A narrow channel FinFET is described herein with a narrow channel width. A protective layer may be formed over the narrow channel, the protective layer being wider than the narrow channel.

Patent
   6921963
Priority
Jan 23 2003
Filed
Apr 23 2004
Issued
Jul 26 2005
Expiry
Jan 23 2023

TERM.DISCL.
Assg.orig
Entity
Large
250
20
all paid
6. A method for forming a mosfet device comprising:
forming a source, a drain, and a fin structure on an insulating layer, portions of the fin structure acting as a channel for the mosfet;
forming a protective layer above the fin structure;
depositing a tetraethyorthosilicate (TEOS) layer over the mosfet device before trimming the fin structure;
forming a polysilicon layer to a thickness ranging from about 50 nm to 70 nm on the TEOS layer;
trimming the fin structure without significantly trimming the protective layer; and
depositing a second polysilicon layer to act as a gate area for the mosfet.
1. A mosfet device comprising:
a source and a drain formed on an insulating layer;
a fin structure formed on the insulating layer between the source and the drain, the fin structure including a first region formed in a channel area of the fin structure;
a dielectric layer formed around at least a channel portion of the fin structure to a thickness ranging from 0.6 nm to less than 1.0 nm;
a protective layer formed over at least the first region of the fin structure, the protective layer being wider than the first region and including an oxide layer and a nitride layer formed over the oxide layer and having a thickness ranging from 50 nm to 75 nm; and
a gate formed on the insulating layer around at least a portion of the fin structure.
2. The mosfet device of claim 1, wherein the first region has a width of about 3 to 6 nm.
3. The mosfet device of claim 1, wherein the gate comprises polysilicon.
4. The mosfet device of claim 1, wherein the mosfet device is a FinFET.
5. The mosfet device of claim 1, wherein the gate is formed to include small gate lengths.
7. The method of claim 6, wherein the fin structure is trimmed by exposing the fin structure to NH4OH.
8. The method of claim 6, wherein forming the protective layer includes:
depositing an oxide layer to a depth of about 15 nm, and
depositing a nitride layer to a depth of about 50 nm to 75 nm.
9. The method of claim 6, further comprising:
etching away the TEOS layer over the fin structure before trimming the fin structure.
10. The method of claim 6, wherein trimming the fin structure includes trimming the fin structure to a width of about 3 nm to 6 nm.

This application is a Continuation of commonly assigned, U.S. patent application Ser. No. 10/348,910, entitled “NARROW FIN FINFET”, filed Jan. 23, 2003 now U.S. Pat. No. 6,762,483, the disclosure of which is hereby incorporated herein by reference.

A. Field of the Invention

The present invention relates generally to semiconductor devices and methods of manufacturing semiconductor devices and, more particularly, to double-gate metal oxide semiconductor field-effect transistors (MOSFETs).

B. Description of Related Art

Transistors, such as MOSFETs, are the core building block of the vast majority of semiconductor devices. Some semiconductor devices, such as high performance processors, can include millions of transistors. For these devices, decreasing transistor size, and thus increasing transistor density, has traditionally been a high priority in the semiconductor manufacturing area.

Conventional MOSFETs have difficulty scaling below 50 nm fabrication processing. To develop sub-50 nm MOSFETs, double-gate MOSFETs have been proposed. In several respects, double-gate MOSFETs offer better characteristics than the conventional bulk silicon MOSFETs. These improvements arise because the double-gate MOSFET has a gate electrode on both sides of the channel, rather than only on one side as in conventional MOSFETs.

Implementations consistent with the present invention provide a double-gate MOSFET having a thin channel area and methods of manufacturing the same.

One aspect of the invention is a MOSFET device that includes a source and a drain formed on an insulating layer. The MOSFET device further includes a fin structure formed on the insulating layer between the source and the drain, the fin structure including a first region formed in a channel area of the fin structure; a protective layer formed over at least the first region of the fin structure, the protective layer being wider than the first region; and a gate formed on the insulating layer around at least a portion of the fin structure.

Another aspect of the invention is a method for forming a MOSFET device that includes forming a source, a drain, and a fin structure on an insulating layer, portions of the fin structure acting as a channel for the MOSFET and forming a protective layer above the fin structure. The method further includes trimming the fin structure without significantly trimming the protective layer and depositing a polysilicon layer to act as a gate area for the MOSFET.

Let another aspect of the invention is directed to a device that includes a source and drain. A fin structure is formed between the source and the drain, the fin structure including a first region formed in a channel area of the fin structure and a second and third protective region formed adjacent the source and drain, respectively, wherein the first region is narrower than the second and third protective regions. A gate formed around at least a portion of the fin structure.

Reference is made to the attached drawings, wherein elements having the same reference number designation may represent like elements throughout.

FIGS. 1 and 2 are cross-section views illustrating formation of a FinFET consistent with aspects of the invention;

FIG. 3 is a perspective view of the FinFET shown in FIG. 2;

FIG. 4 is a top view of the FinFET shown in FIG. 3;

FIG. 5 is a cross-section view taken along the line A-A′ in FIG. 4;

FIG. 6 is a top view of the FinFET shown in FIG. 3;

FIG. 7 is a cross-section view taken along the line A-A′ in FIG. 4;

FIG. 8 is a top view of the FinFET shown in FIG. 7;

FIGS. 9 and 10 are cross-section views of the FinFET;

FIG. 11 is a top view of a complete FinFET;

FIGS. 12-15 are cross-section views of a FinFET consistent with a second embodiment of the invention; and

FIGS. 16-18 are cross-section views of a double-gate FinFET built around an SiGe layer.

