 07 2000 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
8603116, Aug 04 2010 Abbott Cardiovascular Systems, Inc. Closure device with long tines
8603136, Dec 07 2000 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
8657852, Oct 30 2008 ABBOTT VASCULAR INC. Closure device
8663248, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
8663252, Sep 01 2010 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
8672953, Dec 17 2007 Abbott Laboratories Tissue closure system and methods of use
8672998, Jun 28 2006 KARDIUM INC Method for anchoring a mitral valve
8690910, Dec 07 2000 INTEGRATED VASCULAR SYSTEMS, INC Closure device and methods for making and using them
8728119, Jun 07 2001 ABBOTT VASCULAR INC. Surgical staple
8740936, Sep 13 2010 Boston Scientific Scimed, Inc. Pinch vascular closure apparatus and method
8758396, Jan 05 2000 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
8758397, Aug 24 2005 Abbott Vascular Inc Vascular closure methods and apparatuses
8758398, Sep 08 2006 INTEGRATED VASCULAR SYSTEMS, INC Apparatus and method for delivering a closure element
8758399, Aug 02 2010 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
8758400, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Closure system and methods of use
8784447, Sep 08 2000 Abbott Vascular Inc Surgical stapler
8808310, Apr 20 2006 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
8820602, Dec 18 2007 Abbott Laboratories Modular clip applier
8821534, Dec 06 2010 INTEGRATED VASCULAR SYSTEMS, INC Clip applier having improved hemostasis and methods of use
8852181, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
8858573, Apr 10 2012 ABBOTT CARDIOVASCULAR SYSTEMS, INC Apparatus and method for suturing body lumens
8858594, Dec 22 2008 Abbott Laboratories Curved closure device
8864778, Apr 10 2012 Abbott Cardiovascular Systems, Inc. Apparatus and method for suturing body lumens
8888791, Oct 07 2008 KARDIUM INC Surgical instrument and method for tensioning and securing a flexible suture
8893947, Dec 17 2007 Abbott Laboratories Clip applier and methods of use
8905937, Feb 26 2009 INTEGRATED VASCULAR SYSTEMS, INC Methods and apparatus for locating a surface of a body lumen
8920442, Aug 24 2005 Abbott Vascular Inc Vascular opening edge eversion methods and apparatuses
8920462, Feb 15 2008 Tyco Healthcare Group, LP; REX MEDICAL, L P Vascular hole closure device
8920463, Feb 15 2008 Tyco Healthcare Group, LP; REX MEDICAL, L P Vascular hole closure device
8926633, Jun 24 2005 Abbott Laboratories Apparatus and method for delivering a closure element
8926656, Jan 30 2003 Integated Vascular Systems, Inc. Clip applier and methods of use
8932324, Aug 24 2005 Abbott Vascular Inc Redundant tissue closure methods and apparatuses
8940002, Sep 30 2010 KARDIUM INC Tissue anchor system
8956388, Jan 05 2000 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant
8968361, Feb 15 2008 Rex Medical, L.P. Vascular hole closure device
8979882, Jul 21 2008 ARSTASIS, INC Devices, methods, and kits for forming tracts in tissue
8998932, Dec 31 2002 Abbott Laboratories Systems for anchoring a medical device in a body lumen
9023058, Oct 07 2008 KARDIUM INC Surgical instrument and method for tensioning and securing a flexible suture
9050066, Jun 07 2010 KARDIUM INC Closing openings in anatomical tissue
9050068, Jul 01 2005 Abbott Laboratories Clip applier and methods of use
9050087, Jan 05 2000 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
9060769, Sep 08 2000 ABBOTT VASCULAR INC. Surgical stapler
9072511, Mar 25 2011 KARDIUM INC Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
9078662, Jul 03 2012 Cilag GmbH International Endoscopic cap electrode and method for using the same
9089311, Jan 09 2009 ABBOTT VASCULAR INC. Vessel closure devices and methods
9089674, Oct 06 2000 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
9149276, Mar 21 2011 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
9155535, Sep 26 2003 Abbott Laboratories Device and method for suturing intracardiac defects
9173644, Jan 09 2009 ABBOTT VASCULAR INC. Closure devices, systems, and methods
9192468, Jun 28 2006 KARDIUM INC Method for anchoring a mitral valve
9204964, Oct 01 2009 KARDIUM INC. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
9226738, Feb 15 2008 Rex Medical, LP Vascular hole closure delivery device
9241696, Oct 30 2008 Abbott Vascular Inc Closure device
9241707, May 31 2012 Abbott Cardiovascular Systems, Inc. Systems, methods, and devices for closing holes in body lumens
9271707, Jan 30 2003 Integrated Vascular Systems, Inc. Clip applier and methods of use
9277957, Aug 15 2012 Cilag GmbH International Electrosurgical devices and methods
9282960, Aug 18 2006 Abbott Laboratories Articulating suturing device and method
9282965, May 16 2008 Abbott Laboratories Apparatus and methods for engaging tissue
9295458, Feb 15 2008 Rex Medical, L.P. Vascular hole closure delivery device
9295469, Jun 04 2002 ABBOTT VASCULAR INC. Blood vessel closure clip and delivery device
9301747, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
9314230, Jan 09 2009 ABBOTT VASCULAR INC. Closure device with rapidly eroding anchor
9320522, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
9332976, Nov 30 2011 Abbott Cardiovascular Systems, Inc. Tissue closure device
9339261, Feb 15 2008 Rex Medical, L.P. Vascular hole closure delivery device
9364209, Dec 21 2012 Abbott Cardiovascular Systems, Inc. Articulating suturing device
9370353, Sep 01 2010 Abbott Cardiovascular Systems, Inc. Suturing devices and methods
9375211, Dec 23 2003 Abbott Laboratories Suturing device with split arm and method of suturing tissue
