A method and apparatus for achieving a very fine pitch interconnect between a flexible circuit member and another circuit member with extremely co-planar electrical contacts that have a large range of compliance. An electrical interconnect assembly that can be used as a die-level test probe, a wafer probe, and a printed circuit probe is also disclosed. The second circuit member can be a printed circuit board, another flexible circuit, a bare-die device, an integrated circuit device, an organic or inorganic substrate, a rigid circuit and virtually any other type of electrical component. A plurality of electrical contacts are arranged in a housing. The electrical contacts may be arranged randomly or in a one or two-dimensional array. The housing acts as a receptacle to individually locate and generally align the electrical contacts, while preventing adjacent contacts from touching. The first ends of the electrical contacts are electrically coupled to a flexible circuit member. The electrical contacts are free to move along a central axis within the housing. The second ends of the electrical contacts are free to electrically couple with one or more second circuit members without the use of solder.
|
47. A method of making an electrical interconnect for electrically coupling terminals on a flexible circuit member with terminals on a second circuit member, comprising the steps of:
providing a housing having a plurality of through holes extending between a first surface and a second surface, each of the through holes defining a central axis; positioning a plurality of elongated electrical contact members in at least some of the through holes oriented along the central axes, the electrical contact members having first ends extending above the first surface; elastically bonding the electrical contact members to the housing with a compliant encapsulating material; positioning a flexible circuit member to electrically couple the terminals with the first ends of the electrical contact members; and fixedly bonding the first ends of the electrical contact members to the terminals.
43. An electrical connector comprising:
a flexible circuit member having a plurality of terminals; a first housing having a plurality of through holes extending between a first surface and a second surface, each of the through holes defining a central axis; a plurality of elongated electrical contact members positioned in at least some of the through holes and oriented along the central axes, the electrical contact members having first ends extending above the first surface that are fixedly bonded to, and electrically coupled with the terminals on the flexible circuit member, the flexible circuit member controlling movement of the electrical contact members along their respective central axes, and second ends extending above the second surface to couple electrically with the second circuit member; and a compliant encapsulating material elastically bonding the electrical contact members to the housing.
22. An electrical connector for electrically interconnecting terminals on a flexible circuit member with terminals on a second circuit member, the electrical connector comprising:
a housing having a plurality of through holes extending between a first surface and a second surface, each of the through holes defining a central axis; a plurality of elongated electrical contact members positioned in at least some of the through holes and oriented along the central axes, the electrical contact members having first ends extending above the first surface that are fixedly bonded to, and electrically coupled with, the terminals on the flexible circuit member, the flexible circuit member controlling movement of the electrical contact members along their respective central axes, and second ends extending above the second surface to couple electrically with the second circuit member; and a compliant encapsulating material elastically bonding the electrical contact members to the housing.
44. A method of making an electrical interconnect for electrically coupling terminals on a flexible circuit member with terminals on a second circuit member, comprising the steps of:
providing a housing having a plurality of through holes extending between a first surface and a second surface, each of the through boles defining a central axis; positioning a plurality of elongated electrical contact members in at least some of the through boles oriented along the central axes, the electrical contact members having first ends extending above the first surface; positioning a flexible circuit member to electrically couple the terminals with the first ends of the electrical contact members; interposing a compliant encapsulating material between a portion of the through holes and a portion of the electrical contact members to control movement of the electrical contact members along their respective central axes; and positioning a compliant material along a surface of the flexible circuit member opposite at least one of the terminals of the flexible circuit member.
21. An electrical connector comprising:
a flexible circuit member having a plurality of terminals; a first housing having a plurality of through holes extending between a first surface and a second surface, each of the through holes defining a central axis; a plurality of elongated electrical contact members positioned in at least a portion of the through holes and oriented alone the central axes, the electrical contact members having first ends extending above the first surface adapted to couple electrically with the terminals on the flexible circuit member, and second ends extending above the second surface adapted to couple electrically with a second circuit member; a resilient member comprising a compliant encapsulating material interposed between a portion of the through holes and a portion of the electrical contact members to control movement of the electrical contact members along their respective central axes; and a compliant material positioned along a surface of the flexible circuit member opposite at least one of the terminals of the flexible circuit member.
1. An electrical connector for electrically inteconnecting terminals on a flexible circuit member with terminals on a second circuit member, the electrical connector comprising:
a first housing having a plurality of through holes extending between a first surface and a second surface, each of the through holes defining a central axis; a plurality of elongated electrical contact members positioned in at least a portion of the through holes and oriented along the central axes, the electrical contact members having first ends extending above the first surface adapted to couple electrically with the terminals on the flexible circuit member, and second ends extending above the second surface to couple electrically with the second circuit member; a resilient member comprising a compliant encapsulating material interposed between a portion of the through holes and a portion of the electrical contact members to control movement of the electrical contact members along their respective central axes; and a compliant material positioned along a surface of the flexible circuit member opposite at least one of the terminals of the flexible circuit member.
2. The electrical connector of
3. The electrical connector of
4. The electrical connector of
5. The electrical connector of
6. The electrical connector of
7. The electrical connector of
8. The electrical connector of
9. The electrical connector of
10. The electrical connector of
11. The electrical connector of
12. The electrical connector of
13. The electrical connector of
14. The electrical connector of
15. The electrical connector of
16. The electrical connector of
17. The electrical connector of
18. The electrical connector of
a second housing having a plurality of through boles extending between a fist surface and a second surface, each of the through holes defining a central axis; a plurality of elongated electrical contact members positioned in at least a portion of the through holes and oriented along the central axes, the electrical contact members having first ends extending above the first surface adapted to couple electrically with the terminals on the flexible circuit member, and second ends extending above the second surface to couple electrically with a third circuit member.