The following detailed description of the invention refers to the accompanying drawings. The same reference numbers may be used in different drawings to identify the same or similar elements. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims and equivalents.

A FinFET, as the term is used herein, refers to a type of MOSFET in which a conducting channel is formed in a vertical Si “fin.” FinFETs are generally known in the art.

FIG. 1 is a cross-section illustrating doping of a starting structure for a FinFET 100. FinFET 100 may include a silicon-on-insulation (SOI) structure that includes buried oxide (BOX) layer 120 formed on a silicon and/or germanium substrate 110, with a silicon layer 130 over BOX layer 120. Alternatively, layer 130 may comprise germanium or silicon-germanium. In an exemplary implementation, BOX layer 120 may have a thickness ranging from about 200 nm to about 400 nm and silicon layer 130 may have a thickness ranging from about 30 nm to about 100 nm. A protective layer, such as an oxide layer (e.g., SiO2) and/or a nitride layer (e.g., Si3N4) may next be deposited to act as a protective cap during subsequent etching.

The silicon layer 130 and protective layers may then be etched to form a silicon fin 140 with protective layers 150 and 160 over top of fin 140 (see FIG. 2). Protective layer 150 may be an oxide layer and protective layer 160 may be a nitride layer. Layer 150 may have a thickness of, for example, approximately 15 nm and layer 160 may have a thickness ranging from about 50-75 nm.

Source/drain regions may then be formed adjacent the ends of fin 140. In one implementation, silicon layer 130 may be patterned and etched to form source and drain regions simultaneously with fin 140. In other implementations, another layer of silicon may be deposited and etched in a conventional manner to form source and drain regions. FIG. 3 is a perspective view of FinFET 100 with source and drain regions 310 and 320 formed adjacent the ends of fin 140.

FIG. 4 is a schematic top-level view of FinFET 100 with source region 310, drain region 320, and fin 140. The cross-sectional views in FIGS. 1 and 2 are taken along the line A-A′ in FIG. 4.

A TEOS (tetraethylorthosilicate) layer 501 may next be deposited over FinFET 100. FIG. 5 is a cross-sectional-view of FinFET 100, taken along the line A-A′ in FIG. 4, illustrating TEOS layer 501. The TEOS layer 501 may be annealed and planarized to produce a relatively flat surface across the top of FinFET 100.

A damascene gate mask may be defined and patterned in TEOS 501. In particular, a trench may be formed in TEOS 501. The gate area may then be opened in TEOS 501 via etching. FIG. 6 is a diagram illustrating a top-level view of FinFET 100 in which area 602 in TEOS 501 is illustrated as the opened portion. More particularly the mask may be used to allow the TEOS in area 602 to be etched while maintaining the remaining TEOS 501. In one implementation, patterning the gate area to obtain small gate lengths may be performed by depositing a polysilicon layer to a depth of about 50 to 70 nm on the TEOS in area 602. This polysilicon layer may be patterned, leaving very thin polysilicon lines. A layer of oxide may then be deposited to about 120 to 150 nm and then polished back to the top of the polysilicon. Next, the polysilicon is etched away. The TEOS in area 602 is then etched, using the remaining oxide layer as a mask for the TEOS etch.

Fin 140 may next be thinned. In one embodiment, fin 140 may be thinned by exposing FinFET 100 to NH4OH until fin 140 is reduced from a width of 10 nm to 15 nm to a width of approximately 3 nm to 6 nm. This thinning process may be performed at a relatively slow and controlled pace such that the fin is trimmed at a rate of approximately 2 Å/min. A fin that is thinned in this manner is illustrated in FIG. 7, which is a cross-sectional view taken along the line A-A′ in FIG. 4. FIG. 8 is a corresponding top-view of FIG. 7. As shown if FIGS. 7 and 8, FinFET 100, after thinning of fin 140, includes a cavity, formed beneath oxide layer 150 and nitride layer 160.

A gate dielectric layer 901 may be grown on the side surfaces of fin 140 as illustrated in FIG. 9. Gate dielectric layer 901 may be as thin as 0.6 to 1.2 nm. Alternatively, a high-k layer with an equivalent oxide thickness (EOT) of 0.6 to 1.2 nm may be formed on the side surfaces of fin 140.

Referring to FIG. 10, a layer of polysilicon may next be deposited on FinFET 100 in a conventional manner. The layer of polysilicon may be doped using gate doping masks. NMOS devices may be doped with phosphorous and PMOS devices may be doped with boron. The polysilicon may be planarized to the level of nitride layer 160, forming two separate polysilicon areas 1001A and 1001B. The polysilicon areas 1001A and 1001B may be patterned and etched to form the gates of FinFET 100. Polysilicon areas 1001A and 1001B may thus form two electrically independent gates. In other implementations, polysilicon areas 1001A and 1001B may not be polished to the level of Si3N4 layer 160. Instead, a single polysilicon layer may cover Si3N4 layer 160. In this situation, the polysilicon layer forms a single addressable gate for FinFET 100.

A mask may next be applied to the gate area 602. Using the mask to protect the gate area 602, the TEOS layer 501 and protective SiO2 and Si3N4 layers 150 and 160 deposited over the source/drain region 310 and 320, may then be etched using an isotropic wet etch to remove the TEOS layer 501.

