Devices and methods for accessing and closing vascular sites are disclosed. Self-sealing closure devices and methods are disclosed. A device that can make a steep and controlled access path into a vascular lumen is disclosed. Methods for using the device are also disclosed.

Patent
   8002791
Priority
May 12 2004
Filed
Oct 06 2006
Issued
Aug 23 2011
Expiry
Feb 02 2025

TERM.DISCL.
Extension
266 days
Assg.orig
Entity
Small
12
278
EXPIRED<2yrs
1. A method comprising:
a. inserting an anchor across a vessel wall into a lumen defined by the vessel wall through a first arteriotomy that has a first angle with respect to the vessel wall;
b. applying a force to the anchor to position an adjacent portion of the vessel wall in a desired configuration relative to the anchor;
c. creating a tract between an exterior portion of a vessel wall and a lumen defined by the vessel wall with a device passing though a proximal extension of the anchor, while maintaining the vessel wall portion in the desired configuration with the anchor wherein a distal portion of the tract defines a second angle with respect to the vessel wall and wherein the first angle is larger than the second angle; and
d. expanding the tract with a sheath so that a procedure may be performed therethrough, wherein the tract is defined between overlapping tissue portions of the vessel wall, and wherein after the procedure has been performed and the device and sheath have been withdrawn from the tract, blood pressure acting on the vessel causes the overlapping tissue portions to collapse and self-seal.
2. The method of claim 1, wherein the device comprises a first introducer, and wherein creating the tract comprises introducing the first introducer into the lumen to locate a surface of the vessel wall.
3. The method of claim 2, wherein the device further comprises a second introducer, and wherein creating the tract further comprises introducing the second introducer substantially laterally through the vessel wall.
4. The method of claim 1, wherein the vessel comprises an artery.
5. The method of claim 1, wherein the tract includes at least one sloped region.
6. The method of claim 1, wherein the force is a proximal force configured to urge the anchor into contact against the vessel wall.
7. The method of claim 6, wherein desired contact configuration comprises one in which a portion of the anchor is aligned to be substantially parallel with a wall surface of the lumen of the vessel.

This application is a continuation of U.S. patent application Ser. No. 10/844,247, filed may 12, 2004, which is hereby incorporated by reference in its entirety.

1. Field of the Invention

The present invention relates to the field of accessing a biological lumen and closing the access port thereby created.

2. Description of the Related Art

A number of diagnostic and interventional vascular procedures are now performed translumenally, where a catheter is introduced to the vascular system at a convenient access location—such as the femoral, brachial, or subclavian arteries—and guided through the vascular system to a target location to perform therapy or diagnosis. When vascular access is no longer required, the catheter and other vascular access devices must be removed from the vascular entrance and bleeding at the puncture site must be stopped.

One common approach for providing hemostasis is to apply external force near and upstream from the puncture site, typically by manual compression. This method is time-consuming, frequently requiring one-half hour or more of compression before hemostasis. This procedure is uncomfortable for the patient and frequently requires administering analgesics. Excessive pressure can also present the risk of total occlusion of the blood vessel, resulting in ischemia and/or thrombosis.

After hemostasis is achieved by manual compression, the patient is required to remain recumbent for six to eighteen hours under observation to assure continued hemostasis. During this time bleeding from the vascular access wound can restart, potentially resulting in major complications. These complications may require blood transfusion and/or surgical intervention.

Bioabsorbable fasteners have also been used to stop bleeding. Generally, these approaches rely on the placement of a thrombogenic and bioabsorbable material, such as collagen, at the superficial arterial wall over the puncture site. This method generally presents difficulty locating the interface of the overlying tissue and the adventitial surface of the blood vessel. Implanting the fastener too far from the desired location can result in failure to provide hemostasis. If, however, the fastener intrudes into the vascular lumen, thrombus can form on the fastener. Thrombus can embolize downstream and/or block normal blood flow at the thrombus site. Implanted fasteners can also cause infection and auto-immune reactions/rejections of the implant.

Suturing methods are also used to provide hemostasis after vascular access. The suture-applying device is introduced through the tissue tract with a distal end of the device located at the vascular puncture. Needles in the device draw suture through the blood vessel wall on opposite sides of the punctures, and the suture is secured directly over the adventitial surface of the blood vessel wall to close the vascular access wound.

To be successful, suturing methods need to be performed with a precise control. The needles need to be properly directed through the blood vessel wall so that the suture is well anchored in tissue to provide for tight closure. Suturing methods also require additional steps for the surgeon.

Due to the deficiencies of the above methods and devices, a need exists for a more reliable vascular closure method and device. There also exists a need for a vascular closure device and method that does not implant a foreign substance and is self-sealing. There also exists a need for a vascular closure device and method requiring no or few extra steps to close the vascular site.

A device for accessing a biological lumen is disclosed. The biological lumen has a lumen wall having a longitudinal lumen wall axis. The device has an elongated member that has a longitudinal member axis. The member is configured to access the lumen at a first angle. The first angle is defined by the longitudinal lumen wall axis and the longitudinal member axis. The first angle is less than about 19 degrees.

The first angle can be less than about 15 degrees. The first angle can be less than about 10 degrees. The device can also have an anchor. The anchor can be configured to hold the elongated member at a fixed angle with respect to the longitudinal lumen wall axis.

The device can also have a retainer. The retainer can be configured to hold the elongated member at a fixed angle with respect to the longitudinal lumen axis.

Another device for accessing a biological lumen is disclosed. The biological lumen has a lumen wall and a longitudinal lumen wall axis. The device has a first elongated member and a second elongated member. The first elongated member has a first elongated member axis. The second elongated member has a second elongated member axis. The second elongated member is configured so that the second elongated member axis is parallel to the longitudinal lumen wall axis.

The second elongated member can have a retainer. The retainer can have an inflatable member. The retainer can have a resilient member. The second elongated member can extend substantially adjacent to the lumen wall.

Also disclosed is a device for closing an opening on a biological lumen wall. The device has a longitudinal axis, a first force-applying member, a second force-applying member, and a resilient member. The resilient member provides to the first and the second force-applying members a force that is radially outward with respect to the longitudinal axis.

A method of accessing a blood vessel through a blood vessel wall is also disclosed. The blood vessel wall has a longitudinal wall axis. The method includes entering the vessel at an angle of less than about 19 degrees with respect to the longitudinal wall axis. The method also includes inserting a lumenal tool into the vessel.

Also disclosed is a method for accessing a biological lumen. The biological lumen has a lumen wall and a longitudinal lumen wall axis. The method includes inserting in the biological lumen a second elongated member. The second elongated member has a second elongated member axis. The method also includes aligning the second elongated member so that the second elongated member axis is substantially parallel to the longitudinal lumen wall axis. Further, the method includes inserting in the biological lumen a first elongated member comprising a first elongated member axis.

Additionally disclosed is a method of closing a vascular opening. The vascular opening has an inside surface and a longitudinal axis. The method includes inserting a device in the opening and applying a force to the inside surface. The force is directed in at least one radially outward direction from the longitudinal axis.

The method can include maintaining the force. The applying a force can include the device applying at least a part of the force. The applying of a force can include the device applying all of the force.

Also disclosed is a method for accessing and closing a blood vessel having a vessel wall. The vessel wall can have an inside surface and an outside surface. The method includes forming an arteriotomy and deploying a closure augmentation device in the arteriotomy. The closure augmentation device produces pressure on the inside surface and the outside surface.

FIG. 1 is a front perspective view of an embodiment of the arteriotomy device.

FIG. 2 is a side view of the arteriotomy device of FIG. 1.

FIG. 3 is a close-up view of the arteriotomy device of FIG. 1.

FIGS. 4 and 5 are close-up views of various embodiments of the anchor.

FIG. 6 is a side perspective view of an embodiment of the arteriotomy device with the introduction device deployed.

FIG. 7 is a close-up view of an embodiment of the arteriotomy device with the introduction device deployed.

FIGS. 8 and 9 are side views of various embodiments of the arteriotomy device with the introduction devices deployed.

FIG. 10 is a bottom perspective view of an embodiment of the arteriotomy device.

FIG. 11 is a side view of an embodiment of the arteriotomy device with the lumenal retainer deployed.

FIG. 12 is a bottom perspective view of an embodiment of the arteriotomy device with the lumenal retainer deployed.

FIG. 13 is a side perspective view of an embodiment of the arteriotomy device.

FIG. 14 is a side perspective view of an embodiment of the arteriotomy device with the entry wall retainer deployed.