19. The electrical connector of
20. The electrical connector of
23. The electrical connector of
24. The electrical connector of
25. The electrical connector of
28. The electrical connector of
29. The electrical connector of
30. The electrical connector of
31. The electrical connector of
32. The electrical connector of
33. The electrical connector of
34. The electrical connector of
35. The electrical connector of
36. The electrical connector of
37. The electrical connector of
38. The electrical connector of
39. The electrical connector of
40. The electrical connector of
a second housing having a plurality of through holes extending between a first surface and a second surface, each of the through holes defining a central axis; a plurality of elongated electrical contact members positioned in at least a portion of the through holes and oriented along the central axes, the electrical contact members having first ends extending above the first surface adapted to couple electrically with the terminals on the flexible circuit member, and second ends extending above the second surface to couple electrically with a third circuit member.
41. The electrical connector of
42. The electrical connector of
45. The method of
46. The method of
48. The method of
49. The method of
|
This application is a 371 of PCT/US00/20748 filed Jul. 31, 2000 which claims benefit to provisional application Ser. No. 60/146,825 filed Aug. 2, 1999.
The present invention is directed to a method and apparatus for achieving a very fine pitch, solderless interconnect between a flexible circuit member and another circuit member, and to an electrical interconnect assembly for forming a solderless interconnection with another circuit member.
It is desirable to probe test each die or device under test (DUT) before the wafer is cut into individual intergrated circuit die or before packaging. Die testing often needs to be performed at high speed or high frequency, for example 100 MHz data rate or higher. The probe cards that support a plurality of probe needles must provide reliable electrical contact with the bonding pads of the DUT. The shank of the probe needle is typically 0.005 inches to 0.010 inches in diameter.
One test probe technique is known as the Cobra system, in which the upper ends of the probe needles are guided through a rigid layer of an insulating material. The upper ends of the individual probe needles are electrically connected to suitable conductors of an interface assembly that is connected to an electrical test system. Each of the needles is curved and the lower ends pass through a corresponding clearance hole in a lower rigid layer or template of insulating material. The bottom ends of the needles contact the bonding pads on the wafer being tested. The length of the probe needles can result undesirable levels of ground noise and power supply noise to the DUT. Additionally, the epoxy or plastic rigid layers have large coefficients of thermal expansion and cause errors in the positioning of the needle probes.
Another draw-back of current test probe technology is that it can often not accommodate fine pitches. For example, wafer probes typically require a target contact area of about 70 micrometers by 70 micrometers. Flip-chip architecture has terminals on the order of 10 micrometers by 10 micrometers, and hence, can not effectively be tested using wafer probe technology. Consequently, integrated circuits in flip-chip architectures can generally be tested only after packaging is completed. The inability to wafer probe integrated circuits used in flip-chip architecture results in production time delays, poor yields and a resultant higher cost.
Many of the problems encountered in testing electrical devices also occur in connecting integrated circuit devices to larger circuit assemblies, such as printed circuit boards or multi-chip modules. The current trend in connector design for those connectors utilized in the computer field is to provide both high density and high reliability connectors between various circuit devices. High reliability for such connections is essential due to potential system failure caused by misconnection of devices. Further, to assure effective repair, upgrade, testing and/or replacement of various components, such as connectors, cards, chips, boards, and modules, it is highly desirable that such connections be separable and reconnectable in the final product.
Pin-type connectors soldered into plated through holes or vias are among the most commonly used in the industry today. Pins on the connector body are inserted through plated holes or vias on a printed circuit board and soldered in place using conventional means. Another connector or a packaged semiconductor device is then inserted and retained by the connector body by mechanical interference or friction. The tin lead alloy solder and associated chemicals used throughout the process of soldering these connectors to the printed circuit board have come under increased scrutiny due to their environmental impact. Additionally, the plastic housings of these connectors undergo a significant amount of thermal activity during the soldering process, which stresses the component and threatens reliability.
The soldered contacts on the connector body are typically the means of supporting the device being interfaced by the connector and are subject to fatigue, stress deformation, solder bridging, and co-planarity errors, potentially causing premature failure or loss of continuity. In particular, as the mating connector or semiconductor device is inserted and removed from the present connector, the elastic limit on the contacts soldered to the circuit board may be exceeded causing a loss of continuity. These connectors are typically not reliable for more than a few insertions and removals of devices. These devices also have a relatively long electrical length that can degrade system performance, especially for high frequency or low power components. The pitch or separation between adjacent device leads that can be produced using these connectors is also limited due to the risk of shorting.
Another electrical interconnection method is known as wire bonding, which involves the mechanical or thermal compression of a soft metal wire, such as gold, from one circuit to another. Such bonding, however, does not lend itself readily to high-density connections because of possible wire breakage and accompanying mechanical difficulties in wire handling.
An alternate electrical interconnection technique involves placement of solder balls or the like between respective circuit elements. The solder is reflown to form the electrical interconnection. While this technique has proven successful in providing high-density interconnections for various structures, this technique does not facilitate separation and subsequent reconnection of the circuit members.
An elastomer having a plurality of conductive paths has also been used as an interconnection device. The conductive elements embedded in the elastomeric sheet provide an electrical connection between two opposing terminals brought into contact with the elastomeric sheet. The elastomeric material must be compressed to achieve and maintain an electrical connection, requiring a relatively high force per contact to achieve adequate electrical connection, exacerbating non-planarity between mating surfaces. Location of the conductive elements is generally not controllable. Elastomeric connectors may also exhibit a relatively high electrical resistance through the interconnection between the associated circuit elements. The interconnection with the circuit elements can be sensitive to dust, debris, oxidation, temperature fluctuations, vibration, and other environmental elements that may adversely affect the connection.
The problems associated with connector design are multiplied when multiple integrated circuit devices are packaged together in functional groups. The traditional way is to solder the components to a printed circuit board, flex circuit, or ceramic substrate in either a bare die silicon integrated circuit form or packaged form. Multi-chip modules, ball grids, array packaging, and chip scale packaging have evolved to allow multiple integrated circuit devices to be interconnected in a group.
One of the major issues regarding these technologies is the difficulty in soldering the components, while ensuring that reject conditions do not exist. Many of these devices rely on balls of solder attached to the underside of the integrated circuit device which is then reflown to connect with surface mount pads of the printed circuit board, flex circuit, or ceramic substrate. In some circumstances, these joints are generally not very reliable or easy to inspect for defects. The process to remove and repair a damaged or defective device is costly and many times results in unusable electronic components and damage to other components in the functional group.