After the surface of the source/drain regions 310 and 320 are exposed, ion implantation may be performed on FinFET 100. To dope the source 310 and drain 320. More specifically, for an NMOS FinFET, phosphorous may be implanted at a dosage of 1015 atoms/cm2 at 5-10 keV. For a PMOS FinFET, boron may be implanted at a dosage of 1015 atoms/cm2 at 2-5 keV.

After ion implantation, salicidation (i.e., a self-aligned silicide process) may be performed on FinFET 100. In this act, a metal, such as tungsten, cobalt, titanium, tantalum molybdenum, nickel, eribium, or platinum may be deposited over the polysilicon (gate) area 1001A and 1001B and source and drain regions 310 and 320. A thermal annealing may then be performed to create a metal-silicide compound. FIG. 11 illustrates a top-view of FinFET 100 after the annealing. Referring to FIG. 11, the cross-hatching represents the metal-silicide compound over source/drain regions 310 and 320 and the two gate regions. The gate regions may include gate pads 1101 and 1102 formed at the end of polysilicon areas 1001A and 1001B. The resulting FinFET 100 includes a thin fin channel area 140, as indicated by the dotted lines in FIG. 11. The protective layers 150 and 160, however, are wider than fin 140, as illustrated in FIG. 10. Advantageously, the resulting thin channel MOSFETs provides improved short channel control.

Referring back to FIG. 5, in an alternate embodiment, instead of thinning fin 140 by exposing it to NH4OH, fin 140 may be trimmed through a reactive ion etching (RIE) process. In general, and as is known in the art, RIE is a variation of plasma etching in which during the etching, the semiconductor wafer is placed on an RF powered electrode. In this embodiment, the fin 140 may initially be thinned by RIE to reduce the width of fin 140 to a width of approximately 3 nm to 6 nm.

Protective layers 150 and 160 may next be removed through an etch process to expose the fin, labeled as fin 1240 in FIG. 12.

To remove etch damage caused by the etching of layers 150 and 160, a sacrificial oxidation layer 1301 may next be formed on the exposed surfaces of fin 1240, as illustrated in FIG. 13. Sacrificial oxide layer may be grown or formed to a thickness of about 0.6 nm to 1.2 nm and may also function as a gate dielectric layer. Alternatively, an additional oxide layer or high-k layer with an equivalent oxide thickness (EOT) of 0.6 to 1.2 nm may be formed on the side surfaces of fin 140, labeled as layers 1401.

Referring to FIG. 15, a layer of polysilicon may next be deposited on FinFET 1200 in a conventional manner. The polysilicon may be planarized to the level of oxide layer 1301, forming two separate polysilicon areas 1201A and 1201B. The polysilicon areas 1201A and 1201B may form the gates of FinFET 1200. Polysilicon areas 1201A and 1201B may thus form two electrically independent gates. In other implementations, polysilicon areas 1201A and 1201B may not be polished to the level of oxide layer 1301. Instead, a single polysilicon layer may cover oxide layer 1301. In this situation, the polysilicon layer forms a single addressable gate for FinFET 1200.

A mask may next be applied to the gate area of FinFET 1200. With the mask to protect the gate area, TEOS layer 501 and the additional protective layers deposited over the source/drain region 310 and 320 may then be etched away from the rest of the FinFET 1200.

After the surface of the source/drain regions 310 and 320 are exposed, ion implantation may be performed on FinFET 1200. This effectively dopes the source 310 and drain 320. More specifically, for an NMOS FinFET, phosphorous may be implanted at a dosage of 1015 atoms/cm2 at 5-10 keV. For a PMOS FinFET, boron may be implanted at a dosage of 1015 atoms/cm2 at 2-5 keV.

After ion implantation, salicidation (i.e., a self-aligned silicide process) may be performed on FinFET 1200. In this act, a metal, such as tungsten, cobalt, titanium, tantalum or molybdenum, may be deposited over the polysilicon (gate) area 1201A and 1201B and source and drain regions 310 and 320. A thermal annealing may then be performed to create a metal-silicide compound. At this point, a top-view of FinFET 1200 is similar to the FinFET 200 shown in FIG. 11.

In some situations it may be desirable to form strained silicon FinFETs. FIGS. 16-18 are cross-sectional views of a FinFET 1600 taken along the line A-A′ in FIG. 4.

Referring to FIG. 16, a SiGe layer 1610 may be formed on a buried-oxide layer 1601. A nitride layer 1620 may be formed above the SiGe layer 1610. The arrangement of SiGe layer 1610 and nitride layer 1620 may be formed, for example, in a manner similar to the thin fin shown in FIG. 7. Thus, SiGe layer 1610 and nitride layer 1620 may be initially etched to have the same width and SiGe layer 1610 may then be laterally etched to form a thin SiGe layer 1610. SiGe layer 1610 may be about 5 nm to 15 nm wide.

Referring to FIG. 17, Si layers 1611 may next be epitaxially grown around the SiGe layer to a width of about 5 nm to 10 nm. The growth of Si layers 1611 may be followed by the formation of gate dielectric layers 1612. Gate dielectric layers 1612 may be as thin as 0.6 to 1.2 nm.

Referring to FIG. 18, a polysilicon layer 1801 may next be deposited on FinFET 1600 in a conventional manner. The polysilicon layer may then be patterned and etched to form gates of FinFET 1600. Polysilicon layer 1801 may also be planarized down to the level of nitride layer 1620. At this point, FinFET 1600 may be completed in the manner described above.