FIGS. 15 and 16 illustrate various embodiments of the tensioner.

FIGS. 17 and 18 illustrate various embodiments of the pressure clip.

FIGS. 19 and 20 illustrate various embodiments of the toggle.

FIG. 21 illustrates a method for deploying the arteriotomy device in a cross-section of a lumen.

FIGS. 22 and 23 illustrate methods for deploying the retainers in a cross-section of a lumen.

FIGS. 24 and 25 illustrate a method for deploying the introduction device in a cross-section of a lumen.

FIG. 26 illustrates a method for deploying a guidewire in a cross-section of a lumen.

FIGS. 27-30 illustrate a method for deploying the introduction device in a cross-section of a lumen.

FIG. 31 illustrates a method for deploying a guidewire in a cross-section of a lumen.

FIG. 32 illustrates a portion of an arteriotomized lumen.

FIG. 33 illustrates section A-A of FIG. 28.

FIGS. 34-36 illustrate a method for deploying a tensioner in a see-through portion of lumen wall.

FIGS. 37-40 illustrate methods for deploying various embodiments of the pressure clip in a cross-section of a lumen.

FIG. 41 illustrates a method of using a suture on a portion of an arteriotomized lumen.

FIG. 42 illustrates section B-B of FIG. 41 with the out-of-section suture.

FIG. 43 illustrates a method of using pledgets on a portion of an arteriotomized lumen.

FIG. 44 illustrates section C-C of FIG. 43.

FIG. 45 illustrates an embodiment of the toggle deployment device in a first configuration.

FIG. 46 is a close-up view of FIG. 45.

FIG. 47 illustrates an embodiment of the toggle deployment device in a second configuration.

FIG. 48 is a close-up view of FIG. 47.

FIG. 49 illustrates a method of using the toggle deployment device in a cross-section of a lumen.

FIG. 50 illustrates FIG. 49 with a portion of the toggle deployment device shown in section D-D.

FIG. 51 illustrates a method of using the toggle deployment device in a cross-section of a lumen.

FIG. 52 illustrates FIG. 51 with a portion of the toggle deployment device shown in section: E-E.

FIGS. 53-55 illustrate a method of using the toggle deployment device in a cross-section of a lumen.

FIG. 56 is a close-up view of FIG. 55.

FIG. 57 illustrates an embodiment of a deployed toggle in a cross-section of a lumen.

FIG. 58 is a close-up view-of FIG. 59.

FIGS. 59-61 illustrate a method for deploying a toggle in a cross-section of a lumen.

FIG. 62 is a close-up view of FIG. 61.

FIG. 63 illustrates a method for deploying a toggle in a cross-section of a lumen.

FIGS. 64-66 shown, in cross-section, a method for deploying the guidewire through an arteriotomy.

FIGS. 67 and 68 illustrate a method for attaching guidewire to the anchor.

FIGS. 1 through 3 illustrate a device for accessing a biological lumen, such as an arteriotomy device 2. The arteriotomy device 2 can have a delivery guide 4. The delivery guide 4 can be slidably attached to an anchor 6. The anchor 6 can be rigid, flexible or combinations thereof. The anchor 6 can be resilient, deformable or combinations thereof. The anchor 6 can be retractable and extendable from the delivery guide 4. The delivery guide 4 can have an introducer lumen 8. The introducer lumen 8 can have an introducer lumen exit port 10. The introducer lumen exit port 10 can be on the surface of the delivery guide 4.

The anchor 6 can have an anchor angle section 12. The anchor 6 can have an anchor extension section 14, for example a guide eye sheath or an attachable guidewire. The anchor extension section 14 can extend from the anchor angle section 12. The anchor extension section 14 can be separate from and attached to, or integral with, the anchor angle section 12.

The anchor angle section 12 can have an anchor angle first sub-section 16, an anchor bend 20 and an anchor angle second sub-section 18. The anchor angle first and/or second sub-sections 16 and/or 18 can be part of the anchor bend 20. The anchor bend 20 can have a sharp or gradual curve. The radius of curvature for the anchor bend 20 can be from about 0.1 mm (0.004 in.) to about 2.0 mm (0.079 in.).

The anchor angle first sub-section 16 can have an anchor angle first subsection diameter 22 from about 0.38 mm (0.015 in.) to about 1.0 mm (0.039 in.), for example about 0.71 mm (0.028 in.). The anchor angle second sub-section 18 can have an anchor angle second sub-section diameter 24 from about 0.38 mm (0.015 in.) to about 1.0 mm (0.039 in.), for example about 0.71 mm (0.028 in.).

The anchor angle first sub-section 16 can have a delivery longitudinal axis 26. The anchor angle second sub-section 18 can have an anchor longitudinal axis 28. The intersection of the delivery longitudinal axis 26 and the anchor longitudinal axis 28 can be an anchoring angle 30. The anchoring angle 30 can be from about 20° to about 90°, more narrowly from about 30° to about 60°, for example about 45°.

Any or all elements of the arteriotomy device 2 or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ether ketone (PEEK), nylon, polyether-block co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), polylactic acid (PLA), polydioxanone, and pseudo-polyamino tyrosine-based acids, extruded collagen, silicone, zinc, echogenic, radioactive, radiopaque materials or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.

Any or all elements of the arteriotomy device 2, including supplemental closure devices, such as tensioners, clips, toggles, sutures, or other devices or apparatuses described herein can be or have a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth. The matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.

The elements of the arteriotomy device 2 and/or the fabric can be filled and/or coated with an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. The agents within these matrices can include radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al, Inhibition of Prostoglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al, Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J Surgery 88 (7), 935-940; Franklin et al, Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entireties.

FIG. 4 illustrates that the anchor angle section 12 and the anchor extension section 14 can have a flexible elongated element. The flexible elongated element can be resilient and/or deformable. The flexible elongated element can have an integral, or multiple separate and fixedly attached, wound wire 32. The anchor angle section 12 can be in a sheath 34. FIG. 5 illustrates that the anchor angle section 12 can have a wire coating 36, for example a lubricious coating and/or a coating made from urethane.

FIGS. 6 and 7 illustrate that the arteriotomy device 2 can have an introduction device 38. The introduction device 38 can be slidably attached to the introducer lumen 8. The introduction device 38 can have a hollow needle (as shown in FIG. 6). The introduction device 38 can have a solid needle (as shown in FIG. 7). The introduction device 38 can have a guidewire.

The introduction device 38 can have an introduction longitudinal axis 40. The intersection of the introduction longitudinal axis 40 and the anchor longitudinal axis 28 can be an introduction angle 42. The introduction angle 42 can be less than or equal to about 19°, more narrowly less than or equal to about 15°, yet more narrowly from about 5° to about 10°, for example about °10.

The introduction device 38 can have an introduction device diameter 44. The introduction device diameter 44 can be from about 0.25 mm (0.010 in.) to about 1.0 mm (0.039 in.), for example about 0.56 mm (0.022 in.).

FIGS. 8 and 9 illustrate that the arteriotomy device 2 can be configured so that the introduction device 38 can be deployed from the anchor 6. The anchor 6 can have an introduction device port 46. The introduction device 38 can be a hollow needle (as shown in FIG. 8). When fully deployed, the introduction device 38 can contact the introducer lumen exit port 10. The introduction device 38 can be a channel between the introducer lumen 8 and the anchor 6. The anchor 6 can have a port (not shown) configured to communicate with the biological lumen and the introduction device 38. The introduction device 38 can be a solid needle (as shown in FIG. 9).

FIG. 10 illustrates that a lumenal retainer 48 can have a first retracted configuration. The lumenal retainer 48 can be seated in a lumenal retainer port 50. The lumenal retainer port 50 can be in the anchor 6. The lumenal retainer 48 can be a wire, scaffold or stent—for example made from a deformable or resilient material, such as a shape memory alloy—an inflatable balloon, or combinations thereof. Intralumenal inflatable balloons, such as those inflated with saline solution or carbon dioxide, are known to those having ordinary skill in the art. The lumenal retainer 48 can extend into the delivery guide 4.

FIGS. 11 and 12 illustrate that the lumenal retainer 48 can have a second deployed configuration. FIG. 11 shows that the lumenal retainer 48 can be a wire or balloon. FIG. 12 shows that the lumenal retainer 48 can be a wire. In the deployed configuration, the lumenal retainer 48 can deploy away from the lumenal retainer port. The lumenal retainer 48 can have a lumenal retainer deployed diameter 52. The lumenal retainer deployed diameter 52 can be from about 2.54 mm (0.100 in.) to about 10.2 mm (0.400 in.), for example about 6.35 mm (0.250 in.).