Multi-chip modules have had slow acceptance in the industry due to the lack of large scale known good die for integrated circuits that have been tested and burned-in at the silicon level. These dies are then mounted to a substrate which interconnect several components. As the number of devices increases, the probability of failure increases dramatically. With the chance of one device failing in some way and effective means of repairing or replacing currently unavailable, yield rates have been low and the manufacturing costs high.
U.S. Pat. No. 5,252,916 (Swart) discloses a fluid-activated fixture for printed circuit boards. An electrically conductive barrel 22 (also referred to as an eyelet) is press fitted into each bore 20. Separate test probes 24 are movably mounted in each of the barrels 22. A flex circuit 30 is laminated to a bottom surface of the upper probe plate 16. Each barrel 22 has an outer flange that pierces a circuit trace and seats the flange to the circuit trace to form an electrical connection. The test probes 24 are movable axially in their respective barrels freely and under gravity. The test probes slide on the inside of the barrels 22 for making sliding electrical contact. The barrels 22 press fit into the support plate 16 make electrical contact with the flexible circuit 30. The first ends of the test probes 24 are supported by a flexible elastomeric diaphragm 42.
U.S. Pat. No. 4,118,090 (Del Mei) discloses a plurality of movable electrically conductive contacts 10 slidably located in cylindrical apertures 14 in a locating element 16. The contacts 10 are each attached to an electrically insulating elastomeric element 18 which has been bonded to the contacts by molding the element 18 about the contacts 10. A retaining member 20 is provided on the opposite side of the elastomeric element 18 to the locating element and traps the elastomeric element between itself and the locating element.
WO 98/13695 discloses a connector apparatus in which an anisotropic compliant conductive interposer 214 electrically couples contact elements 208 to contact pads 322 on an interface board 320. Stop rings 312 retain the contact elements 208 in the guide plate 108. The anisotropic interposer 214 is comprised of an elastomeric sheet 350 with a plurality of conductors 352. The interposer 214 serves as a pass-through for electrical signals between the contact elements 208 and the interface board 320.
U.S. Pat. No. 5,723,347 (Hirano et al.) discloses a probe structure with a plurality of conductive contacts formed on a film stretched across a plurality of cavities in a substrate. The cavities and the conductive contacts are aligned to one another and both match the positions of selected I/O pads on the device to be probed.
U.S. Pat. No. 5,412,329 (Jino et al.) discloses a probe card having a supporting plate, a flexible printed circuit base including a flexible film base material supported by the supporting plate, circuits printed on the film base material being connected electrically to a tester, contracters connected electrically to the printed circuits and adapted to be brought into contact with the pads in equally corresponding relation, and a cushioning medium designed so as to back up a section in which the contactors are mounted. When the contactors are brought into contact with the pads, individually, the cushioning medium undergoes an elastic deformation, so that the contact between the contactors and the pads is improved.
EP 0 310 302 discloses a test socket for testing chips and chips on tape wherein the test socket is formed on a heat resistant dielectric film having contact pads and connector pads joined by metallic circuit traces and which film is wrapped on a compliant pad. The connector end of the tape is joined to a circuit board by a conductive tape and maintained in contact by the compliant pad. A frame registers the chip with the contact area of the tape.
The present invention is directed to a method and apparatus for achieving a very fine pitch interconnect between a flexible circuit member and another circuit member with extremely co-planar electrical contacts that have a large range of compliance. The second circuit member can be a printed circuit board, another flexible circuit, a bare-die device, an integrated circuit device, an organic or inorganic substrate, a rigid circuit and virtually any other type of electrical component.
The present invention is also directed to an electrical interconnect assembly comprising a flexible circuit member electrically coupled to an electrical connector in accordance with the present invention. The present electrical interconnect assembly can be used as a die-level test probe, a wafer probe, a printed circuit probe, a connector for a packaged or unpackaged circuit device, a conventional connector, a semiconductor socket, and the like.
The present method includes preparing a plurality of through holes extending between a first surface and a second surface of a housing. Each of the through holes defines a central axis. A plurality of elongated electrical contacts are positioned in at least some of the through holes and oriented along the central axis. The electrical contacts have first ends that extend beyond the first surface. The electrical contacts are retained in the through holes by a variety of techniques. The first ends of the electrical contacts are electrically coupled to contact pads or terminals on a flexible circuit so that the second ends of the electrical contacts extend beyond the second surface. The second ends of the electrical contacts are then free to electrically couple with a second circuit member. A resilient member controls movement of the electrical contacts along their respective central axes within the housing.
The step of retaining the electrical contacts in the through holes can be achieved by interposing a compliant encapsulating material between a portion of the through holes and a portion of the electrical contacts, surrounding a portion of the electrical contacts with an encapsulating material along one of the surfaces of the housing, bonding the first end of the electrical contacts to the terminals on the flexible circuit, and/or positioning a compliant material along a surface of the flexible circuit opposite the terminals. A back-up member may optionally be positioned behind the compliant material. In one embodiment, the compliant encapsulant elastically bonds the electrical contacts to the housing.
In one embodiment, the step of positioning the plurality of electrical contacts includes applying a solder mask material or comparable dissolvable/removable material along the first surface. The solder mask material and a portion of the electrical contacts extending above the first surface are planarized. When the solder mask is removed, the electrical contacts have precisely formed end surfaces that extends above the first surface of the housing. The resilient member can optionally be applied to the electrical contacts either before application of the solder mask or after removal of the solder mask.
The ends of the electrical contacts can be modified by a variety of techniques, such as etching, grinding, abrasion, ablation or the like. The ends of the electrical contacts can also be modified to have a shape that facilitates engagement with various structures on the flexible circuit member or the second circuit member. The second ends of the electrical contacts can be configured to engage with another flexible circuit, a ribbon connector, a cable, a printed circuit board, a bare die device, a ball grid array, a land grid array, a plastic leaded chip carrier, a pin grid array, a small outline integrated circuit, a dual in-line package, a quad flat package, a flip chip, a leadless chip carrier, and a chip scale package.