Some MOSFETs have both PMOS and NMOS FinFETS placed on a single buried oxide layer. When performing salicidation in this implemetation (e.g., salicidation as described above), selective salicidation may be achieved by electroless plating of an appropriate metal. In addition, two or more different silicides may be used. One silicide (e.g., Co, Ni, rare earth metals Er, Eu, Ga, Sm) may be used for the NMOS FinFETs and another silicide (e.g., Pt) may be used for PMOS FinFETs. In this situation, the PMOS FinFETs may first be covered by a photoresist and then the NMOS metal may be deposited. The photoresist over the PMOS FinFETs may then be removed and another photresist layer may be applied over the NMOS FinFETs. At this point, the PMOS metal may be applied. A thermal annealing may then be performed to create the metal-silicide compound.

FinFETs having a narrow fin, and methods of making the narrow fin FinFETs, were described herein. The narrow fin provides a number of advantages to the FinFET, including better short channel control.

In the previous descriptions, numerous specific details are set forth, such as specific materials, structures, chemicals, processes, etc., in order to provide a thorough understanding of the present invention. However, the present invention can be practiced without resorting to the specific details set forth herein. In other instances, well known processing structures have not been described in detail, in order not to unnecessarily obscure the thrust of the present invention.

The dielectric and conductive layers used in manufacturing a semiconductor device in accordance with the present invention can be deposited by conventional deposition techniques. For example, metallization techniques, such as various types of chemical vapor deposition (CVD) processes, including low pressure chemical vapor deposition (LPCVD) and enhanced chemical vapor deposition (ECVD) can be employed.

The present invention is applicable in the manufacturing of semiconductor devices and particularly in semiconductor devices with design features of 100 nm and below, resulting in increased transistor and circuit speeds and improved reliability. The present invention is applicable to the formation of any of various types of semiconductor devices, and hence, details have not been set forth in order to avoid obscuring the thrust of the present invention. In practicing the present invention, conventional photolithographic and etching techniques are employed and, hence, the details of such techniques have not been set forth herein in detail.

Only the preferred embodiments of the invention and a few examples of its versatility are shown and described in the present disclosure. It is to be understood that the invention is capable of use in various other combinations and environments and is capable of modifications within the scope of the inventive concept as expressed herein.

Krivokapic, Zoran, An, Judy Xilin, Wang, Haihong, Yu, Bin, Dakshina-Murthy, Srikanteswara