FIG. 13 illustrates that the arteriotomy device 2 can have an entry wall retainer port 54. The entry wall retainer port 54 can be at or near the anchor bend 20. The entry wall retainer port 54 can be at or near the anchor angle first sub-section 16. The entry wall retainer port 54 can be in fluid communication with a sensor or port (not shown) on or near the delivery guide 4 of the arteriotomy device 2.

FIG. 14 illustrates that an entry wall retainer 56 can be deployed through the entry wall retainer port 54. The entry wall retainer 56 can have a first retracted configuration (as shown in FIG. 13). The entry wall retainer 56 can have a second deployed configuration (as shown in FIG. 14).

FIGS. 15 through 20 illustrate various supplemental closure devices. The supplemental closure devices can, be completely or partially bioabsorbable, bioresorbable, bioadsorbable or combinations thereof. The supplemental closure devices can be made from homografts, heterografts or combinations thereof. The supplemental closure devices can be made from autografts, allografts or combinations thereof.

FIG. 15 illustrates a tensioner 58. The tensioner 58 can be resilient, deformable, or combinations thereof. The tensioner 58 can have a tensioner longitudinal axis 60. The tensioner 58 can have a resilient element, such as a spring, for example a tensioner head 62. The tensioner head 62 can have a tensioner first shoulder 64. The tensioner head 62 can have a tensioner second shoulder 66. The tensioner first and second shoulders 64 and 66 can rotatably attached to a separate or integral tensioner first leg 68 and a separate or integral tensioner second leg 70, respectively. The tensioner first and second legs 68 and 70 can attach to tensioner first and second feet 72 and 74, respectively.

The tensioner legs 68 and 70 can have tensioner leg diameters 76. The tensioner leg diameters 76 can be from about 0.1 mm (0.005 in.) to about 0.76 mm (0.030 in.), for example about 0.38 mm (0.015 in.). The tensioner first and second legs 68 and 70 can have a tensioner inter-leg outer diameter 78. The tensioner inter-leg outer diameter 78 can be from about 1.3 mm (0.050 in.) to about 5.08 mm (0.200 in.), for example about 4.06 mm (0.160 in.). The tensioner shoulders 64 and/or 66 and/or the tensioner feet 72 and/or 74 can extend to a greater radius from the tensioner longitudinal axis 60 than their respective tensioner inter-leg radius.

FIG. 16 illustrates a tensioner first strut 80 that can attach to the tensioner first leg 68 and the tensioner second leg 70. The tensioner first leg 68 can be resilient, deformable or combinations thereof. A tensioner second strut 82 can attach to the tensioner first leg 68 and the tensioner second leg 70. The tensioner second leg 70 can be resilient and/or deformable. The tensioner 58 can have no tensioner head 62. The tensioner 58 can have more than two tensioner struts 80 and 82.

FIG. 17 illustrates a pressure clip 84. The pressure clip 84 can be resilient. The pressure clip 84 can be deformable. The pressure clip 84 can have a pressure clip longitudinal axis 86. The pressure clip 84 can have a pressure clip head 88. The pressure clip head 88 can be rotatably attached to a separate or integral pressure clip first leg 90. The pressure clip head 88 can be rotatably attached to a separate or integral pressure clip second leg 92. The pressure clip can have a pressure clip first end 94 and a pressure clip second end 96. The pressure clip first leg 90 can terminate in the pressure clip first end 94. The pressure clip second leg 92 can terminate in the pressure clip second end 96. The pressure clip first leg 90 and/or the pressure clip second leg 92 can be biased toward the pressure clip longitudinal axis 86.

FIG. 18 illustrates the pressure clip 84 that can have a pressure clip sheath 98 slidably attached to the pressure clip second leg 92. The pressure clip first and/or second ends 94 and/or 96 can be pressure dissipaters, such as flat and/or curved portions, for example circular loops. The pressure clip first and/or second ends 94 and/or 96 can be resilient and/or deformable. The pressure clip first leg 90 can be rotatably attached to the pressure clip second leg 92. The pressure clip first leg 90 can be attached to the pressure clip second leg 92 via a rotatable, and/or deformable, and/or flexural joint in the pressure clip head 88.

FIG. 19 illustrates a toggle 100. The toggle 100 can have a toggle first end 102. The toggle 100 can have a toggle second end 104. The toggle first and/or second ends 102 and/or. 104 can be bars, dowels, rods, beams, or combinations thereof. The toggle 100 can have a filament 106. The filament 106 can be fixedly attached at a filament first end 107 to the toggle first end 102. The filament 106 can be fixedly attached at a filament second end 109 to the toggle second end 104. The filament 106 can be resilient or deformable. The filament 106 can be substantially flexible.

FIG. 20 illustrates the toggle 100 that can have the filament 106 that can be slidably attached to the toggle second end 104 at a hole 108. The filament 106 can frictionally fit the hole 108. The filament 106 can have no pawls 110 (not shown in FIG. 20). The filament 106 can interference fit the hole 108. The filament 106 can have one or more pawls 110. The hole 108 can have one or more notches 112. The notches 112 can be internal to the hole 108. The notches 112 and the pawls 110 can be configured to allow the toggle second end 104 to slide toward the toggle first end 102. The notches 112 and the pawls 110 can be configured to provide an interference fit when the toggle second end 104 is attempted to be moved away from the toggle first end 102.

Method of Manufacture

The elements of the arteriotomy device 2, including the supplemental closure devices, can be directly attached by, for example, melting, screwing, gluing, welding or use of an interference fit or pressure fit such as crimping, snapping, or combining methods thereof. The elements can be integrated, for example, molding, die cutting, laser cutting, electrical discharge machining (EDM) or stamping from a single piece or material. Any other methods can be used as known to those having ordinary skill in the art.

Integrated parts can be made from pre-formed resilient materials, for example resilient alloys (e.g., Nitinol, ELGILOY®) that are preformed and biased into the post-deployment shape and then compressed into the deployment shape as known to those having ordinary skill in the art.

Any elements of the arteriotomy device 2, including the supplemental closure devices, or the arteriotomy device 2, including the supplemental closure devices, as a whole after assembly, can be coated by dip-coating, brush-coating or spray-coating methods known to one having ordinary skill in the art. For example, these methods can be used to coat the wound wire 32 with the wire coating 36 can be spray coated, dip-coated or brushed onto the wire 32.

One example of a method used to coat a medical device for vascular use is provided in U.S. Pat. No. 6,358,556 by Ding et al. and hereby incorporated by reference in its entirety. Time release coating methods known to one having ordinary skill in the art can also be used to delay the release of an agent in the coating, for example the coatings on the supplemental closure devices.

The supplemental closure devices can be covered with a fabric, for example polyester (e.g., DACRON® from E. I. du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof Methods of covering an implantable device with fabric are known to those having ordinary skill in the art.

Method of Use

FIG. 21 illustrates a method of inserting the anchor 6 into a biological lumen 114, for example a blood vessel, such as a femoral artery. The biological lumen 114 can have a lumen wall 116 and a lumen wall surface 118. The anchor 6 can be inserted into the biological lumen 114 using a Seldinger technique, modified Seldinger technique, or other method known to one having ordinary skill in the art. The anchor 6 can create a first arteriotomy 120. The anchor 6 can be inserted into the lumen 114 so that the anchor angle second sub-section 18 can be substantially parallel with the lumen wall surface 118. The anchor 6 can be inserted into the lumen 114 so that the anchor angle second sub-section 18 can be substantially in contact with the lumen wall surface 118.

FIG. 22 illustrates a method of deploying, as shown by arrow, the lumenal retainer 48 from the first retracted configuration to the second deployed configuration. The lumenal retainer 48 can be deployed by extending a wire, scaffold or stent, or by inflating a balloon. When the lumenal retainer 48 is deployed, the anchor angle second sub-section 18 can be made substantially parallel with the lumen wall surface 118. When the lumenal retainer 48 is deployed, the anchor angle second sub-section 18 can be made to be substantially in contact with the lumen wall surface 118.

FIG. 23 illustrates a method of deploying, as shown by arrow 122, the entry wall retainer 56 from the first retracted configuration to the second deployed configuration. When the lumenal retainer is in the second deployed configuration, the lumenal retainer 48 can be substantially parallel with the lumen wall surface 118. When the lumenal retainer is in the second deployed configuration, the lumenal retainer 48 can be substantially in contact with the lumen wall surface 118.