The first ends of the electrical contacts are electrically coupled to the flexible circuit bonding pads using a variety of techniques, such as a compressive force, solder, wedge bonding, conductive adhesives, solder paste, ultrasonic bonding, wire bonding, or a combination thereof. In one embodiment, the flexible circuit is bonded to the first surface of the housing with an adhesive.
The electrical connector in accordance with the present invention includes a housing with a plurality of through holes extending between a first surface and a second surface. A plurality of elongated electrical contacts are positioned in the through holes and oriented along the central axis. The first ends of the electrical contacts are electrically coupled to the terminals on the flexible circuit. The second ends extend beyond the second surface of the housing to couple electrically with the second circuit member. A resilient member controls movement of the electrical contacts along their respective central axes. The resilient member can be an encapsulating material interposed between a portion of the through hole and a portion of the electrical contacts, an encapsulating material surrounding a portion of the electrical contacts along one of the surfaces of the housing, the flexible circuit bonded to the contacts, a singulated terminal on the flexible circuit, and/or a compliant material positioned along a surface of the flexible circuit opposite the terminals.
The electrical contacts can be a multi-layered construction or a homogenous material. The electrical contacts may have a cross-sectional shape of circular, oval, polygonal, or rectangular. The electrical contacts can have a pitch of less than about 0.4 millimeters and preferably a pitch of less than about 0.2 millimeters.
The present invention is also directed to an electrical interconnect assembly comprising a flexible circuit bonded to the first ends of the electrical contacts in the housing. A resilient member controls movement of the electrical contacts along their respective axes. The second ends of the electrical contacts are free to engage with a variety of second circuit members, or to operate as test probes for testing various electrical components.
A plurality of rigid or semi-rigid electrical contacts 44 are positioned in some or all of the holes 34. The electrical contacts 44 may be positioned in the holes 34 by a variety of techniques, such as manual assembly, vibratory assembly, or robotic assembly. In the illustrated embodiment, the electrical contacts 44 are maintained in their desired location by a height fixture 46. Upper ends 62 of the electrical contacts 44 may exhibit height differences based upon the manufacturing tolerances and constancy of the manufacturing process.
The electrical contacts may be a variety of materials, such as wire, rod, formed strips, or turned or machined members. The electrical contacts can have a cross-sectional shape that is circular, oval, polygonal, or the like. The electrical contacts can be made from a variety of materials, such as gold, copper, copper alloy, palanae, or nickel. The electrical contacts 44 are typically cut or formed into a general length, which reduces cost and handling difficulties. The electrical contacts are modified during subsequent processing steps to achieve the necessary precision, such as planarity and tip shape. In order to achieve a fine pitch without shorting, the electrical contact must typically be straight to within about 0.25 millimeters and be rigid or semi-rigid in construction. The electrical contacts 44, however, may have a different cross section at various locations along their entire length (see FIG. 1A).
In the embodiment illustrated in
Depending on the material of the electrical contacts 44 and the desired function, the planar ends 62, 64 may exhibit different properties. If the electrical contacts are made of a copper base metal or alloy and plated with a barrier layer and a gold layer, the grinding process will remove the nickel and gold from the tips, exposing base metal that will oxidize. If the electrical contact 44 is a material such as gold or palanae, corrosion is minimized. The ends 62, 64 can be tailored for specific applications, such that the first end 62 may have a different structure or shape than the second end 64.
Depending on the type of terminal the electrical contact 44 is intended to interface with, it may be desirable to abrasively process the tips such that the ends 62, 64 are still essentially planar but have a surface which is more irregular than that left by the grinding process. This abrasive processing can also be of a cleaning nature to remove any oxides formed between process steps.
The generally concave shape of the ends 62, 64 can provide several desired functional properties, such as contacting a solder, gold, or other deposits in a generally mating fashion, without excessively deforming the deposits. Additionally, the protruding outer wall 72, 74 provides a slight wiping action during mating with the corresponding component. The outer walls 72, 74 form a tubular structure that increases the pressure per unit area when compressively engaged with a mating electrical circuit member. Finally, the concave shape of the ends 62, 64 provides a reservoir for contamination on the terminal of the mating circuit member, while the relatively hard outer layer 72, 74 minimize deformation of the tip 62, 64. The etching process may be performed either before or after removal of the material 60.
Once the flexible circuit member 112 is attached, several options can be employed to increase the function of the electrical interconnect 110. These features, discussed in detail below, provide a relatively large range of compliance of the electrical contacts 116, complimented by the extreme co-planarity of the electrical contact ends 122. The nature of the flexible circuit 112 allows fine pitch interconnect and signal escape routing, but also inherently provides a mechanism for compliance. One option is to allow the flexing nature of the flexible circuit member 112 to provide compliance as the lower ends 122 are compressed. The semi-rigid or rigid nature of the electrical contacts 116 will transmit the incident force to the flexible circuit member 112 and cause flexure at the area around the bond sites 113. The flexible circuit member 112 can be left separate from the housing 118 to allow a free range of movement or the flexible circuit 112 can be selectively bonded to the housing 118 to restrict movement if desired.
In the illustrated embodiment, the singulation 148 is a slit surrounding a portion of the terminal 146. The slit may be located adjacent to the perimeter of the terminal 146 or offset therefrom. The singulation 148 may be formed to serve as the resilient member for controlling movement of the electrical contacts along their respective central axes. The singulated terminal 146 can be left free from the housing or it can be selectively bonded such that the hinged portion is allowed to move freely within a given range. The singulated flexible circuit member 140 can also be encapsulated or mated with a compliant sheet to control the amount of force, the range of motion, or assist with creating a more evenly distributed force vs. deflection profile across the array (see FIG. 11).