Patent Priority Assignee Title
10002981, Sep 07 2007 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-junction solar cells
10014227, Aug 10 2011 United Microelectronics Corp. Semiconductor device having strained fin structure and method of making the same
10062770, Jan 10 2013 United Microelectronics Corp. Complementary metal oxide semiconductor field effect transistor, metal oxide semiconductor field effect transistor and manufacturing method thereof
10074536, Mar 24 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
10109748, Apr 01 2009 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
10236290, Oct 05 2016 International Business Machines Corporation Method and structure for improving vertical transistor
10236356, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
10269970, May 29 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
10468551, Oct 19 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Light-emitter-based devices with lattice-mismatched semiconductor structures
10522629, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
10680126, Apr 09 2007 Taiwan Semiconductor Manufacturing Company, Ltd. Photovoltaics on silicon
10961639, Jun 30 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
11211453, Jul 23 2020 GLOBALFOUNDRIES U S INC FinFET with shorter fin height in drain region than source region and related method
11251272, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
11545575, Jul 02 2020 GLOBALFOUNDRIES U S INC IC structure with fin having subfin extents with different lateral dimensions
7235468, Aug 20 2004 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT FinFET device with reduced DIBL
7329913, Dec 30 2003 TAHOE RESEARCH, LTD Nonplanar transistors with metal gate electrodes
7361958, Sep 30 2004 TAHOE RESEARCH, LTD Nonplanar transistors with metal gate electrodes
7393733, Dec 01 2004 Taiwan Semiconductor Manufacturing Company, Ltd Methods of forming hybrid fin field-effect transistor structures
7396711, Dec 27 2005 Intel Corporation Method of fabricating a multi-cornered film
7456476, Jun 27 2003 TAHOE RESEARCH, LTD Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
7479421, Sep 28 2005 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
7518196, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
7528025, Sep 30 2004 TAHOE RESEARCH, LTD Nonplanar transistors with metal gate electrodes
7547637, Jun 21 2005 TAHOE RESEARCH, LTD Methods for patterning a semiconductor film
7550333, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
7566600, Aug 31 2000 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT SOI device with reduced drain induced barrier lowering
7579280, Jun 01 2004 Intel Corporation Method of patterning a film
7714397, Jun 27 2003 Intel Corporation Tri-gate transistor device with stress incorporation layer and method of fabrication
7736956, Aug 17 2005 TAHOE RESEARCH, LTD Lateral undercut of metal gate in SOI device
7772048, Feb 23 2007 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Forming semiconductor fins using a sacrificial fin
7777250, Mar 24 2006 Taiwan Semiconductor Manufacturing Company, Ltd Lattice-mismatched semiconductor structures and related methods for device fabrication
7781771, Mar 31 2004 TAHOE RESEARCH, LTD Bulk non-planar transistor having strained enhanced mobility and methods of fabrication
7799592, Sep 27 2006 Taiwan Semiconductor Manufacturing Company, Ltd Tri-gate field-effect transistors formed by aspect ratio trapping
7820513, Jun 27 2003 TAHOE RESEARCH, LTD Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
7825481, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
7859053, Sep 29 2004 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
7871873, Mar 27 2009 GLOBALFOUNDRIES U S INC Method of forming fin structures using a sacrificial etch stop layer on bulk semiconductor material
7879675, Mar 14 2005 Intel Corporation Field effect transistor with metal source/drain regions
7893506, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
7898041, Jun 30 2005 Intel Corporation Block contact architectures for nanoscale channel transistors
7902014, Sep 28 2005 TAHOE RESEARCH, LTD CMOS devices with a single work function gate electrode and method of fabrication
7915167, Sep 29 2005 TAHOE RESEARCH, LTD Fabrication of channel wraparound gate structure for field-effect transistor
7960794, Aug 10 2004 TAHOE RESEARCH, LTD Non-planar pMOS structure with a strained channel region and an integrated strained CMOS flow
7985639, Sep 18 2009 GLOBALFOUNDRIES U S INC Method for fabricating a semiconductor device having a semiconductive resistor structure
7989280, Nov 30 2005 Intel Corporation Dielectric interface for group III-V semiconductor device
7994020, Jul 21 2008 INNOVATIVE FOUNDRY TECHNOLOGIES LLC Method of forming finned semiconductor devices with trench isolation
8003466, Apr 08 2008 Advanced Micro Devices, Inc. Method of forming multiple fins for a semiconductor device
8067818, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
8071983, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
8084818, Jun 30 2004 Intel Corporation High mobility tri-gate devices and methods of fabrication
8101486, Oct 07 2009 GLOBALFOUNDRIES U S INC Methods for forming isolated fin structures on bulk semiconductor material
8183627, Dec 01 2004 Taiwan Semiconductor Manufacturing Company, Ltd Hybrid fin field-effect transistor structures and related methods
8183646, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8193567, Sep 28 2005 Intel Corporation Process for integrating planar and non-planar CMOS transistors on a bulk substrate and article made thereby
8216951, Sep 27 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
8237151, Jan 09 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
8253211, Sep 24 2008 Taiwan Semiconductor Manufacturing Company, Ltd Semiconductor sensor structures with reduced dislocation defect densities
8258577, Jun 04 2009 International Business Machines Corporation CMOS inverter device with fin structures
8268709, Sep 29 2004 Intel Corporation Independently accessed double-gate and tri-gate transistors in same process flow
8273626, Jun 27 2003 TAHOE RESEARCH, LTD Nonplanar semiconductor device with partially or fully wrapped around gate electrode and methods of fabrication
8274097, Jul 01 2008 Taiwan Semiconductor Manufacturing Company, Ltd Reduction of edge effects from aspect ratio trapping
8278184, Nov 02 2011 United Microelectronics Corp. Fabrication method of a non-planar transistor
8294180, Sep 28 2005 TAHOE RESEARCH, LTD CMOS devices with a single work function gate electrode and method of fabrication
8324660, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
8329541, Jun 15 2007 Taiwan Semiconductor Manufacturing Company, Ltd InP-based transistor fabrication
8334177, Oct 07 2009 GLOBALFOUNDRIES U S INC Methods for forming isolated fin structures on bulk semiconductor material
8361854, Mar 21 2011 United Microelectronics Corp. Fin field-effect transistor structure and manufacturing process thereof