A proximal force, as shown by arrow 124, can be applied to the anchor 6, for example by being applied to the delivery guide 4. When the proximal force is applied, the anchor angle second sub-section 18 can be made substantially parallel with the lumen wall surface 118. When the proximal force is applied, the anchor angle second sub-section 18 can be made to be substantially in contact with the lumen wall surface 118.

FIGS. 24 and 25 illustrate a method for deploying the introduction device 38. The introduction device 38 can egress from the introducer lumen 8 and the introducer lumen exit port 10. As shown in FIG. 24, the introduction device 38 can be pushed, as shown by arrow, into and through the lumen wall 116. The introduction device 38 can form a second arteriotomy 128. As shown in FIG. 25, the introduction device 38 can be pushed, as shown by arrow, adjacent to or through the anchor 6. The anchor 6 can be configured to have ports suitable to allow the introduction device 38 to pass through the anchor 6. A tip of the introduction device 38 can enter the lumen 114.

The introduction device 38 can pass through an introduction run 132 and an introduction rise 134. The introduction run 132 can be the component of the length of the introduction device. 38 in the lumen wall 116 that is parallel to the lumen wall 116. The introduction run 132 can be the component of the length parallel to the lumen wall 116 between the opening of the second arteriotomy 128 on the outside of the lumen wall 116 and the opening of the second arteriotomy 128 on the inside lumen wall surface 118. The introduction run 132 can be from about 0.10 cm (0.010 in.) to about 3.810 cm (1.500 in.), for example about 0.64 cm (0.25 in.).

The introduction rise 134 can be the component of the length of the introduction device 38 in the lumen wall 116 that is perpendicular to the lumen wall 116. The introduction rise 134 can be the component of the length perpendicular to the lumen wall 116 between the opening of the second arteriotomy 128 on the outside of the lumen wall 116 and the opening of the second arteriotomy 128 on the inside lumen wall surface 118. The introduction rise 134 can be from about 0.51 mm (0.020 in.) to about 5.08 mm (0.200 in.), for example about 1.0 mm (0.040 in.). An introduction slope can be the ratio of the introduction rise 134 to the introduction run 132. The introduction slope can be from about ½ to about 1/40 or less, for example about ⅙, also for example about ⅓. The introduction slope can be, for examples, equal to or less than about ½ or ⅓, more narrowly equal to or less than about ⅓ or ¼, yet more narrowly equal to or less than about ⅕ or ⅙, even still more narrowly than about equal to or less than about 1/10.

The introduction rise 134 and the introduction run 132 can be components of an introduction vector. The introduction run 132 can be the component of the introduction vector parallel to the lumen wall 116. The introduction rise 134 can be the component of the introduction vector perpendicular to the lumen wall 116. The introduction vector can be a vector from an outer opening 136 to an inner opening 138. The outer opening 136 can be a temporary or permanent opening on the outside of the lumen wall 116 formed by the introduction device 38. The inner opening 138 can be a temporary or permanent opening on the inside of the vessel wall.

FIG. 26 illustrates that the introduction device 38, for example a hollow needle, can act as a pathway for a lumenal tool, for example tools such as a guidewire 168, to be deployed, as shown by arrow, into the lumen 114. The introduction device 38, for ex ample a solid needle, can be removed from the second arteriotomy 128 and the lumenal tool can be deployed through, for example, the introducer lumen exit port 10, and the second arteriotomy 128. The introduction device 38 can be the lumenal tool, for example a guidewire. The introduction device 38 can be further deployed and used as a lumenal tool after passing through the lumen wall 116.

FIGS. 27 through 30 illustrates a method of deploying the introduction device 38 that can have a pre-formed bend. As shown in FIG. 27, the arteriotomy device 2 can be configured to deploy the introduction device 38 at the introduction angle 42 from about 0° to about 5°, for example about 0°.

As shown in FIG. 28, the introduction device 38 can be pushed, as shown by arrow, through the lumen wall 116. The introduction device 38 can cleave a plane in the lumen wall 116. The plane can be substantially parallel with the lumen wall surface 118. The introduction device 38 can be adjacent to the adventitia in a blood vessel. The introduction device 38 can be advanced along the subintimal or submedial cleavage plane in a blood vessel. Once the lumen wall has been cleaved, a subintimal angioplasty can be performed as known to one having ordinary skill in the art. Once the lumen wall has been cleaved, a remote endarterectomy can be performed as known to one having ordinary skill in the art. Bent and straight introduction devices 38 can be swapped during use to selectively cleave the lumen wall 116. Tools, such as guidewires can be inserted through hollow introduction devices 38 to selectively cleave the lumen wall 116.

As shown in FIG. 29, when the bend in the introduction device 38 moves into the lumen wall 116, the introduction device 38 can rotate, as shown by arrow, toward the biological lumen 114. As shown in FIG. 30, the bend in the introduction device 38 can continue to rotate the introduction device 38 toward the biological lumen 114. As described infra, the introduction device 38 can enter the lumen 114. FIG. 31 illustrates that the introduction device 38 that can have the bend can act as a pathway for a lumenal tool, as described infra.

An introducer sheath can be inserted over the guidewire 168 and/or the introduction device 38. The introducer sheath can be less than about 22 French (7.3 mm, 0.29 in. diameter) or less than the diameter of the lumen to which the introducer sheath is introduced. The introducer sheath can be, for examples, about 6 French (2.3 mm, 0.092 in. diameter), and about 8 French (2.67 mm, 0.105 in. diameter). The introducer sheath can be known to one having ordinary skill in the art, for example the introducer sheath described in U.S. Pat. No. 5,183,464 to Dubrul, et al.

The introducer sheath can be inserted into the second arteriotomy 128. The introducer sheath can expand the second arteriotomy 128 to a workable size. The introducer sheath can be inserted into the second arteriotomy 128 before and/or after and/or concurrently with the supplemental closure device is deployed and/or other closure method is used.

FIGS. 32 and 33 illustrate an exemplary biological lumen 114 after the arteriotomy device 2 has been deployed to, and removed from, the biological lumen 114. The biological lumen 114 can have the first and second arteriotomies 120 and 128. The biological lumen 114 can have a second arteriotomy 128. The biological lumen 114 can have a first web 140 on one side of the arteriotomy (shown for the second arteriotomy 128), and a second web 142 on the opposite side of the arteriotomy 120 or 128. The natural pressure, shown by arrows, from the first and second webs 140 and 142 can self-seal the arteriotomy 120 or 128.

One or more supplemental closure devices can be deployed to the first and/or second arteriotomies 120 and/or 128. The supplemental closure devices can provide a force or restraint to aid hemostasis. The supplemental closure devices can be permanently or temporarily deployed. The supplemental closure devices can biodissolve after hemostasis is achieved and/or after the relevant arteriotomy 120 or 128 is substantially or completely healed. The force from the supplemental closure device can be maintained from about 15 minutes to about 24 hours or more, for example about 120 minutes.

FIG. 34 illustrates a tensioner 58 in a compressed configuration. Compressive forces, shown by arrows, can compress the tensioner first and second legs 68 and 70. In a compressed configuration, the tensioner inter-leg outer diameter 78 can be from about 0.51 mm (0.020 in.) to about 2.54 mm (0.100 in.), for example about 1.5 mm (0.060 in.).

FIGS. 35 and 36 illustrated method of deploying the tensioner 58. As shown in FIG. 35, the tensioner 58 can be in a compressed configuration. The tensioner 58 can be exposed to the compressive forces, as shown by arrows 144. The compressive forces can be applied by a retractable sheath, clamps, other methods known to one having ordinary skill in the art, or combinations thereof. A deployment force, shown by arrow 146, can deploy the tensioner 58 into the arteriotomy 120 or 128.

The arteriotomy 120 or 128 can have an arteriotomy diameter 148. The arteriotomy diameter 148 can be from about 0.5 mm (0.020 in.) to about 400 mm (15 in.), yet a narrower range from about 1.0 mm (0.040 in.) to about 10.2 mm (0.400 in.), for example about 2.54 mm (0.100 in.). When in the compressed configuration, the tensioner inter-leg outer diameter 78 can be smaller than the arteriotomy diameter 148. The tensioner first and second shoulders 64 and 66 can be wide enough to interference fit with the arteriotomy 120 or 128. The tensioner first and second shoulders 64 and 66 can dissipate force on the lumen wall surface 118.