In the illustrated embodiment, a portion of the compliant encapsulating material 160 has seeped through the singulation 156. The liquid nature of the uncured encapsulant can be taken advantage of by applying or injecting it into the singulation gap 157 under a slight vacuum condition in the region 159 between the flexible circuit member 152 and the encapsulant 166. The material 158 is drawn into the singulation gap 157. The encapsulated gap 157 supports and controls the motion of the terminal 154. This control can minimize the flexural stress and fatigue of the singulated terminal 154, increasing mechanical performance and life. In an alternate embodiment, the compliant sheet or encapsulant 158 can be applied prior to singulation of the flexible circuit member 152, such that the living hinge mechanism is a laminate or composite of the compliant encapsulant 158 and the flexible circuit member 152.
In the illustrated embodiment, the electrical interconnect assembly 230 is releasably coupled to the second circuit member 248 by a compressive force 249. The compliance of the flexible circuit member 236, complaint material 238 and encapsulating material between the electrical contacts 234 and the housing 244, if any, provides the electrical contacts 234 with a large range of compliance along the central axes 247. Consequently, a stable electrical connection can be formed without permanently bonding the second ends 240 to the terminals 246. The electrical interconnect assembly 230 can serve as a die level test probe, a wafer probe, a printed circuit probe, or a variety of other test circuits. The various complaint members in the assembly 230 permit it to be oriented in any direction without interfering with its functionality.
The nature of the flexible circuit member 236 allows for a high density routing to external circuitry or electronics. The present electrical interconnection methodology can be extended to the distal end of the flexible circuit member 236 as well, to achieve a high performance connection where previous methods relied on cabling, spring probes, or masses of bundled wires.
The housing 314 allows for a great deal of configuration flexibility, such that it can be populated, upgraded, enhanced, or modified simply by removing, replacing, or adding individual circuit members or devices. The replaceable chip module 310 of
Second ends 418 of the electrical contacts 408 are electrically coupled to contact pads on flexible circuit member 420 using any of the methods discussed herein. The flexible circuit member optional includes singulations 422 adjacent to one or more of the electrical contacts 408. A compliant material 424 is positioned on the opposite side of the flexible circuit member 420 behind the second ends 418 of each of the electrical contacts 408. The compliant material 424 biases the electrical contacts 408 in the direction 426.
The second surface 430 of the flexible circuit member 420 optionally includes a series of solder balls 432 electrically coupled to traces on the flexible circuit member 430. Solder paste 434 may optionally be applied to the solder balls 432.
A second circuit member 450 is compressively engaged with the electrical interconnect 400. Alignment device 442 ensures that the contact pads on the second circuit member 450 align with the electrical contacts 408 on the electrical interconnect 400. Compliant material 424 biases the electrical contacts 408 into engagement with the contact pads on the second circuit member 450. In the illustrated embodiment, the second circuit member 450 is a land grid array (LGA) device. A heat sink 452 is optionally provided to retain the second circuit member 450 in compressive engagement with the electrical interconnect 400.
The flexible circuit 486 can extend to one or more circuit members. In the illustrated embodiment, the flexible circuit member 486 includes a first branch 496. The branch 496 includes a series of edge card pads (not shown) and a stiffening member 498 to form an edge card connector 500.
Second branch 502 extends to another electrical interconnect 504 that includes a compliant material 506, a backup member 508, and a series of electrical contacts 510 in a housing 512. The electrical interconnect 504 can be used to interface the probe module 482 to another circuit member 514, such as a printed circuit board.
The tester 516 illustrated in
Wafer 532 includes a plurality of electrical devices 534. The array of recesses on the module holder 524 correspond to the array of electrical devices 534 on the wafer 532. The electrical interconnect 522 is placed over the wafer 532 so that the electrical contacts (see
In the engaged configuration illustrated in
Patents and patent applications disclosed herein, including those cited in the background of the invention, are hereby incorporated by reference. Other embodiments of the invention are possible. It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Patent | Priority | Assignee | Title |
10159154, | Jun 03 2010 | LCP MEDICAL TECHNOLOGIES, LLC | Fusion bonded liquid crystal polymer circuit structure |
10333212, | Dec 22 2014 | Raytheon Company | Radiator, solderless interconnect thereof and grounding element thereof |
10361485, | Aug 04 2017 | Raytheon Company | Tripole current loop radiating element with integrated circularly polarized feed |
10453789, | Jul 10 2012 | LCP MEDICAL TECHNOLOGIES, LLC | Electrodeposited contact terminal for use as an electrical connector or semiconductor packaging substrate |
10506722, | Jul 11 2013 | LCP MEDICAL TECHNOLOGIES, LLC | Fusion bonded liquid crystal polymer electrical circuit structure |
10609819, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Hybrid printed circuit assembly with low density main core and embedded high density circuit regions |
10667410, | Jul 11 2013 | LCP MEDICAL TECHNOLOGIES, LLC | Method of making a fusion bonded circuit structure |
11163004, | Dec 16 2016 | TECHNOPROBE S P A | Probe head for a testing apparatus of electronic devices with enhanced filtering properties |
11322473, | Sep 12 2019 | International Business Machines Corporation | Interconnect and tuning thereof |
11561243, | Sep 12 2019 | International Business Machines Corporation | Compliant organic substrate assembly for rigid probes |
11791577, | Oct 02 2020 | CelLink Corporation | Forming connections to flexible interconnect circuits |
11811182, | Oct 11 2018 | Intel Corporation | Solderless BGA interconnect |