9375268, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
9398914, Jan 30 2003 Integrated Vascular Systems, Inc. Methods of use of a clip applier
9402625, Sep 08 2000 ABBOTT VASCULAR INC. Surgical stapler
9414820, Jan 09 2009 ABBOTT VASCULAR INC. Closure devices, systems, and methods
9414822, May 19 2011 Abbott Cardiovascular Systems, Inc. Tissue eversion apparatus and tissue closure device and methods for use thereof
9414824, Jan 16 2009 ABBOTT VASCULAR INC. Closure devices, systems, and methods
9456811, Aug 24 2005 Abbott Vascular Inc Vascular closure methods and apparatuses
9463005, Feb 15 2008 Rex Medical, L.P. Vascular hole closure device
9486191, Jan 09 2009 ABBOTT VASCULAR, INC Closure devices
9498196, Feb 21 2002 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
9545290, Jul 30 2012 Ethicon Endo-Surgery, Inc Needle probe guide
9554786, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
9572557, Feb 21 2006 KARDIUM INC. Method and device for closing holes in tissue
9572623, Aug 02 2012 Ethicon Endo-Surgery, Inc Reusable electrode and disposable sheath
9579091, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Closure system and methods of use
9585646, Dec 07 2000 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
9585647, Aug 26 2009 Abbott Laboratories Medical device for repairing a fistula
9592038, Aug 08 2005 Abbott Laboratories Vascular suturing device
9700363, Oct 07 2008 KARDIUM INC. Surgical instrument and method for tensioning and securing a flexible suture
9744038, May 13 2008 KARDIUM INC. Medical device for constricting tissue or a bodily orifice, for example a mitral valve
9782155, Feb 15 2008 REX MEDICAL L P Vascular hole closure device
9788885, Aug 15 2012 Cilag GmbH International Electrosurgical system energy source
9788888, Jul 03 2012 Cilag GmbH International Endoscopic cap electrode and method for using the same
9867703, Oct 01 2009 KARDIUM INC. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
9883910, Mar 17 2011 Cilag GmbH International Hand held surgical device for manipulating an internal magnet assembly within a patient
9889276, Dec 31 2002 Abbott Laboratories Systems for anchoring a medical device in a body lumen
9918706, Jun 07 2010 KARDIUM INC. Closing openings in anatomical tissue
9924930, Feb 15 2008 Rex Medical, L.P. Vascular hole closure device
9943300, Feb 15 2008 Rex Medical, L.P. Vascular hole closure device
9962144, Jun 28 2006 Abbott Laboratories Vessel closure device
9980728, Jun 04 2002 Abbott Vascular Inc Blood vessel closure clip and delivery device
9993237, Aug 18 2006 Abbott Laboratories Articulating suturing device and method
Patent Priority Assignee Title
5318589, Apr 15 1992 Microsurge, Inc. Surgical instrument for endoscopic surgery
5383880, Jan 17 1992 Ethicon, Inc. Endoscopic surgical system with sensing means
5507744, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5647115, Feb 18 1992 Symbiosis Corporation Method for forming a jaw assembly for an endoscopic bioptome
5718709, Sep 24 1988 Apparatus for removing tumours from hollow organs of the body
5762609, Sep 14 1992 JB IP ACQUISITION LLC Device and method for analysis of surgical tissue interventions
5810810, Apr 30 1993 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5827296, Sep 06 1996 JARO, MICHAEL J Medical electrical lead
5836905, Jun 20 1994 Apparatus and methods for gene therapy
5836945, Feb 20 1997 Biological vessel harvesting device
5916233, Mar 05 1998 MAQUET CARDIOVASCULAR LLC Vessel harvesting method and instrument including access port
5928266, Jul 09 1996 ST JUDE MEDICAL, INC Anchoring device and method for sealing percutaneous punctures in vessels
5938660, Jun 27 1997 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Process and device for the treatment of atrial arrhythmia
5954731, Jul 29 1997 Surgical instrument with multiple rotatably mounted spreadable end effectors
5964782, Sep 18 1997 Boston Scientific Scimed, Inc Closure device and method
6004335, Aug 02 1994 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
6010500, Jul 21 1997 Boston Scientific Scimed, Inc Telescoping apparatus and method for linear lesion ablation
6063085, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
6099550, Dec 05 1989 Surgical instrument having jaws and an operating channel and method for use thereof
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 11 2000RATCLIFF, KEITHTyco Healthcare Group LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0272640949 pdf
Sep 14 2000PEDROS, ROBERTOTyco Healthcare Group LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0272640949 pdf
Sep 20 2000ROBERTSON, JOHN C Tyco Healthcare Group LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0272640949 pdf
Jun 18 2001Tyco Healthcare Group LP(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 13 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 13 2011M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 21 2015REM: Maintenance Fee Reminder Mailed.
Jan 13 2016EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 13 20074 years fee payment window open
Jul 13 20076 months grace period start (w surcharge)
Jan 13 2008patent expiry (for year 4)
Jan 13 20102 years to revive unintentionally abandoned end. (for year 4)
Jan 13 20118 years fee payment window open
Jul 13 20116 months grace period start (w surcharge)
Jan 13 2012patent expiry (for year 8)
Jan 13 20142 years to revive unintentionally abandoned end. (for year 8)
Jan 13 201512 years fee payment window open
Jul 13 20156 months grace period start (w surcharge)
Jan 13 2016patent expiry (for year 12)
Jan 13 20182 years to revive unintentionally abandoned end. (for year 12)