As shown in FIG. 36, the compressive forces can be removed from the tensioner 58. The tensioner first and second leg 68 and 70 can expand, as shown by arrows. The tensioner 58 can force the arteriotomy 120 or 128 into a substantially or completely flat and/or closed and/or stretched configuration. The walls of the arteriotomy 120 or 128 can come into close contact.

The arteriotomy 120 or 128 can have an arteriotomy width 150 and an arteriotomy height 152. The arteriotomy width 150 can be about half the circumference of the arteriotomy 120 or 128. The arteriotomy width 150 can be from about 1.0 mm (0.040 in.) to about 10.2 mm (0.400 in.), for example about 4.06 mm (0.160 in.).

The arteriotomy height 152 can be about the tensioner leg diameter 76. The arteriotomy height 152 can be less than about 0.51 mm (0.020 in.), more narrowly, less than about 0.38 mm (0.015 in.). The arteriotomy height 152 can be from about 0.25 mm (0.010 in.) to about 1.3 mm (0.050 in.), for example about 0.38 mm (0.015 in.). The arteriotomy height 152 can be small enough to enable cell growth, blood clotting, acoustic sealing, heat sealing, gluing, enhanced self-sealing and combinations thereof across the arteriotomy 120 or 128.

The tensioner first and second shoulders 64 and 66 can be wide enough to interference fit with the arteriotomy 120 or 128. The tensioner first and second feet 72 and 74 can be wide enough to interference fit with the arteriotomy 120 or 128. The tensioner first and second feet 72 and 74 can dissipate force on the lumen wall surface 118.

The arteriotomy 120 or 128 can be plugged, and/or packed, and/or tamponed before, and/or concurrent with, and/or after using any of any of the supplemental closure devices infra and/or supra, the self-sealing closure method, or combinations thereof. The plug, pack, tampon, or combinations thereof (not shown) can be made from gelfoam, collagen, other implantable and biocompatible tampon materials known to those having ordinary skill in the art, or combinations thereof.

FIGS. 37 through 40 illustrate deploying the pressure clip 84 to the arteriotomy 120 or 128. FIG. 37 illustrates extending, and/or thinning, and/or straightening, and/or tensioning the pressure clip second end 96. The pressure clip sheath 98 can be translated, as shown by arrow, along the pressure clip second leg 92 and onto the pressure clip second end 96. The pressure clip 84 can be deployed to the arteriotomy after the pressure clip second end 96 is extended, and/or thinned, and/or straightened, and/or tensioned.

As shown in FIG. 38, the pressure clip second leg 92 can be rotated with respect to the pressure clip head 88, so that the pressure clip second leg 92 and the pressure clip head 88 are substantially aligned. The pressure clip second leg 92 can be deployed, as shown by the arrow, through the first arteriotomy 120. The pressure clip second leg 92 can be deployed through the lumen wall 116 (e.g., if there is no existing first arteriotomy 120, if the first arteriotomy 120 is not suitably located with respect to the second arteriotomy 128).

FIG. 39 illustrates contracting, and/or widening, and/or releasing and/or relaxing the pressure clip second end 96. The pressure clip sheath 98 can be translated, as shown by arrow, along the pressure clip second leg 92 and off of the pressure clip second end 96. The pressure clip second end 96 can be contracted, and/or widened, and/or released and/or relaxed after the pressure clip 84 is deployed to the arteriotomy.

As shown in FIG. 40, after the pressure clip second leg 92 is deployed through the first arteriotomy 120, the pressure clip second leg 92 can be released or deformed so as to rotate with respect to the pressure clip head 88. The pressure clip head 88 can seat in the first arteriotomy 120. The pressure clip first and second legs 90 and 92 can apply force, as shown by arrows, to the first and second webs 140 and 142, respectively.

FIGS. 41 and 42 illustrate a method of deploying a stitch 154 surrounding and/or through the arteriotomy 120 or 128. The stitch 154 can be tightened to apply additional pressure to the arteriotomy 120 or 128. The stitch 154 can have a knot 156, or other tying configuration or device, for example a pledget or clamp.

FIGS. 43 and 44 illustrate a method of deploying the filament 106 adjacent to and/or through the arteriotomy 120 or 128. The filament 106 can be attached to a first pledget 158a by a first knot 156a or other tying configuration or device. The filament 106 can be attached to a second pledget 158b by a second knot 156b or other tying configuration or device. The first and second pledgets 158a and 158b can be other pressure diffusers known to one having ordinary skill in the art, such as the toggles 100 described infra and supra.

FIGS. 45 and 46 illustrate a toggle deployment device 159 that can be in a first retracted configuration. The toggle deployment device 159 can have a pressure check port 160. The pressure check port 160 can be in fluid communication with a sensor or port on or near the handle (not shown) of the toggle deployment device 159, such as an external lumen where blood flow can be observed, for example from flow from the end of an external tube or port and/or through a transparent or translucent window. The pressure check port 160 can facilitate deployment of the toggle deployment device 159 to a location where the pressure check port 160 is introduced to pressure, for example when the pressure check port 160 enters the biological lumen 114. The sensor or port on or near the handle of the toggle deployment device 159 will signal that the pressure check port 160 has been placed into the biological lumen 114 (e.g., by displaying a small amount of blood flow). The pressure check port 160 can be deployed into the biological lumen 114 and then withdrawn from the biological lumen 114 to the point where the lumen wall 116 just stops the pressure in the pressure check port 160. The entry wall retainer port 54 can additionally perform the function as described herein for the pressure check port 160. The toggle deployment device 159 can have a delivery needle port 161.

FIGS. 47 and 48 illustrate the toggle deployment device 159 that can be in a second delivery configuration. A delivery needle 162 can be slidably attached to the toggle deployment device 159. The delivery needle 162 can egress from the delivery needle port 161 when the toggle deployment device 159 is in the second delivery configuration.

FIGS. 49 and 50 illustrate that the toggle deployment device 159 can be deployed into the arteriotomy 120 or 128 at a location where the pressure check port 160 can be located in the biological lumen 114. The delivery needle port 161 can be in, or adjacent to, the lumen wall 116.

FIGS. 51 and 52 illustrate that the toggle deployment device 159 can be placed in the second delivery configurtion. If the delivery needle port is in, or adjacent to, the lumen wall 116 when the toggle deployment device 159 is placed in the second delivery configuration, the delivery needle 162 can enter the lumen wall 116. For example, the delivery needle 162 can enter the second web 142. The delivery needle 162 can exit the second web 142 and enter, as shown by arrows, the biological lumen 114.

FIG. 53 illustrates that a pusher 164 can be slidably attached to the delivery needle 162. The delivery needle 162 can have a needle tip port 166. The toggle 100 can be in the delivery needle 162. The toggle 100 can be configured in the delivery needle 162 such that the toggle first end 102 can be located on the needle tip port 166 side of the pusher 164.

FIG. 54 illustrates that the pusher 164 can be moved, as shown by arrow, toward the needle tip port 166. The delivery needle 162 can be moved back relative to the pusher 164, the pusher 164 can be moved forward relative to the delivery needle 162, or combinations thereof. The pusher 164 can push the toggle first end 102 out of the delivery needle 162. The pusher 164 can push the toggle first end 102 into the biological lumen 114.

FIGS. 55 and 56 illustrate that the toggle deployment device 159 can be in a first retracted configuration after deploying the toggle first end 102 into the biological lumen 114. When the delivery needle 162 retracts into the toggle deployment device 159, the toggle second end 104 can be in the toggle deployment device 159. The filament 106 can extend though the delivery needle port 161.

FIGS. 57 and 58 illustrate that the toggle 100 can be deployed across the lumen wall. When the toggle deployment device 159 is removed from the arteriotomy, the toggle second end 104 can deploy on the outside of the lumen wall 116 from the delivery needle port 161. The toggle first end 102 can form an interference fit with the lumen wall surface 118. The toggle second end 104 can form an interference fit with the outside of the lumen wall 116 or the surrounding tissue, such as subcutaneous tissue. The toggle second end 104 can be slidably translated along the filament 106 toward the lumen wall 116, for example for the toggle 100 illustrated in FIG. 20. The length of the filament 106 on the opposite side of toggle second end 104 from the toggle first end 102 can be cut, snapped, torn or otherwise removed.

FIGS. 59 through 63 illustrate a method for deploying the toggle 100. The delivery needle 162 can egress, as shown by arrow, from a toggle deployment delivery port 163. The toggle deployment delivery port 163 can be in the delivery guide 4. The delivery needle 162 can be advanced toward the lumen 114.