8362566, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
8368135, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8384196, Sep 19 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Formation of devices by epitaxial layer overgrowth
8399922, Sep 29 2004 Intel Corporation Independently accessed double-gate and tri-gate transistors
8405164, Jun 27 2003 Intel Corporation Tri-gate transistor device with stress incorporation layer and method of fabrication
8426277, Sep 23 2011 United Microelectronics Corp. Semiconductor process
8426283, Nov 10 2011 United Microelectronics Corp. Method of fabricating a double-gate transistor and a tri-gate transistor on a common substrate
8431466, Jul 21 2008 INNOVATIVE FOUNDRY TECHNOLOGIES LLC Method of forming finned semiconductor devices with trench isolation
8440511, Nov 16 2011 United Microelectronics Corp. Method for manufacturing multi-gate transistor device
8441072, Sep 02 2011 Marlin Semiconductor Limited Non-planar semiconductor structure and fabrication method thereof
8470714, May 22 2012 United Microelectronics Corp. Method of forming fin structures in integrated circuits
8492219, Dec 04 2009 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method
8497198, Sep 23 2011 United Microelectronics Corp. Semiconductor process
8502263, Oct 19 2006 Taiwan Semiconductor Manufacturing Company, Ltd Light-emitter-based devices with lattice-mismatched semiconductor structures
8502351, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
8519436, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
8551829, Nov 10 2010 United Microelectronics Corp. Method for manufacturing multi-gate transistor device
8575708, Oct 26 2011 United Microelectronics Corp. Structure of field effect transistor with fin structure
8581258, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
8597994, May 23 2011 GLOBALFOUNDRIES U S INC Semiconductor device and method of fabrication
8598662, Mar 02 2011 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor device and method for forming the same
8604548, Nov 23 2011 Marlin Semiconductor Limited Semiconductor device having ESD device
8609499, Jan 09 2012 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
8614152, May 25 2011 United Microelectronics Corp. Gate structure and a method for forming the same
8617945, Aug 02 2006 Intel Corporation Stacking fault and twin blocking barrier for integrating III-V on Si
8629045, Jul 01 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
8629047, Sep 27 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
8629446, Apr 02 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
8629477, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
8664055, Mar 21 2011 United Microelectronics Corp. Fin field-effect transistor structure and manufacturing process thereof
8664060, Feb 07 2012 United Microelectronics Corp. Semiconductor structure and method of fabricating the same
8664694, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8674408, Apr 30 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing source/drain resistance of III-V based transistors
8674433, Aug 24 2011 United Microelectronics Corp. Semiconductor process
8691651, Aug 25 2011 United Microelectronics Corp. Method of forming non-planar FET
8691652, May 03 2012 Marlin Semiconductor Limited Semiconductor process
8698199, Jan 11 2012 United Microelectronics Corp. FinFET structure
8709901, Apr 17 2013 United Microelectronics Corp. Method of forming an isolation structure
8709910, Apr 30 2012 Marlin Semiconductor Limited Semiconductor process
8716074, Oct 07 2009 GLOBALFOUNDRIES U S INC Methods for forming isolated fin structures on bulk semiconductor material
8722501, Oct 18 2011 United Microelectronics Corp. Method for manufacturing multi-gate transistor device
8741733, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
8748278, Nov 23 2011 Marlin Semiconductor Limited Method for fabricating semiconductor device
8749026, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
8759184, Jan 09 2012 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
8766319, Apr 26 2012 United Microelectronics Corp. Semiconductor device with ultra thin silicide layer
8772860, May 26 2011 United Microelectronics Corp. FINFET transistor structure and method for making the same
8779513, Sep 02 2011 Marlin Semiconductor Limited Non-planar semiconductor structure
8796695, Jun 22 2012 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
8796734, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
8802521, Jun 04 2013 Marlin Semiconductor Limited Semiconductor fin-shaped structure and manufacturing process thereof
8803247, Dec 15 2011 United Microelectronics Corporation Fin-type field effect transistor
8809106, Sep 24 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Method for semiconductor sensor structures with reduced dislocation defect densities
8816391, Apr 01 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain engineering of devices with high-mobility channels
8816394, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
8822248, Jun 03 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
8822284, Feb 09 2012 Marlin Semiconductor Limited Method for fabricating FinFETs and semiconductor structure fabricated using the method
8841197, Mar 06 2013 United Microelectronics Corp. Method for forming fin-shaped structures
8847279, Sep 07 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
8847325, Mar 21 2011 United Microelectronics Corporation Fin field-effect transistor structure
8853013, Aug 19 2011 Marlin Semiconductor Limited Method for fabricating field effect transistor with fin structure
8853015, Apr 16 2013 Marlin Semiconductor Limited Method of forming a FinFET structure
8860160, Sep 27 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
8871575, Oct 31 2011 United Microelectronics Corp. Method of fabricating field effect transistor with fin structure
8872280, Jul 31 2012 United Microelectronics Corp. Non-planar FET and manufacturing method thereof
8877623, May 14 2012 United Microelectronics Corp. Method of forming semiconductor device
8878243, Mar 24 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures and related methods for device fabrication
8896062, May 25 2010 Institute of Microelectronics, Chinese Academy of Sciences Semiconductor device and method for forming the same
8927371, Apr 01 2009 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
8933458, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
8946031, Jan 18 2012 United Microelectronics Corp. Method for fabricating MOS device
8946078, Mar 22 2012 United Microelectronics Corp. Method of forming trench in semiconductor substrate
8951884, Nov 14 2013 United Microelectronics Corp. Method for forming a FinFET structure
8980701, Nov 05 2013 United Microelectronics Corp. Method of forming semiconductor device
8981427, Jul 15 2008 AMBERWAVE SYSTEMS Polishing of small composite semiconductor materials