11876312, | Oct 02 2020 | CelLink Corporation | Methods and systems for terminal-free circuit connectors and flexible multilayered interconnect circuits |
11971449, | Dec 16 2016 | Technoprobe S.p.A. | Probe head for a testing apparatus of electronic devices with enhanced filtering properties |
12176640, | Oct 02 2020 | CelLink Corporation | Forming connections to flexible interconnect circuits |
6935867, | May 24 2004 | ALPS Electric Co., Ltd. | Connection unit between substrated and component and method for fabricating connection unit |
7167010, | Sep 02 2004 | Micron Technology, Inc. | Pin-in elastomer electrical contactor and methods and processes for making and using the same |
7249955, | Dec 30 2004 | Intel Corporation | Connection of package, board, and flex cable |
7282932, | Mar 02 2004 | Micron Technology, Inc. | Compliant contact pin assembly, card system and methods thereof |
7287326, | Mar 02 2004 | Micron Technology, Inc. | Methods of forming a contact pin assembly |
7288954, | Mar 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Compliant contact pin test assembly and methods thereof |
7297563, | Mar 02 2004 | Micron Technology, Inc. | Method of making contact pin card system |
7358751, | Mar 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Contact pin assembly and contactor card |
7394267, | Mar 02 2004 | Micron Technology, Inc. | Compliant contact pin assembly and card system |
7448877, | Sep 20 2007 | Tyco Electronics Corporation | High density flexible socket interconnect system |
7488899, | Mar 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Compliant contact pin assembly and card system |
7505860, | Feb 12 2004 | Seagate Technology LLC | Alignment of unmounted head gimbal assemblies for testing |
7509224, | Feb 12 2004 | Seagate Technology LLC | Solderless electrical connection for testing head gimbal assemblies |
7509225, | Feb 12 2004 | Seagate Technology LLC | Vibration control of rotating disc |
7529635, | Feb 12 2004 | Seagate Technology LLC | Method and apparatus for head gimbal assembly testing |
7537461, | Jul 16 2003 | R&D Sockets, Inc | Fine pitch electrical interconnect assembly |
7542868, | Feb 12 2004 | Seagate Technology, LLC. | Head gimbal assembly loader |
7546216, | Feb 12 2004 | Seagate Technology, LLC | End effector for head gimbal assembly testing |
7549871, | Sep 19 2007 | TE Connectivity Solutions GmbH | Connector with dual compression polymer and flexible contact array |
7642791, | Nov 07 2003 | Intel Corporation | Electronic component/interface interposer |
7684948, | Feb 12 2004 | Seagate Technology LLC | Electrical connection for testing head gimbal assemblies |
7857631, | Dec 30 2008 | R&D Sockets, Inc | Socket with a housing with contacts with beams of unequal lengths |
8044502, | Mar 20 2006 | R&D Sockets, Inc | Composite contact for fine pitch electrical interconnect assembly |
8232632, | Mar 20 2006 | R&D Sockets, Inc. | Composite contact for fine pitch electrical interconnect assembly |
8480066, | Aug 24 2009 | Seagate Technology, LLC | Head gimbal assembly alignment with compliant alignment pin |
8525346, | Jun 02 2009 | Hsio Technologies, LLC | Compliant conductive nano-particle electrical interconnect |
8610265, | Jun 02 2009 | Hsio Technologies, LLC | Compliant core peripheral lead semiconductor test socket |
8618649, | Jun 02 2009 | Hsio Technologies, LLC | Compliant printed circuit semiconductor package |
8704377, | Jun 02 2009 | Hsio Technologies, LLC | Compliant conductive nano-particle electrical interconnect |
8721349, | Sep 09 2010 | Fujitsu Limited | Connector, optical transmission device, and connector connection method |
8758067, | Jun 03 2010 | LCP MEDICAL TECHNOLOGIES, LLC | Selective metalization of electrical connector or socket housing |
8760186, | Feb 19 2010 | GLOBALFOUNDRIES Inc | Probe apparatus assembly and method |
8789272, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Method of making a compliant printed circuit peripheral lead semiconductor test socket |
8803539, | Jun 03 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Compliant wafer level probe assembly |
8829671, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Compliant core peripheral lead semiconductor socket |
8912812, | Jun 02 2009 | Hsio Technologies, LLC | Compliant printed circuit wafer probe diagnostic tool |
8928344, | Jun 02 2009 | Hsio Technologies, LLC | Compliant printed circuit socket diagnostic tool |
8955215, | May 28 2009 | LCP MEDICAL TECHNOLOGIES, LLC | High performance surface mount electrical interconnect |
8955216, | Jun 02 2009 | Hsio Technologies, LLC | Method of making a compliant printed circuit peripheral lead semiconductor package |
8962470, | Dec 27 2002 | Fujitsu Limited | Method for forming bumps, semiconductor device and method for manufacturing same, substrate processing apparatus, and semiconductor manufacturing apparatus |
8970031, | Jun 16 2009 | Hsio Technologies, LLC | Semiconductor die terminal |
8981568, | Jun 16 2009 | Hsio Technologies, LLC | Simulated wirebond semiconductor package |
8981809, | Jun 29 2009 | Hsio Technologies, LLC | Compliant printed circuit semiconductor tester interface |
8984748, | Jun 29 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Singulated semiconductor device separable electrical interconnect |
8987886, | Jun 02 2009 | Hsio Technologies, LLC | Copper pillar full metal via electrical circuit structure |
8988093, | Jun 02 2009 | Hsio Technologies, LLC | Bumped semiconductor wafer or die level electrical interconnect |
9054097, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Compliant printed circuit area array semiconductor device package |
9076884, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Compliant printed circuit semiconductor package |
9093767, | Jun 02 2009 | Hsio Technologies, LLC | High performance surface mount electrical interconnect |
9136196, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Compliant printed circuit wafer level semiconductor package |
9184145, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Semiconductor device package adapter |
9184527, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Electrical connector insulator housing |
9196980, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | High performance surface mount electrical interconnect with external biased normal force loading |
9214747, | May 14 2013 | Hon Hai Precision Industry Co., Ltd. | Low profile electrical connector have a FPC |