FIG. 60 illustrates that the delivery needle 162 can be deployed through the lumen wall. When the delivery needle 162 is deployed through the lumen wall 116, the delivery needle can intersect, or pass adjacent to, the second arteriotomy.

FIGS. 61 and 62 illustrate that the pusher 164 can be advanced, as shown by arrow, through the delivery needle 162. The toggle first end 102 can egress from the needle tip port 166. The toggle first end 102 can deploy into the lumen 114.

FIG. 63 illustrates that the delivery needle 162 can be retracted into the delivery guide 4 and/or the filament 106 can be pulled taught, both shown by arrow. The toggle first end 102 can form an interference fit with the lumen wall surface 118. The toggle second end 104 (not shown in FIG. 63) can be slidably translated on the filament 106 down to, and form an interference fit with, the outside of the lumen wall 116. The length of the filament 106 on the opposite side of toggle second end 104 from the toggle first end 102 can be cut, snapped, torn or otherwise removed.

FIG. 64 illustrates an introducer needle 165 that can have an end inserted, as shown by arrow, through the lumen wall 116 and into the lumen 114, for example by using the Seldinger technique. The introducer needle 165 can be hollow and/or have a longitudinal channel. FIG. 65 illustrates that the guidewire 168 can be deployed, shown by arrows, through the hollow and/or longitudinal channel of the introducer needle 165.

FIG. 66 illustrates that the introducer needle 165 can be removed, as shown by arrow, from the lumen wall 116. The guidewire 168 can remain substantially in place. After the introducer needle 165 is removed, a portion of the guidewire 168 can be outside the lumen 114 and another portion of the guidewire 168 can be inside the lumen 114.

FIG. 67 illustrates a method of fixedly or slidably attaching the guidewire 168 to the anchor 6. A guidewire proximal end 170 can be placed in proximity to an anchor distal end 172. The guidewire proximal end 170 can then be attached, as shown by arrows, to the anchor distal end 172. The guidewire proximal end 170 can be attached to the anchor distal end 172 while some or all of the guidewire 168 is in the lumen 114. The guidewire proximal end 170 can be configured to snap-fit, interference fit, slidably attach or combinations thereof, to the anchor 6. When the guidewire 168 is attached to the anchor 6, the guidewire 168 can act as the anchor extension section 14 and/or the lumenal tool. FIG. 68 illustrates the guidewire 168 attached to the anchor 6.

Where applicable, the methods described supra for deploying any supplemental closure device can be used for deploying any of the other supplementary deployment device. It is apparent to one skilled in the art that various changes and modifications can be made to this disclosure, and equivalents employed, without departing from the spirit and scope of the invention. Elements shown with any embodiment are exemplary for the specific embodiment and can be used on other embodiments within this disclosure.