8981487, Jul 31 2013 United Microelectronics Corp. Fin-shaped field-effect transistor (FinFET)
8987028, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
8993384, Jun 09 2013 Marlin Semiconductor Limited Semiconductor device and fabrication method thereof
8993390, Apr 26 2012 United Microelectronics Corp. Method for fabricating semiconductor device
8994070, Jul 01 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
8999793, Jun 22 2012 United Microelectronics Corp. Multi-gate field-effect transistor process
9000483, May 16 2013 United Microelectronics Corp. Semiconductor device with fin structure and fabrication method thereof
9006091, May 14 2012 United Microelectronics Corp. Method of forming semiconductor device having metal gate
9006107, Mar 11 2012 United Microelectronics Corp. Patterned structure of semiconductor device and fabricating method thereof
9006804, Jun 06 2013 United Microelectronics Corp. Semiconductor device and fabrication method thereof
9006805, Aug 07 2013 Marlin Semiconductor Limited Semiconductor device
9012975, Jun 14 2012 United Microelectronics Corp. Field effect transistor and manufacturing method thereof
9018066, Sep 30 2013 United Microelectronics Corp. Method of fabricating semiconductor device structure
9019672, Jul 17 2013 United Microelectronics Corporation Chip with electrostatic discharge protection function
9029958, Jan 09 2012 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
9040331, Jan 09 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
9048246, Jun 18 2013 Marlin Semiconductor Limited Die seal ring and method of forming the same
9048314, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
9054187, Feb 07 2012 United Microelectronics Corp. Semiconductor structure
9070710, Jun 07 2013 Marlin Semiconductor Limited Semiconductor process
9076870, Feb 21 2013 United Microelectronics Corp. Method for forming fin-shaped structure
9093565, Jul 15 2013 United Microelectronics Corp. Fin diode structure
9105522, Sep 27 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
9105549, Sep 24 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor sensor structures with reduced dislocation defect densities
9105582, Aug 15 2013 United Microelectronics Corporation Spatial semiconductor structure and method of fabricating the same
9105660, Aug 17 2011 Marlin Semiconductor Limited Fin-FET and method of forming the same
9105685, Jul 12 2013 United Microelectronics Corp. Method of forming shallow trench isolation structure
9117909, Apr 16 2013 Marlin Semiconductor Limited Non-planar transistor
9123810, Jun 18 2013 United Microelectronics Corp. Semiconductor integrated device including FinFET device and protecting structure
9142649, Apr 23 2012 United Microelectronics Corp. Semiconductor structure with metal gate and method of fabricating the same
9147747, May 02 2013 Marlin Semiconductor Limited Semiconductor structure with hard mask disposed on the gate structure
9159626, Mar 13 2012 United Microelectronics Corp. FinFET and fabricating method thereof
9159809, Feb 29 2012 United Microelectronics Corp. Multi-gate transistor device
9159831, Oct 29 2012 United Microelectronics Corp. Multigate field effect transistor and process thereof
9166024, Sep 30 2013 United Microelectronics Corp. FinFET structure with cavities and semiconductor compound portions extending laterally over sidewall spacers
9184100, Aug 10 2011 United Microelectronics Corp. Semiconductor device having strained fin structure and method of making the same
9184292, Feb 09 2012 Marlin Semiconductor Limited Semiconductor structure with different fins of FinFETs
9190291, Jul 03 2013 United Microelectronics Corp. Fin-shaped structure forming process
9190497, May 16 2013 United Microelectronics Corp. Method for fabricating semiconductor device with loop-shaped fin
9190518, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
9196500, Apr 09 2013 United Microelectronics Corp. Method for manufacturing semiconductor structures
9214384, Mar 22 2012 United Microelectronics Corp. Method of forming trench in semiconductor substrate
9219112, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
9224754, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
9231073, Jan 09 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
9263282, Jun 13 2013 United Microelectronics Corporation Method of fabricating semiconductor patterns
9263287, May 27 2013 United Microelectronics Corp. Method of forming fin-shaped structure
9281199, Jun 06 2013 United Microelectronics Corp. Method for fabricating semiconductor device with paterned hard mask
9287128, Jul 15 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
9299562, Apr 02 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
9299843, Nov 13 2013 Marlin Semiconductor Limited Semiconductor structure and manufacturing method thereof
9306032, Oct 25 2013 Marlin Semiconductor Limited Method of forming self-aligned metal gate structure in a replacement gate process using tapered interlayer dielectric
9312365, Jul 31 2012 United Microelectronics Corp. Manufacturing method of non-planar FET
9318325, Sep 07 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
9318567, Sep 05 2012 United Microelectronics Corp. Fabrication method for semiconductor devices
9318609, Jun 09 2013 Marlin Semiconductor Limited Semiconductor device with epitaxial structure
9331064, Jul 15 2013 United Microelectronics Corp. Fin diode structure
9331171, May 02 2013 Marlin Semiconductor Limited Manufacturing method for forming semiconductor structure
9337193, Aug 07 2013 Marlin Semiconductor Limited Semiconductor device with epitaxial structures
9337307, Jun 15 2005 TAHOE RESEARCH, LTD Method for fabricating transistor with thinned channel
9349695, Jun 18 2013 United Microelectronics Corp. Semiconductor integrated device including FinFET device and protecting structure
9356103, Jul 01 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
9362358, Aug 15 2013 United Microelectronics Corporation Spatial semiconductor structure
9365949, Jun 03 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Epitaxial growth of crystalline material
9368583, Feb 23 2005 Intel Corporation Field effect transistor with narrow bandgap source and drain regions and method of fabrication
9373719, Sep 16 2013 United Microelectronics Corp. Semiconductor device
9379026, Mar 13 2012 United Microelectronics Corp. Fin-shaped field-effect transistor process
9379217, Jan 09 2012 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
9385048, Sep 05 2013 United Microelectronics Corp. Method of forming Fin-FET
9385180, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
9385193, May 26 2011 United Microelectronics Corp. FINFET transistor structure and method for making the same
9391074, Apr 21 2015 International Business Machines Corporation Structure for FinFET fins
9401429, Jun 13 2013 United Microelectronics Corp. Semiconductor structure and process thereof
9406805, Aug 17 2011 Marlin Semiconductor Limited Fin-FET
9431243, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
9450092, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
9455246, Jul 15 2013 United Microelectronics Corp. Fin diode structure
9455299, Sep 24 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for semiconductor sensor structures with reduced dislocation defect densities
9502506, Apr 21 2015 International Business Machines Corporation Structure for FinFET fins
9508890, Apr 09 2007 Taiwan Semiconductor Manufacturing Company, Ltd Photovoltaics on silicon
9536792, Jan 10 2013 United Microelectronics Corp. Complementary metal oxide semiconductor field effect transistor, metal oxide semiconductor field effect transistor and manufacturing method thereof
9543472, Jan 09 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
9559091, Jul 15 2013 United Microelectronics Corp. Method of manufacturing fin diode structure
9559189, Apr 16 2012 Marlin Semiconductor Limited Non-planar FET
9559712, Sep 27 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures
9576951, Apr 02 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Devices formed from a non-polar plane of a crystalline material and method of making the same
9590068, Apr 01 2009 Taiwan Semiconductor Manufacturing Company, Ltd. High-mobility multiple-gate transistor with improved on-to-off current ratio
9601600, Sep 30 2013 United Microelectronics Corp. Processes for fabricating FinFET structures with semiconductor compound portions formed in cavities and extending over sidewall spacers
9607846, Jul 15 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing of small composite semiconductor materials
9640395, Jul 01 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Reduction of edge effects from aspect ratio trapping
9698229, Jan 17 2012 United Microelectronics Corp. Semiconductor structure and process thereof
9711368, Apr 15 2013 United Microelectronics Corp. Sidewall image transfer process
9741809, Oct 25 2004 Intel Corporation Nonplanar device with thinned lower body portion and method of fabrication
9761724, Jun 21 2005 TAHOE RESEARCH, LTD Semiconductor device structures and methods of forming semiconductor structures
9768305, May 29 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Gradient ternary or quaternary multiple-gate transistor
9780190, Jun 15 2007 Purdue Research Foundation InP-based transistor fabrication
9806193, Jun 23 2008 TAHOE RESEARCH, LTD Stress in trigate devices using complimentary gate fill materials
9806195, Jun 15 2005 TAHOE RESEARCH, LTD Method for fabricating transistor with thinned channel
9818819, Sep 07 2006 Taiwan Semiconductor Manufacturing Company, Ltd. Defect reduction using aspect ratio trapping
9853118, Jan 09 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Diode-based devices and methods for making the same
9859381, May 17 2005 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication
9871123, Jun 14 2012 United Microelectronics Corp. Field effect transistor and manufacturing method thereof
9911850, Jan 09 2012 Taiwan Semiconductor Manufacturing Company, Ltd. FinFETs and the methods for forming the same
9923095, Apr 16 2012 Marlin Semiconductor Limited Manufacturing method of non-planar FET
9934967, Sep 19 2008 Taiwan Semiconductor Manufacturing Co., Ltd. Formation of devices by epitaxial layer overgrowth
9935102, Oct 05 2016 International Business Machines Corporation Method and structure for improving vertical transistor
9984872, Sep 19 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication and structures of crystalline material
Patent Priority Assignee Title
5757038, Nov 06 1995 International Business Machines Corporation Self-aligned dual gate MOSFET with an ultranarrow channel
6300182, Dec 11 2000 Advanced Micro Devices, Inc. Field effect transistor having dual gates with asymmetrical doping for reduced threshold voltage
6458662, Apr 04 2001 GLOBALFOUNDRIES U S INC Method of fabricating a semiconductor device having an asymmetrical dual-gate silicon-germanium (SiGe) channel MOSFET and a device thereby formed
6472258, Nov 13 2000 International Business Machines Corporation Double gate trench transistor
6475869, Feb 26 2001 GLOBALFOUNDRIES U S INC Method of forming a double gate transistor having an epitaxial silicon/germanium channel region
6583469, Jan 28 2002 GLOBALFOUNDRIES U S INC Self-aligned dog-bone structure for FinFET applications and methods to fabricate the same
6630388, Mar 13 2001 National Institute of Advanced Industrial Science and Technology Double-gate field-effect transistor, integrated circuit using the transistor and method of manufacturing the same
6642090, Jun 03 2002 GLOBALFOUNDRIES U S INC Fin FET devices from bulk semiconductor and method for forming
6645797, Dec 06 2002 GLOBALFOUNDRIES U S INC Method for forming fins in a FinFET device using sacrificial carbon layer
6657252, Mar 19 2002 GLOBALFOUNDRIES U S INC FinFET CMOS with NVRAM capability
6657259, Dec 04 2001 GLOBALFOUNDRIES U S INC Multiple-plane FinFET CMOS
6706571, Oct 22 2002 GLOBALFOUNDRIES U S INC Method for forming multiple structures in a semiconductor device
6709982, Nov 26 2002 GLOBALFOUNDRIES U S INC Double spacer FinFET formation
6750487, Apr 11 2002 GLOBALFOUNDRIES U S INC Dual double gate transistor
6768158, Sep 04 2001 SMARTISM CO , LTD Flash memory element and manufacturing method thereof
20020130354,
20020140039,
20030042531,
20040048424,
EP1202335,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 23 2004Advanced Micro Devices, INC(assignment on the face of the patent)
Jun 30 2009Advanced Micro Devices, INCGLOBALFOUNDRIES IncAFFIRMATION OF PATENT ASSIGNMENT0231190083 pdf
Nov 27 2018GLOBALFOUNDRIES IncWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY AGREEMENT0494900001 pdf
Oct 22 2020GLOBALFOUNDRIES IncGLOBALFOUNDRIES U S INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0546330001 pdf
Nov 17 2020WILMINGTON TRUST, NATIONAL ASSOCIATIONGLOBALFOUNDRIES U S INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0569870001 pdf
Nov 17 2020WILMINGTON TRUST, NATIONAL ASSOCIATIONGLOBALFOUNDRIES IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0546360001 pdf
Date Maintenance Fee Events
May 18 2005ASPN: Payor Number Assigned.
Sep 30 2008M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 27 2012M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 12 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 26 20084 years fee payment window open
Jan 26 20096 months grace period start (w surcharge)
Jul 26 2009patent expiry (for year 4)
Jul 26 20112 years to revive unintentionally abandoned end. (for year 4)
Jul 26 20128 years fee payment window open
Jan 26 20136 months grace period start (w surcharge)
Jul 26 2013patent expiry (for year 8)
Jul 26 20152 years to revive unintentionally abandoned end. (for year 8)
Jul 26 201612 years fee payment window open
Jan 26 20176 months grace period start (w surcharge)
Jul 26 2017patent expiry (for year 12)
Jul 26 20192 years to revive unintentionally abandoned end. (for year 12)