9231328, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Resilient conductive electrical interconnect |
9232654, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | High performance electrical circuit structure |
9276336, | May 28 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Metalized pad to electrical contact interface |
9276339, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Electrical interconnect IC device socket |
9277654, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Composite polymer-metal electrical contacts |
9318862, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Method of making an electronic interconnect |
9320133, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Electrical interconnect IC device socket |
9320144, | Jun 17 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Method of forming a semiconductor socket |
9350093, | Jun 03 2010 | LCP MEDICAL TECHNOLOGIES, LLC | Selective metalization of electrical connector or socket housing |
9350124, | Dec 01 2010 | LCP MEDICAL TECHNOLOGIES, LLC | High speed circuit assembly with integral terminal and mating bias loading electrical connector assembly |
9414500, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Compliant printed flexible circuit |
9468103, | Oct 08 2014 | Raytheon Company | Interconnect transition apparatus |
9536815, | May 28 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Semiconductor socket with direct selective metalization |
9559447, | Mar 18 2015 | LCP MEDICAL TECHNOLOGIES, LLC | Mechanical contact retention within an electrical connector |
9603249, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Direct metalization of electrical circuit structures |
9613841, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Area array semiconductor device package interconnect structure with optional package-to-package or flexible circuit to package connection |
9660333, | Dec 22 2014 | Raytheon Company | Radiator, solderless interconnect thereof and grounding element thereof |
9660368, | May 28 2009 | LCP MEDICAL TECHNOLOGIES, LLC | High performance surface mount electrical interconnect |
9689897, | Jun 03 2010 | LCP MEDICAL TECHNOLOGIES, LLC | Performance enhanced semiconductor socket |
9699906, | Jun 02 2009 | LCP MEDICAL TECHNOLOGIES, LLC | Hybrid printed circuit assembly with low density main core and embedded high density circuit regions |
9755335, | Mar 18 2015 | LCP MEDICAL TECHNOLOGIES, LLC | Low profile electrical interconnect with fusion bonded contact retention and solder wick reduction |
9761520, | Jul 10 2012 | LCP MEDICAL TECHNOLOGIES, LLC | Method of making an electrical connector having electrodeposited terminals |
9780458, | Oct 13 2015 | Raytheon Company | Methods and apparatus for antenna having dual polarized radiating elements with enhanced heat dissipation |
9930775, | Jun 02 2009 | Hsio Technologies, LLC | Copper pillar full metal via electrical circuit structure |
Patent | Priority | Assignee | Title |
2958064, | |||
3880486, | |||
3904934, | |||
4118090, | May 23 1977 | Electrical contact devices | |
4161346, | Aug 22 1978 | AMP Incorporated | Connecting element for surface to surface connectors |
4165909, | Feb 09 1978 | AMP Incorporated | Rotary zif connector edge board lock |
4189200, | Nov 14 1977 | AMP Incorporated | Sequentially actuated zero insertion force printed circuit board connector |
4445735, | Dec 05 1980 | Compagnie Internationale pour l'Informatique Cii-Honeywell Bull (Societe | Electrical connection device for high density contacts |
4468074, | May 22 1978 | ADFLEX SOLUTIONS, INC | Solderless connection technique and apparatus |
4498722, | Dec 05 1983 | AMP Incorporated | Latch device for ZIF card edge connectors |
4509099, | Feb 19 1980 | Sharp Kabushiki Kaisha | Electronic component with plurality of terminals thereon |
4548451, | Apr 27 1984 | International Business Machines Corporation | Pinless connector interposer and method for making the same |
4575170, | Jan 04 1985 | Rogers Corporation | Solderless connector |
4579411, | Mar 21 1983 | AMP Incorporated | Latch system for ZIF card edge connectors |
4593961, | Dec 20 1984 | AMP Incorporated | Electrical compression connector |
4603928, | Mar 20 1985 | AMP Incorporated | Board to board edge connector |
4610495, | Mar 07 1985 | Rogers Corporation | Solderless connector apparatus and method of making the same |
4629270, | Jul 16 1984 | AMP Incorporated | Zero insertion force card edge connector with flexible film circuitry |
4648668, | Jun 26 1986 | AMP Incorporated | Zero insertion force card edge connector |
4655524, | Jan 07 1985 | ADFLEX SOLUTIONS, INC | Solderless connection apparatus |
4691972, | Mar 01 1985 | ADFLEX SOLUTIONS, INC | Solderless connection apparatus |
4700132, | May 06 1985 | Motorola, Inc. | Integrated circuit test site |
4758176, | Jul 10 1986 | YAMAICHI ELECTRONICS USA, INC | IC socket |
4768971, | Jul 02 1987 | Rogers Corporation | Connector arrangement |
4789345, | May 15 1987 | WELLS ELECTRONICS, INC , A CORP OF IN | Socket device for fine pitch lead and leadless integrated circuit package |
4793814, | Jul 21 1986 | Circuit Components, Incorporated | Electrical circuit board interconnect |
4872853, | Dec 08 1988 | AMP Incorporated | Circuit card retaining device |
4904197, | Jan 13 1989 | ITT Corporation | High density zif edge card connector |
4913656, | Apr 07 1989 | ADFLEX SOLUTIONS, INC | Electrical connector |
4927369, | Feb 22 1989 | AMP Incorporated | Electrical connector for high density usage |
4954878, | Jun 29 1989 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method of packaging and powering integrated circuit chips and the chip assembly formed thereby |
4976626, | Dec 21 1988 | International Business Machines Corporation | Connector for connecting flexible film circuit carrier to board or card |
5007842, | Oct 11 1990 | AMP Incorporated | Flexible area array connector |
5049084, | Dec 05 1989 | Circuit Components, Incorporated | Electrical circuit board interconnect |
5061192, | Dec 17 1990 | International Business Machines Corporation | High density connector |
5071359, | Apr 27 1990 | Circuit Components, Incorporated | Array connector |
5096426, | Dec 19 1989 | Circuit Components, Incorporated | Connector arrangement system and interconnect element |
5099393, | Mar 25 1991 | International Business Machines Corporation | Electronic package for high density applications |
5156553, | May 29 1990 | KEL Corporation | Connector assembly for film circuitry |