Modesitt, D. Bruce

Patent Priority Assignee Title
10206668, Dec 15 2014 Vivasure Medical Limited Implantable sealable member with mesh layer
10433826, Dec 15 2014 Vivasure Medical Limited Closure apparatus with flexible sealable member and flexible support member
10966698, Feb 29 2012 Vivasure Medical Limited Implants and methods for percutaneous perforation closure
11141142, Dec 15 2014 Vivasure Medical Limited Implantable sealable member with mesh layer
11311280, Dec 15 2015 Vivasure Medical Limited Arteriotomy closure apparatus with slotted shoe for advantageous pressure distribution
11357486, Dec 30 2009 VIVASURE MEDICAL LTD Closure system and uses thereof
11478235, Dec 15 2014 Vivasure Medical Limited Closure apparatus with flexible sealable member and flexible support member
9572558, Feb 29 2012 Vivasure Medical Limited Devices and methods for delivering implants for percutaneous perforation closure
9610070, Jun 15 2007 Vivasure Medical Limited Closure device
9662099, Feb 29 2012 Vivasure Medical Limited Percutaneous perforation closure systems, devices, and methods
9737286, Feb 29 2012 Vivasure Medical Limited Implants and methods for percutaneous perforation closure
9850013, Mar 15 2013 Vivasure Medical Limited Loading devices and methods for percutaneous perforation closure systems
Patent Priority Assignee Title
2857925,
3727614,
3730185,
4006747, Apr 23 1975 Ethicon, Inc. Surgical method
4744364, Feb 17 1987 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
4774949, Jun 14 1983 Medtronic Vascular, Inc Deflector guiding catheter
4850960, Jul 08 1987 Diagonally tapered, bevelled tip introducing catheter and sheath and method for insertion
4890611, Apr 05 1988 Thomas J., Fogarty Endarterectomy apparatus and method
4921484, Jul 25 1988 Cordis Corporation Mesh balloon catheter device
4955897, Aug 22 1988 Tissue forceps
4962755, Jul 21 1989 Heart Tech of Minnesota, Inc. Method for performing endarterectomy
5183464, May 17 1991 Tyco Healthcare Group LP Radially expandable dilator
5271415, Jan 28 1992 Advanced Cardiovascular Systems, INC Guidewire extension system
5304184, Oct 19 1992 Indiana Research and Technology Corporation; Indiana University Research and Technology Corporation Apparatus and method for positive closure of an internal tissue membrane opening
5336221, Oct 14 1992 PLS Liquidating LLC Method and apparatus for applying thermal energy to tissue using a clamp
5358507, Jul 26 1991 Pat O., Daily Thromboendarterectomy suction dissector
5364359, Mar 01 1990 APIS B V Syringe with retractable needle
5364389, Nov 25 1992 PROCLOSURE, LLC Method and apparatus for sealing and/or grasping luminal tissue
5368601, Apr 30 1992 LSI Solutions, Inc Trocar wound closure device
5380290, Apr 16 1992 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Body access device
5383897, Oct 19 1992 Shadyside Hospital Method and apparatus for closing blood vessel punctures
5391182, Aug 03 1993 TYCO HEALTHCARE GROUP AG; Covidien AG Apparatus and method for closing puncture wounds
5391183, Sep 21 1990 ST JUDE MEDICAL PUERTO RICO LLC Device and method sealing puncture wounds
5403329, Sep 23 1992 United States Surgical Corporation Instrument for closing trocar puncture wounds
5415657, Oct 13 1992 Percutaneous vascular sealing method
5417699, Dec 10 1992 Abbott Laboratories Device and method for the percutaneous suturing of a vascular puncture site
5437665, Oct 12 1993 Electrosurgical loop electrode instrument for laparoscopic surgery
5439469, Nov 05 1993 Conmed Corporation Wound closure device
5451230, Oct 11 1994 Cataract disassembly
5462561, Aug 05 1993 Suture device
5467786, Dec 10 1992 CURATORS OF THE UNIVERSITY OF MO OF COLUMBIA, THE Method for repairing tears and incisions in soft tissue
5470338, Oct 08 1993 United States Surgical Corporation; GERSHON, NEIL D Instrument for closing trocar puncture wounds
5474568, Oct 08 1993 United States Surgical Corporation Instrument for closing trocar puncture wounds
5476470, Apr 15 1994 Trocar site suturing device
5489288, Oct 09 1992 Dacomed Corporation Device and method for applying large-diameter ligating loop
5496332, Oct 20 1994 Cordis Corporation Wound closure apparatus and method for its use
5496334, Mar 31 1993 J STROBEL & SOHNE GMBH & CO Suturing apparatus
5503634, Apr 28 1993 Surgical stab wound closure device and method
5507744, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5527321, Jul 14 1993 United States Surgical Corporation Instrument for closing trocar puncture wounds
5527322, Nov 08 1993 Abbott Laboratories Device and method for suturing of internal puncture sites
5536255, Oct 03 1994 MOSS TUBES, INC Dilator/introducer apparatus for percutaneous gastrostomy
5571169, Jun 07 1993 EndoVascular Instruments, Inc. Anti-stenotic method and product for occluded and partially occluded arteries
5613974, Dec 10 1992 Abbott Laboratories Apparatus and method for vascular closure
5620461, May 29 1989 MEDIFIX R&D BV TE PUTTEN Sealing device
5622188, Aug 18 1989 EndoVascular Instruments, Inc. Method of restoring reduced or absent blood flow capacity in an artery
5645566, Sep 15 1995 Boston Scientific Scimed, Inc Apparatus and method for percutaneous sealing of blood vessel punctures
5653717, Aug 28 1995 Conmed Corporation Wound closure device
5695504, Feb 24 1995 Heartport, Inc Devices and methods for performing a vascular anastomosis
5700273, Jul 14 1995 ARTERIAL VASCULAR ENGINEERING, INC Wound closure apparatus and method
5709224, Jun 07 1995 Boston Scientific Scimed, Inc Method and device for permanent vessel occlusion
5746755, Jun 01 1994 Abbott Laboratories Method and device for providing hemostasis at vascular penetration sites
5762066, Feb 21 1992 THS INTERNATIONAL, INC ; THS INTERNATIONAL, INC , A DELAWARE CORPORATION Multifaceted ultrasound transducer probe system and methods for its use
5766183, Oct 21 1996 LSI Solutions, Inc Vascular hole closure
5772673, Mar 07 1996 United States Surgical Corporation Apparatus for applying surgical clips
5779719, Dec 10 1992 Abbott Laboratories Device and method for the percutaneous suturing of a vascular puncture site
5792152, Nov 08 1993 Abbott Laboratories Device and method for suturing of internal puncture sites
5797929, Jun 01 1994 Abbott Laboratories Apparatus and methods for advancing surgical knots
5810810, Apr 30 1993 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5817108, Jun 07 1995 Medtronic, Inc. Device and method for suturing wound
5830232, Apr 14 1997 Device for closing an opening in tissue and method of closing a tissue opening using the device
5836955, Sep 19 1996 Medtronic Ave, Inc Wound closure apparatus and method
5846253, Jul 14 1995 ARTERIAL VASCULAR ENGINEERING, INC Wound closure apparatus and method
5860990, Aug 23 1996 Scarab Technology Services, LLC Method and apparatus for suturing
5860991, Dec 10 1992 ABBOTT LAPORATORIES Method for the percutaneous suturing of a vascular puncture site
5868762, Sep 25 1997 Boston Scientific Scimed, Inc Percutaneous hemostatic suturing device and method
5882302, Feb 21 1992 THS INTERNATIONAL, INC Methods and devices for providing acoustic hemostasis
5902311, Jun 15 1995 Abbott Laboratories Low profile intraluminal suturing device and method
5921994, Jun 15 1995 Abbott Laboratories Low profile intraluminal suturing device and method
5941897, May 09 1997 MED ENCLOSURE LLC Energy activated fibrin plug
5954732, Sep 10 1997 Applied Medical Resources Corporation Suturing apparatus and method
5972005, Feb 17 1998 Advanced Cardiovascular Systems, INC Wound closure assembly and method of use
5972013, Sep 19 1997 Advanced Cardiovascular Systems, INC Direct pericardial access device with deflecting mechanism and method
5980539, May 06 1998 ST JUDE MEDICAL, INC Device and method for suturing blood vessels and the like
5984917, Jun 07 1995 EP Technologies, Inc. Device and method for remote insertion of a closed loop
5984948, Apr 14 1997 Device for closing an opening in tissue and method of closing a tissue opening using the device
5984950, Dec 23 1996 Boston Scientific Scimed, Inc Percutaneous hemostasis device
6033401, Mar 12 1997 Neomend, Inc Vascular sealing device with microwave antenna
6036699, Dec 10 1992 Abbott Laboratories Device and method for suturing tissue
6036721, Nov 16 1996 CAP Incorporated Puncture closure
6042601, Mar 18 1998 United States Surgical Corporation Apparatus for vascular hole closure
6063085, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
6071292, Jun 28 1997 Medtronic Vascular, Inc Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
6071300, Sep 15 1995 Boston Scientific Scimed, Inc Apparatus and method for percutaneous sealing of blood vessel punctures
6077276, Oct 29 1997 ST JUDE MEDICAL, INC Device and method for suturing blood vessels and the like
6080175, Jul 29 1998 Ethicon, Inc Surgical cutting instrument and method of use
6093173, Sep 09 1998 Edwards Lifesciences Corporation Introducer/dilator with balloon protection and methods of use
6117144, Aug 24 1995 Scarab Technology Services, LLC Suturing device and method for sealing an opening in a blood vessel or other biological structure
6117145, Jun 01 1994 Abbott Laboratories Method and device for providing hemostasis at vascular penetration sites
6136010, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
6139560, Mar 16 1999 Cutting device and method for making controlled surgical incisions
6143004, Aug 18 1998 Atrion Medical Products, Inc. Suturing device
6146397, Apr 06 1999 Endarterectomy loop
6152918, Apr 05 1996 Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc Laser device with auto-piercing tip for myocardial revascularization procedures
6159232, Dec 15 1998 Closys Corporation Clotting cascade initiating apparatus and methods of use and methods of closing wounds
6171317, Sep 14 1999 Abbott Laboratories Knot tying device and method
6179832, Sep 11 1997 Covidien LP Expandable catheter having two sets of electrodes
6190396, Sep 14 1999 Abbott Laboratories Device and method for deploying and organizing sutures for anastomotic and other attachments
6197042, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Vascular sheath with puncture site closure apparatus and methods of use
6203554, Nov 23 1999 Apparatus, kit and methods for puncture site closure
6206893, Nov 08 1993 Abbott Laboratories Device and method for suturing of internal puncture sites
6206895, Jul 13 1999 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
6245079, Aug 24 1995 Scarab Technology Services, LLC Suturing device and method for sealing an opening in a blood vessel or other biological structure
6258084, Sep 11 1997 Covidien LP Method for applying energy to biological tissue including the use of tumescent tissue compression
6302898, Jul 07 1994 Neomend, Inc Devices for sealing punctures in body vessels
6358244, Jul 12 1996 NEWMAN, FREDRIC Endarterectomy surgical instrument and procedure
6358556, Apr 19 1995 Boston Scientific Scimed, Inc Drug release stent coating
6371975, Nov 06 1998 Neomend, Inc Compositions, systems, and methods for creating in situ, chemically cross-linked, mechanical barriers
6383208, Nov 05 1999 DVL ACQUISITION SUB, INC Apparatus and method for approximating and closing the walls of a hole or puncture in a physiological shell structure
6395015, Jul 31 1997 Medtronic Inc. Temporary vascular seal for anastomosis
6398782, Oct 13 1992 Edwards Lifesciences Corporation Bipolar vascular sealing apparatus and methods
6454777, Feb 27 2001 Apparatus and method for suturing a blood vessel
6457182, Jun 08 2001 USA as Represented by the Secretary of the Army Protective glove
6458147, Nov 06 1998 Neomend, Inc Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
6468228, Jun 18 1996 Cook Medical Technologies LLC Surgical tissue morcellator
6475182, Mar 12 1997 Fluidic media introduction apparatus
6506210, Sep 11 2000 MEDTRONIC ANGIOLINK, INC Wound site management and wound closure device
6517553, Nov 08 1993 Abbott Laboratories Device and method for suturing of internal puncture sites
6524321, Jan 03 2001 BOLTON MEDICAL, INC Closure device for puncture in vessel
6524326, Dec 08 1995 Loma Linda University Medical Center Tissue opening locator and everter and method
6533795, Apr 11 2000 Arthrocare Corporation Dual function suturing apparatus and method
6562059, Mar 12 1997 Neomend, Inc. Vascular sealing device with microwave antenna
6565583, Jul 08 1999 Acumen Vascular, Inc. Endarterectomy apparatus and method
6569012, Jan 09 2001 Topcoder, Inc.; TOPCODER, INC Systems and methods for coding competitions
6623510, Dec 07 2000 INTEGRATED VASCULAR SYSTEMS, INC Closure device and methods for making and using them
6626855, Nov 26 1999 OTSUKA MEDICAL DEVICES CO , LTD Controlled high efficiency lesion formation using high intensity ultrasound
6641592, Nov 19 1999 CARDIVA MEDICAL, INC System for wound closure
6656136, Oct 25 1999 OTSUKA MEDICAL DEVICES CO , LTD Use of focused ultrasound for vascular sealing
6663655, Dec 14 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Apparatus and methods for sealing vascular punctures
6676685, Feb 22 1999 Tyco Healthcare Group LP Arterial hole closure apparatus
6682489, Jan 12 2001 ST JUDE MEDICAL COORDINATION CENTER BVBA Technique to confirm correct positioning of arterial wall sealing device
6689152, Sep 09 1998 Edwards Lifesciences Corporation Introducer/dilator with balloon protection and methods of use
6719694, Dec 23 1999 OTSUKA MEDICAL DEVICES CO , LTD Ultrasound transducers for imaging and therapy
6719750, Aug 30 2000 Johns Hopkins University Devices for intraocular drug delivery
6733515, Mar 12 1997 Neomend, Inc Universal introducer
6743195, Mar 14 2001 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
6749621, Feb 21 2002 INTEGRATED VASCULAR SYSTEMS, INC Sheath apparatus and methods for delivering a closure device
6749622, Sep 13 1999 Rex Medical, L.P. Vascular closure
6767356, Sep 01 2000 MEDTRONIC ANGIOLINK, INC Advanced wound site management systems and methods
6773699, Oct 09 2001 CONVERSION ENERGY ENTERPRISES, INC Light energized tissue adhesive conformal patch
6780197, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Apparatus and methods for delivering a vascular closure device to a body lumen
6790220, Jun 08 2001 Morris Innovative Research, Inc. Method and apparatus for sealing access
6802822, Mar 31 2000 Neomend, Inc Dispenser for an adhesive tissue sealant having a flexible link
6818008, Jan 07 1992 ST JUDE MEDICAL, INC Percutaneous puncture sealing method
6840952, Dec 07 2000 SAKER, MARK B Tissue tract sealing device
6843792, Nov 17 1998 SciMed Life Systems, Inc. Device for controlled endoscopic penetration of injection needle
6846319, Dec 14 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Devices for sealing openings through tissue and apparatus and methods for delivering them
6846320, May 01 1998 Boston Scientific Scimed, Inc Device and method for facilitating hemostasis of a biopsy tract
6846321, Jun 21 2000 Cardiodex, Ltd. Mechanical method and apparatus for enhancing hemostatis following arterial catheterization
6860895, Jun 18 1999 ST JUDE MEDICAL COORDINATION CENTER BVBA Tool, a sealing device, a system and a method for closing a wound
6863680, Nov 08 2001 Boston Scientific Scimed, Inc System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
6890342, Aug 02 2000 Loma Linda University Method and apparatus for closing vascular puncture using hemostatic material
6890343, Dec 14 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Plug with detachable guidewire element and methods for use
6890344, Nov 13 2001 Scion Cardiovascular, Inc. Hemostasis pad and method
6893431, Oct 15 2001 Boston Scientific Scimed, Inc Medical device for delivering patches
6896692, Dec 14 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Plug with collet and apparatus and method for delivering such plugs
6929655, Jun 15 2001 TERUMO MEDICAL CORPORATION Tamping mechanism
6936053, Jul 02 1998 JNW PARTNERS, LTD Ocular implant needle
6939348, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
6939357, May 04 2001 Instrument for closing, by subcutaneous suturing, an orifice made in the abdominal wall of a patient
6939363, Jun 12 2002 ST JUDE MEDICAL COORDINATION CENTER BVBA Closure device
6939364, Oct 09 2001 CONVERSION ENERGY ENTERPRISES, INC Composite tissue adhesive
6942674, Jan 05 2000 INTEGRATED VASCULAR SYSTEMS, INC Apparatus and methods for delivering a closure device
6949080, Jan 30 1998 HORIZON TECHNOLOGY FUNDING COMPANY LLC Left ventricular conduits to coronary arteries and methods for coronary bypass
6949107, Sep 13 1999 Rex Medical, LP Injection method for locating vessel lumen
6949114, Nov 06 1998 Neomend, Inc Systems, methods, and compositions for achieving closure of vascular puncture sites
6964668, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
6969397, Dec 14 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Guide wire element for positioning vascular closure devices and methods for use
6981983, Mar 31 1999 Rosenblatt Associates, LLC System and methods for soft tissue reconstruction
6994686, Aug 26 1998 Neomend, Inc. Systems for applying cross-linked mechanical barriers
7001400, Mar 04 1999 Abbott Laboratories Articulating suturing device and method
7008440, Nov 08 2001 Boston Scientific Scimed, Inc System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
7008442, Jan 20 2003 Medtronic Vascular, Inc Vascular sealant delivery device and sheath introducer and method
7025746, Dec 26 2001 Yale University Vascular access device
7025776, Apr 24 2001 BIOVENTRIX, INC Arteriotomy closure devices and techniques
7029489, May 18 2001 Boston Scientific Scimed, Inc System and method for delivering hemostasis promoting material to a blood vessel puncture site
7037322, Nov 08 2001 Boston Scientific Scimed, Inc System and method for delivering hemostasis promoting material to a blood vessel puncture with a staging tube
7037323, Nov 08 2001 Boston Scientific Scimed, Inc Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure
7041119, Feb 27 2001 Apparatus for suturing a blood vessel
7074232, Sep 01 2000 MEDTRONIC ANGIOLINK, INC Advanced wound site management systems and methods
7077848, Mar 11 2000 Johns Hopkins University Sutureless occular surgical methods and instruments for use in such methods
7083628, Sep 03 2002 Edwards Lifesciences LLC; Edwards Lifesciences Corporation Single catheter mitral valve repair device and method for use
7141055, Apr 24 2002 SURGICAL CONNECTIONS, INC Resection and anastomosis devices and methods
7186251, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
7226467, Apr 09 1999 Evalve, Inc Fixation device delivery catheter, systems and methods of use
7235087, Mar 04 1999 Abbott Park Articulating suturing device and method
7247162, Jan 14 2002 Edwards Lifesciences Corporation Direct access atherectomy devices
7250028, Nov 09 1999 Intuitive Surgical Operations, Inc Endoscopic beating-heart stabilizer and vessel occlusion fastener
7335220, Nov 05 2004 AJN LENDING, LLC Apparatus and methods for sealing a vascular puncture
7361180, May 07 2004 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Apparatus for manipulating and securing tissue
7381210, Mar 14 2003 Edwards Lifesciences Corporation Mitral valve repair system and method for use
7390329, Sep 29 2004 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Methods for grasping and cinching tissue anchors
7470237, Jan 10 2005 DEVICOR MEDICAL PRODUCTS, INC Biopsy instrument with improved needle penetration
7609673, Feb 08 2002 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Packet-based conversational service for a multimedia session in a mobile communications system
7621925, Sep 30 2004 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Needle assembly for tissue manipulation
7635329, Sep 27 2004 Evalve, Inc Methods and devices for tissue grasping and assessment
7704264, Dec 12 2003 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Apparatus and methods for forming and securing gastrointestinal tissue folds
20010031922,
20010047165,
20020016614,
20020062146,
20020156495,
20030100921,
20030158578,
20030233120,
20040044350,
20040086951,
20040092964,
20040093024,
20040097978,
20040122449,
20040138522,
20040143290,
20040153123,
20040158287,
20040172058,
20040176758,
20040215232,
20040220594,
20040220604,
20040267307,
20040267308,
20050033361,
20050049634,
20050075653,
20050085773,
20050085851,
20050085852,
20050085854,
20050085855,
20050085856,
20050090860,
20050096697,
20050107826,
20050125030,
20050143761,
20050149065,
20050228443,
20050234507,
20050251189,
20050267520,
20050267522,
20050277980,
20060009802,
20060064159,
20060079914,
20060111741,
20060135990,
20060135991,
20060136035,
20060142785,
20060167476,
20060206125,
20060235449,
20060259017,
20060264975,
20060271078,
20070027454,
20070027455,
20070032802,
20070032803,
20070032804,
20070106246,
20070167959,
20070255313,
20090105744,
20090318889,
20100016786,
20100016810,
20100125296,
EP637431,
WO3082363,
WO2005112791,
WO2006017023,
WO2006124896,
WO2008042034,
WO2008070238,
WO2008097955,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 06 2006Arstasis, Inc.(assignment on the face of the patent)
Nov 06 2006MODESITT, D BRUCEARSTASIS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0187480116 pdf
Mar 12 2015ARSTASIS, INC GREENHEART INVESTMENTS, LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0352280841 pdf
Date Maintenance Fee Events
Nov 24 2014ASPN: Payor Number Assigned.
Feb 19 2015M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Apr 15 2019REM: Maintenance Fee Reminder Mailed.
Aug 14 2019M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Aug 14 2019M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Apr 10 2023REM: Maintenance Fee Reminder Mailed.
Sep 25 2023EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Aug 23 20144 years fee payment window open
Feb 23 20156 months grace period start (w surcharge)
Aug 23 2015patent expiry (for year 4)
Aug 23 20172 years to revive unintentionally abandoned end. (for year 4)
Aug 23 20188 years fee payment window open
Feb 23 20196 months grace period start (w surcharge)
Aug 23 2019patent expiry (for year 8)
Aug 23 20212 years to revive unintentionally abandoned end. (for year 8)
Aug 23 202212 years fee payment window open
Feb 23 20236 months grace period start (w surcharge)
Aug 23 2023patent expiry (for year 12)
Aug 23 20252 years to revive unintentionally abandoned end. (for year 12)