5163834, | Dec 17 1990 | International Business Machines Corporation | High density connector |
5167512, | Jul 05 1991 | Multi-chip module connector element and system | |
5173055, | Aug 08 1991 | AMP Incorporated | Area array connector |
5199889, | Nov 12 1991 | Jem Tech | Leadless grid array socket |
5207585, | Oct 31 1990 | International Business Machines Corporation | Thin interface pellicle for dense arrays of electrical interconnects |
5227959, | May 19 1986 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Electrical circuit interconnection |
5252916, | Jan 27 1992 | Delaware Capital Formation, Inc | Pneumatic test fixture with springless test probes |
5299090, | Jun 29 1993 | AT&T Bell Laboratories; American Telephone and Telegraph Company | Pin-fin heat sink |
5321884, | Jan 22 1992 | International Business Machines Corporation | Multilayered flexible circuit package |
5324205, | Mar 22 1993 | GLOBALFOUNDRIES Inc | Array of pinless connectors and a carrier therefor |
5338207, | Jun 09 1993 | The Whitaker Corporation | Multi-row right angle connectors |
5342205, | Feb 20 1991 | Japan Aviation Electronics Industry, Limited | Electric connector in which a plurality of contact members can be readily assembled to an insulator |
5395252, | Oct 27 1993 | Burndy Corporation | Area and edge array electrical connectors |
5410260, | Nov 09 1992 | NHK Spring Co., Ltd. | Coil spring-pressed needle contact probe |
5412329, | Nov 18 1991 | Tokyo Electron Limited | Probe card |
5427535, | Sep 24 1993 | Aries Electronics, Inc. | Resilient electrically conductive terminal assemblies |
5437556, | Apr 09 1993 | Framatome Connectors Intl | Intermediate connector for use between a printed circuit card and a substrate for electronic circuits |
5519331, | Nov 10 1994 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Removable biasing board for automated testing of integrated circuits |
5521519, | Jul 30 1992 | International Business Machines Corporation | Spring probe with piloted and headed contact and method of tip formation |
5548488, | Apr 03 1995 | Prince Corporation | Electrical componet mounting system |
5637539, | Jan 16 1996 | Cornell Research Foundation, Inc | Vacuum microelectronic devices with multiple planar electrodes |
5645433, | May 09 1994 | Johnstech International Corporation | Contacting system for electrical devices |
5652608, | Jul 31 1992 | Canon Kabushiki Kaisha | Ink jet recording head, ink jet recording head cartridge, recording apparatus using the same and method of manufacturing the head |
5653598, | Aug 31 1995 | The Whitaker Corporation | Electrical contact with reduced self-inductance |
5723347, | Sep 30 1993 | International Business Machines Corp. | Semi-conductor chip test probe and process for manufacturing the probe |
5772451, | Nov 15 1994 | FormFactor, Inc | Sockets for electronic components and methods of connecting to electronic components |
5795172, | Dec 18 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Production printed circuit board (PCB) edge connector test connector |
5913687, | May 06 1997 | R&D Sockets, Inc | Replacement chip module |
5920765, | Dec 12 1997 | Oracle America, Inc | IC wafer-probe testable flip-chip architecture |
5923178, | Apr 17 1997 | SV Probe Pte Ltd | Probe assembly and method for switchable multi-DUT testing of integrated circuit wafers |
5938451, | May 06 1997 | R&D Sockets, Inc | Electrical connector with multiple modes of compliance |
5947749, | Jul 02 1996 | Johnstech International Corporation | Electrical interconnect contact system |
5984691, | May 24 1996 | International Business Machines Corporation | Flexible circuitized interposer with apertured member and method for making same |
6079987, | Dec 26 1997 | UNITECHNO, INC. | Connector for electronic parts |
6094115, | Feb 12 1999 | Raytheon Company | Control impedance RF pin for extending compressible button interconnect contact distance |
6135783, | May 06 1997 | R&D Sockets, Inc | Electrical connector with multiple modes of compliance |
6178629, | May 06 1997 | R&D Sockets, Inc | Method of utilizing a replaceable chip module |
6231353, | May 06 1997 | R&D Sockets, Inc | Electrical connector with multiple modes of compliance |
6247938, | May 06 1997 | R&D Sockets, Inc | Multi-mode compliance connector and replaceable chip module utilizing the same |
6312266, | Aug 24 2000 | High Connection Density, Inc | Carrier for land grid array connectors |
6379176, | Oct 29 1999 | SMK Corporation | Flat cable connector for attaching a flat cable to a circuit board |
6663399, | Jan 31 2001 | High Connection Density, Inc. | Surface mount attachable land grid array connector and method of forming same |
6695623, | May 31 2001 | GOOGLE LLC | Enhanced electrical/mechanical connection for electronic devices |
EP310302, | |||
EP351851, | |||
EP405333, | |||
EP431566, | |||
EP574793, | |||
EP817319, | |||
GB1488328, | |||
GB2027560, | |||
WO46885, | |||
WO109980A3, | |||
WO154232, | |||
WO9850985, | |||
WO9813695, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 16 2002 | Gryphics, Inc. | (assignment on the face of the patent) | / | |||
Jul 02 2002 | RATHBURN, JAMES J | GRYPHICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013151 | /0919 | |
Sep 22 2011 | R & D CIRCUITS | PATRIOT CAPITAL II, L P | JOINDER TO SECURITY AGREEMENT | 026983 | /0346 | |
Sep 22 2011 | R&D CIRCUITS HOLDINGS LLC | PATRIOT CAPITAL II, L P | JOINDER TO SECURITY AGREEMENT | 026983 | /0346 | |
Sep 22 2011 | R&D Sockets, Inc | PATRIOT CAPITAL II, L P | JOINDER TO SECURITY AGREEMENT | 026983 | /0346 | |
Sep 22 2011 | GRYPHICS, INC | R&D Sockets, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026998 | /0611 |
Date | Maintenance Fee Events |
Mar 17 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 14 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 02 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 14 2007 | 4 years fee payment window open |
Jun 14 2008 | 6 months grace period start (w surcharge) |
Dec 14 2008 | patent expiry (for year 4) |
Dec 14 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 14 2011 | 8 years fee payment window open |
Jun 14 2012 | 6 months grace period start (w surcharge) |
Dec 14 2012 | patent expiry (for year 8) |
Dec 14 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 14 2015 | 12 years fee payment window open |
Jun 14 2016 | 6 months grace period start (w surcharge) |
Dec 14 2016 | patent expiry (for year 12) |
Dec 14 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |