A gate oxide and method of fabricating a gate oxide that produces a more reliable and thinner equivalent oxide thickness than conventional SiO2 gate oxides are provided. gate oxides formed from yttrium, silicon, and oxygen are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. The process shown is performed at lower temperatures than the prior art, which inhibits unwanted species migration and unwanted reactions with the silicon substrate or other structures. Using a thermal evaporation technique to deposit the layer to be oxidized, the underlying substrate surface smoothness is preserved, thus providing improved and more consistent electrical properties in the resulting gate oxide.
|
16. A transistor formed by the process, comprising:
forming a body region coupled between a first source/drain region and a second source/drain region;
forming a gate oxide on the body region, including:
evaporation depositing a metal on the body region;
evaporation depositing a metal oxide on the body region; and
coupling a gate to the gate oxide layer.
1. A transistor, comprising:
a first and second source/drain region;
a body region located between the first and second source/drain regions, wherein a surface portion of the body region has a surface roughness of approximately 0.6 nm or less;
a yttrium-silicon-oxide layer coupled to the surface portion of the body region; and
a gate coupled to the yttrium-silicon-oxide layer.
6. A memory array, comprising:
a number of access transistors, comprising:
a first and second source/drain region;
a body region located between the first and second source/drain regions, wherein a surface portion of the body region has a surface roughness of approximately 0.6 nm or less;
a yttrium-silicon-oxide layer coupled to the surface portion of the body region; and
a gate coupled to the yttrium-silicon-oxide layer;
a number of wordlines coupled to a number of the gates of the number of access transistors;
a number of sourcelines coupled to a number of the first source/drain regions of the number of access transistors; and
a number of bitlines coupled to a number of the second source/drain regions of the number of access transistors.
11. An information handling device, comprising:
a processor;
a memory array, comprising:
a number of access transistors, comprising:
a first and second source/drain region;
a body region located between the first and second source/drain regions, wherein a surface portion of the body region has a surface roughness of approximately 0.6 nm or less;
a yttrium-silicon-oxide layer coupled to the surface portion of the body region; and
a gate coupled to the yttrium-silicon-oxide layer;
a number of wordlines coupled to a number of the gates of the number of access transistors;
a number of sourcelines coupled to a number of the first source/drain regions of the number of access transistors;
a number of bitlines coupled to a number of the second source/drain regions of the number of access transistors; and
a system bus coupling the processor to the memory device.
2. The transistor of
3. The transistor of
5. The transistor of
7. The memory array of
8. The memory array of
10. The memory array of
12. The information handling device of
13. The information handling device of
14. The information handling device of
15. The information handling device of
17. The transistor of
18. The transistor of
19. The transistor of
|
This application is a divisional of U.S. application Ser. No. 10/099,194 filed Mar. 13, 2002 now U.S. Pat. No. 6,812,100 which is incorporated herein by reference.
The invention relates to semiconductor devices and device fabrication. Specifically, the invention relates to gate oxide layers of transistor devices and their method of fabrication.
In the semiconductor device industry, particularly in the fabrication of transistors, there is continuous pressure to reduce the size of devices such as transistors. The ultimate goal is to fabricate increasingly smaller and more reliable integrated circuits (ICs) for use in products such as processor chips, mobile telephones, or memory devices such as DRAMs. The smaller devices are frequently powered by batteries, where there is also pressure to reduce the size of the batteries, and to extend the time between battery charges. This forces the industry to not only design smaller transistors, but to design them to operate reliably with lower power supplies.
A common configuration of a transistor is shown in FIG. 1. While the following discussion uses
In fabricating transistors to be smaller in size and reliably operating on lower power supplies, one important design criteria is the gate oxide 140. A gate oxide 140, when operating in a transistor, has both a physical gate oxide thickness and an equivalent oxide thickness (EOT). The equivalent oxide thickness quantifies the electrical properties, such as capacitance, of a gate oxide 140 in terms of a representative physical thickness. EOT is defined as the thickness of a theoretical SiO2 layer that describes the actual electrical operating characteristics of the gate oxide 140 in the transistor 100. For example, in traditional SiO2 gate oxides, a physical oxide thickness may be 5.0 nm, but due to undesirable electrical effects such as gate depletion, the EOT may be 6.0 nm. A gate oxide other than SiO2 may also be described electrically in terms of an EOT. In this case, the theoretical oxide referred to in the EOT number is an equivalent SiO2 oxide layer. For example, SiO2 has a dielectric constant of approximately 4. An alternate oxide with a dielectric constant of 20 and a physical thickness of 100 nm would have an EOT of approximately 20 nm=(100*(4/20)), which represents a theoretical SiO2 gate oxide.
Lower transistor operating voltages and smaller transistors require thinner equivalent oxide thicknesses (EOTs). A problem with the increasing pressure of smaller transistors and lower operating voltages is that gate oxides fabricated from SiO2 are at their limit with regards to physical thickness and EOT. Attempts to fabricate SiO2 gate oxides thinner than today's physical thicknesses show that these gate oxides no longer have acceptable electrical properties. As a result, the EOT of a SiO2 gate oxide 140 can no longer be reduced by merely reducing the physical gate oxide thickness.
Attempts to solve this problem have led to interest in gate oxides made from oxide materials other than SiO2. Certain alternate oxides have a higher dielectric constant (k), which allows the physical thickness of a gate oxide 140 to be the same as existing SiO2 limits or thicker, but provides an EOT that is thinner than current SiO2 limits.
A problem that arises in forming an alternate oxide layer on the body region of a transistor is the process in which the alternate oxide is formed on the body region. Recent studies show that the surface roughness of the body region has a large effect on the electrical properties of the gate oxide, and the resulting operating characteristics of the transistor. The leakage current through a physical 1.0 nm gate oxide increases by a factor of 10 for every 0.1 increase in the root-mean-square (RMS) roughness. In forming an alternate oxide layer on the body region of a transistor, a thin layer of the alternate material to be oxidized (typically a metal) must first be deposited on the body region. Current processes for depositing a metal or other alternate layer on the body region of a transistor are unacceptable due to their effect on the surface roughness of the body region.
In a typical process of forming an alternate material gate oxide, the deposited layer 250 is oxidized to convert the layer 250 to an oxide material. Existing oxidation processes do not, however, repair the surface damage created by existing deposition methods such as sputtering. As described above, surface roughness has a large influence on the electrical properties of the gate oxide and the resulting transistor.
What is needed is an alternate material gate oxide that is more reliable at existing EOTs than current gate oxides. What is also needed is an alternate material gate oxide with an EOT thinner than conventional SiO2. What is also needed is an alternative material gate oxide with a smooth interface between the gate oxide and the body region. Because existing methods of deposition are not capable of providing a smooth interface with an alternate material gate oxide, what is further needed is a method of forming an alternate material gate oxide that maintains a smooth interface.
Additionally, at higher process temperatures, any of several materials used to fabricate the transistor, such as silicon, can react with other materials such as metals or oxygen to form unwanted silicides or oxides. At high process temperatures, materials such as dopants can also migrate to unwanted areas, changing the desired structure or composition profile that is desired. What is needed is a lower temperature process of forming gate oxides that prevents migration and the formation of unwanted byproduct materials.
A method of forming a gate oxide on a surface such as a transistor body region is shown. The method includes evaporation depositing a metal on the body region and additionally evaporation depositing a metal oxide on the body region. In one embodiment of the invention, the metal includes yttrium, and the metal oxide includes silicon dioxide (SiO2). In one embodiment, the metal and the metal oxide are evaporated concurrently in a single processing step.
In addition to the novel process of forming a gate oxide layer, a transistor formed by the novel process exhibits novel features that may only be formed by the novel process. Evaporation deposition of a metal, and further evaporation deposition of a metal oxide onto a body region of a transistor preserves an original smooth surface roughness of the body region in contrast to other prior deposition methods that increase surface roughness. When yttrium and silicon oxide starting materials are included, the resulting transistor fabricated with the process of this invention will exhibit a gate oxide/body region interface with a surface roughness variation as low as 0.6 nm. An equivalent oxide thickness (EOT) of less than 2 nm can be formed using the novel process described. The resulting transistor fabricated with the process of this invention further allows a gate oxide purity of 99.9999% or greater. The resulting transistor fabricated with the process of this invention further allows a yttrium-silicon oxide layer to be formed in direct interfacial contact with the body region.
These and other embodiments, aspects, advantages, and features of the present invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims.
In the following detailed description of the invention, reference is made to the accompanying drawings which form a part hereof, and in which is shown, by way of illustration, specific embodiments in which the invention may be practiced. In the drawings, like numerals describe substantially similar components throughout the several views. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments may be utilized and structural, logical, and electrical changes may be made without departing from the scope of the present invention. The terms wafer and substrate used in the following description include any structure having an exposed surface with which to form the integrated circuit (IC) structure of the invention. The term substrate is understood to include semiconductor wafers. The term substrate is also used to refer to semiconductor structures during processing, and may include other layers that have been fabricated thereupon. Both wafer and substrate include doped and undoped semiconductors, epitaxial semiconductor layers supported by a base semiconductor or insulator, as well as other semiconductor structures well known to one skilled in the art. The term conductor is understood to include semiconductors, and the term insulator or dielectric is defined to include any material that is less electrically conductive than the materials referred to as conductors.
The term “horizontal” as used in this application is defined as a plane parallel to the conventional plane or surface of a wafer or substrate, regardless of the orientation of the wafer or substrate. The term “vertical” refers to a direction perpendicular to the horizonal as defined above. Prepositions, such as “on”, “side” (as in “sidewall”), “higher”, “lower”, “over” and “under” are defined with respect to the conventional plane or surface being on the top surface of the wafer or substrate, regardless of the orientation of the wafer or substrate. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.
Also located within the deposition chamber 300 is a first electron beam source 330, a first target 332, a second electron beam source 334, and a second target 336. The multiple target configuration shown allows for compositional tuning of a number of components of the deposited material. For example, in one embodiment adjustments are available for the first target 332 evaporation rate and the second target 336 evaporation rate. The rates can be adjusted separately, allowing greater flexibility in tuning a composition of a product film 320. Although a multiple target configuration is shown in
Additionally, in one embodiment, a leak valve 340 is included in the evaporation chamber 300. The leak valve 340 in one embodiment is connected to a source gas 342 such as oxygen. The leak valve 340 provides another possible variable for use in tuning the composition of the product film 320.
In one embodiment, the first target 332 is a single element target, and the second target is a compound target. One skilled in the art, after reading the present specification will recognize that several compositions, including single element, dual element compound, or multiple element compound are possible for use in either the first target 332, the second target 336, or both targets.
Although in this embodiment, an electron beam evaporation technique is used, it will be apparent to one skilled in the art that other thermal evaporation techniques can be used without departing from the scope of the invention.
During the evaporation process, the first electron beam source 330 generates a first electron beam 331. The first electron beam 331 hits the first target 332 and heats a portion of the first target 332 enough to cause the surface of the target to evaporate. The evaporated material 333 is then distributed throughout the chamber 300, and the material 333 deposits on surfaces that it contacts, such as the exposed body region 316. The depositing material 333 forms a portion of a composition in the product film 320. The portion of the product film 320 being supplied by the first target 332 is chemically substantially the same as the target 332.
In one embodiment, a target material includes a metal oxide. When some metal oxides are evaporated, the oxygen composition ratio in the product film 320 varies from the target oxygen composition ratio. The leak valve 340 may be used to adjust a variable such as oxygen composition during evaporation deposition. In this way, the oxygen composition ratio can either be adjusted back to the target oxygen composition ratio, or the oxygen composition in the product film 320 may be further varied to a new desired composition ratio.
Also during the evaporation process, the second electron beam source 334 generates a second electron beam 335. The second electron beam 335 hits the second target 336 and heats a portion of the second target 336 enough to cause the surface of the target to evaporate. The evaporated material 337 is then distributed throughout the chamber 300, and the material 337 deposits on surfaces that it contacts, such as the exposed body region 316. The depositing material 337 also forms a portion of a composition in the product film 320. The portion of the product film 320 being supplied by the second target 336 is chemically substantially the same as the target 336.
In one embodiment, the evaporation process is performed at a background pressure of approximately 1×10−7 torr. In one embodiment targets are preheated for several minutes before the evaporation process begins. One typical evaporation rate for this process includes a rate of 1 to 10 nm/second. A device such as a quartz crystal microbalance is used to assist monitoring of the deposition process in one embodiment.
In one embodiment of the invention, the product film 320 includes multiple metals. In one embodiment of the invention, the product film 320 includes yttrium (Y) and silicon (Si). In one embodiment of the invention, the first target 330 is a single element yttrium metal target, and the second target 334 is a compound target of silicon dioxide (SiO2). One advantage of the thermal evaporation process is the high purity targets that are available for the process. Zone refined targets have purity as high as 99.9999%. Additionally, the evaporation process itself further purifies the target materials thus increasing the final purity of the film 320 beyond even the target purity. The more violent nature of other deposition methods such as sputtering tends to mix impurities into the deposited layer during deposition. Therefore a uniquely pure product film 320 is possible using this novel method.
The deposition process described is capable of forming multiple element product films 320 in a single processing step. This saves manufacturing resources and time. The deposition process described is further capable of forming a metal oxide without consuming the surface or substrate 310 that the film 320 is deposited on.
The choice of materials for oxidation is based on the properties of the oxide formed. Considerations included the thermodynamic stability of the oxide with silicon, the diffusion coefficient of the oxide at high processing temperatures such as 1000° K, the lattice match of the oxide with silicon, the dielectric constant of the oxide, and the conduction band offset of the oxide.
Many high-k materials such as Ta2O5, TiO2, and SrTiO3 are not thermally stable when directly in contact with silicon. These materials need a diffusion barrier which not only adds process complexity, but also defeats the purpose of using the high-k dielectric. Also materials having too high or too low a dielectric constant (k) may not be appropriate. Ultra high-k materials such as SrTiO3 cause fringing field induced barrier lowering effects. On the other hand, low dielectric constant (k) materials such as Al2O3 do not significantly improve the equivalent oxide thickness (EOT). Where as in the present invention, product films composed of yttrium-silicon-oxide exhibit a medium dielectric constant of approximately 14.
In one embodiment, the dielectric constant of the product film 320 is approximately 14, which is approximately 3.5 times the dielectric constant of SiO2. In one embodiment, the product film 320 is substantially amorphous. A lower presence of grain boundaries in the substantially amorphous material layer 320 reduces the leakage current through the final gate oxide. Although the amorphous form is preferred, the product film is also acceptable with some percentage of crystalline form.
A thermal evaporation process such as the electron beam evaporation technique described above does not cause the surface damage that is inherent in other deposition techniques such as the sputtering technique shown in FIG. 2B. This allows a very thin layer of material to be deposited on a body region of a transistor, while maintaining a smooth interface. A thermal evaporation process such as the electron beam evaporation technique described above also allows low processing temperatures that inhibit the formation of unwanted byproducts such as silicides and oxides. In one embodiment, the thermal evaporation is performed with a substrate temperature between approximately 100 and 150° C.
As stated above, the yttrium-silicon-oxide exhibits a dielectric constant of approximately 14, which allows for a thinner EOT than conventional SiO2. In addition to the stable thermodynamic properties inherent in the oxides chosen, the novel process used to form the product layer 320 is performed at lower temperatures than the prior art. This inhibits reactions with the silicon substrate or other structures, and inhibits unwanted migration of elements such as dopants. In the manufacturing process of one embodiment, no subsequent oxidation steps are required after evaporation deposition.
A transistor made using the novel gate oxide process described above will possess several novel features. By creating an oxide material with a higher dielectric constant (k) and controlling surface roughness during formation, a gate oxide can be formed with an EOT thinner than 2 nm. A thicker gate oxide that is more uniform, and easier to process can also be formed with the alternate material oxide of the present invention, the alternate material gate oxide possessing an EOT equivalent to the current limits of SiO2 gate oxides. The smooth surface of the body region is preserved during processing, and a resulting transistor will have a smooth interface between the body region and the gate oxide with a surface roughness on the order of 0.6 nm.
Transistors created by the methods described above may be implemented into memory devices and information handling devices as shown in
A personal computer, as shown in
Microprocessor 606 produces control and address signals to control the exchange of data between memory bus circuit 608 and microprocessor 606 and between memory bus circuit 608 and peripheral circuitry 610. This exchange of data is accomplished over high speed memory bus 620 and over high speed I/O bus 622.
Coupled to memory bus 620 are a plurality of memory slots 612(a-n) which receive memory devices well known to those skilled in the art. For example, single in-line memory modules (SIMMs) and dual in-line memory modules (DIMMs) may be used in the implementation of the present invention.
These memory devices can be produced in a variety of designs which provide different methods of reading from and writing to the dynamic memory cells of memory slots 612. One such method is the page mode operation. Page mode operations in a DRAM are defined by the method of accessing a row of a memory cell arrays and randomly accessing different columns of the array. Data stored at the row and column intersection can be read and output while that column is accessed. Page mode DRAMs require access steps which limit the communication speed of memory circuit 608. A typical communication speed for a DRAM device using page mode is approximately 33 MHZ.
An alternate type of device is the extended data output (EDO) memory which allows data stored at a memory array address to be available as output after the addressed column has been closed. This memory can increase some communication speeds by allowing shorter access signals without reducing the time in which memory output data is available on memory bus 620. Other alternative types of devices include SDRAM, DDR SDRAM, SLDRAM and Direct RDRAM as well as others such as SRAM or Flash memories.
Control, address and data information provided over memory bus 620 is further represented by individual inputs to DRAM 700, as shown in FIG. 7. These individual representations are illustrated by data lines 702, address lines 704 and various discrete lines directed to control logic 706.
As is well known in the art, DRAM 700 includes memory array 710 which in turn comprises rows and columns of addressable memory cells. Each memory cell in a row is coupled to a common wordline. Additionally, each memory cell in a column is coupled to a common bitline. Each cell in memory array 710 includes a storage capacitor and an access transistor as is conventional in the art.
DRAM 700 interfaces with, for example, microprocessor 606 through address lines 704 and data lines 702. Alternatively, DRAM 700 may interface with a DRAM controller, a micro-controller, a chip set or other electronic system. Microprocessor 606 also provides a number of control signals to DRAM 700, including but not limited to, row and column address strobe signals RAS and CAS, write enable signal WE, an output enable signal OE and other conventional control signals.
Row address buffer 712 and row decoder 714 receive and decode row addresses from row address signals provided on address lines 704 by microprocessor 606. Each unique row address corresponds to a row of cells in memory array 710. Row decoder 714 includes a wordline driver, an address decoder tree, and circuitry which translates a given row address received from row address buffers 712 and selectively activates the appropriate wordline of memory array 710 via the wordline drivers.
Column address buffer 716 and column decoder 718 receive and decode column address signals provided on address lines 704. Column decoder 718 also determines when a column is defective and the address of a replacement column. Column decoder 718 is coupled to sense amplifiers 720. Sense amplifiers 720 are coupled to complementary pairs of bitlines of memory array 710.
Sense amplifiers 720 are coupled to data-in buffer 722 and data-out buffer 724. Data-in buffers 722 and data-out buffers 724 are coupled to data lines 702. During a write operation, data lines 702 provide data to data-in buffer 722. Sense amplifier 720 receives data from data-in buffer 722 and stores the data in memory array 710 as a charge on a capacitor of a cell at an address specified on address lines 704.
During a read operation, DRAM 700 transfers data to microprocessor 606 from memory array 710. Complementary bitlines for the accessed cell are equilibrated during a precharge operation to a reference voltage provided by an equilibration circuit and a reference voltage supply. The charge stored in the accessed cell is then shared with the associated bitlines. A sense amplifier of sense amplifiers 720 detects and amplifies a difference in voltage between the complementary bitlines. The sense amplifier passes the amplified voltage to data-out buffer 724.
Control logic 706 is used to control the many available functions of DRAM 700. In addition, various control circuits and signals not detailed herein initiate and synchronize DRAM 700 operation as known to those skilled in the art. As stated above, the description of DRAM 700 has been simplified for purposes of illustrating the present invention and is not intended to be a complete description of all the features of a DRAM.
Those skilled in the art will recognize that a wide variety of memory devices, including but not limited to, SDRAMs, SLDRAMs, RDRAMs and other DRAMs and SRAMs, VRAMs and EEPROMs, may be used in the implementation of the present invention. The DRAM implementation described herein is illustrative only and not intended to be exclusive or limiting.
Thus has been shown a gate oxide and method of fabricating a gate oxide that produce a more reliable and thinner equivalent oxide thickness. Gate oxides formed from yttrium, silicon and oxygen are thermodynamically stable such that the gate oxides formed will have minimal reactions with a silicon substrate or other structures during any later high temperature processing stages. In addition to the stable thermodynamic properties inherent in the gate oxide of the invention, the process shown is performed at lower temperatures than the prior art. This inhibits reactions with the silicon substrate or other structures, and inhibits unwanted migration of elements such as dopants.
Transistors and higher level ICs or devices have been shown utilizing the novel gate oxide and process of formation. The higher dielectric constant (k) oxide materials shown in one embodiment are formed with an EOT thinner than 2 nm, e.g. thinner than possible with conventional SiO2 gate oxides. A thicker gate oxide that is more uniform, and easier to process has also been shown with at EOT equivalent to the current limits of SiO2 gate oxides.
A novel process of forming a gate oxide has been shown where the surface smoothness of the body region is preserved during processing, and the resulting transistor has a smooth interface between the body region and the gate oxide with a surface roughness on the order of 0.6 nm. This solves the prior art problem of poor electrical properties such as high leakage current, created by unacceptable surface roughness.
Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiment shown. This application is intended to cover any adaptations or variations of the present invention. It is to be understood that the above description is intended to be illustrative, and not restrictive. Combinations of the above embodiments, and other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention includes any other applications in which the above structures and fabrication methods are used. The scope of the invention should be determined with reference to the appended claims, along with the fill scope of equivalents to which such claims are entitled.
Patent | Priority | Assignee | Title |
7026694, | Aug 15 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide doped TiOx dielectric films by plasma oxidation |
7084078, | Aug 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposited lanthanide doped TiOx dielectric films |
7129553, | Jun 24 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide oxide/hafnium oxide dielectrics |
7135421, | Jun 05 2002 | Micron Technology, Inc. | Atomic layer-deposited hafnium aluminum oxide |
7169673, | Jul 30 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposited nanolaminates of HfO2/ZrO2 films as gate dielectrics |
7183186, | Apr 22 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposited ZrTiO4 films |
7192824, | Jun 24 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide oxide / hafnium oxide dielectric layers |
7192892, | Mar 04 2003 | Round Rock Research, LLC | Atomic layer deposited dielectric layers |
7199023, | Aug 28 2002 | Round Rock Research, LLC | Atomic layer deposited HfSiON dielectric films wherein each precursor is independendently pulsed |
7205218, | Jun 05 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method including forming gate dielectrics having multiple lanthanide oxide layers |
7235854, | Aug 15 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide doped TiOx dielectric films |
7259434, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Highly reliable amorphous high-k gate oxide ZrO2 |
7312494, | Jun 24 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide oxide / hafnium oxide dielectric layers |
7326980, | Aug 28 2002 | Round Rock Research, LLC | Devices with HfSiON dielectric films which are Hf-O rich |
7365027, | Mar 29 2005 | Micron Technology, Inc. | ALD of amorphous lanthanide doped TiOx films |
7388246, | Aug 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide doped TiOx dielectric films |
7402876, | Dec 04 2002 | Micron Technology, Inc. | Zr— Sn—Ti—O films |
7405454, | Mar 04 2003 | Round Rock Research, LLC | Electronic apparatus with deposited dielectric layers |
7410668, | Mar 01 2001 | Micron Technology, Inc. | Methods, systems, and apparatus for uniform chemical-vapor depositions |
7410910, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanum aluminum oxynitride dielectric films |
7410917, | Dec 04 2002 | Micron Technology, Inc. | Atomic layer deposited Zr-Sn-Ti-O films using TiI4 |
7439194, | Aug 15 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide doped TiOx dielectric films by plasma oxidation |
7446368, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Deposition of metal oxide and/or low asymmetrical tunnel barrier interpoly insulators |
7476925, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposition of metal oxide and/or low asymmetrical tunnel barrier interploy insulators |
7511326, | Mar 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | ALD of amorphous lanthanide doped TiOx films |
7531869, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanum aluminum oxynitride dielectric films |
7554161, | Jun 05 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | HfAlO3 films for gate dielectrics |
7560395, | Jan 05 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposited hafnium tantalum oxide dielectrics |
7560793, | May 02 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposition and conversion |
7563730, | Aug 31 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium lanthanide oxynitride films |
7572695, | May 27 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium titanium oxide films |
7588988, | Aug 31 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of forming apparatus having oxide films formed using atomic layer deposition |
7589029, | May 02 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposition and conversion |
7601649, | Aug 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zirconium-doped tantalum oxide films |
7602030, | Jan 05 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium tantalum oxide dielectrics |
7611959, | Dec 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zr-Sn-Ti-O films |
7625794, | Mar 31 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming zirconium aluminum oxide |
7662729, | Apr 28 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposition of a ruthenium layer to a lanthanide oxide dielectric layer |
7670646, | May 02 2002 | Micron Technology, Inc. | Methods for atomic-layer deposition |
7687409, | Mar 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Atomic layer deposited titanium silicon oxide films |
7700989, | May 27 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium titanium oxide films |
7709402, | Feb 16 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Conductive layers for hafnium silicon oxynitride films |
7719065, | Aug 26 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Ruthenium layer for a dielectric layer containing a lanthanide oxide |
7727905, | Aug 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zirconium-doped tantalum oxide films |
7728392, | Jan 03 2008 | GLOBALFOUNDRIES Inc | SRAM device structure including same band gap transistors having gate stacks with high-K dielectrics and same work function |
7776762, | Aug 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zirconium-doped tantalum oxide films |
7863667, | Apr 22 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zirconium titanium oxide films |
7867919, | Aug 31 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating an apparatus having a lanthanum-metal oxide dielectric layer |
7869242, | Jul 30 1999 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Transmission lines for CMOS integrated circuits |
7989362, | Aug 31 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium lanthanide oxynitride films |
8026161, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Highly reliable amorphous high-K gate oxide ZrO2 |
8067794, | Feb 16 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Conductive layers for hafnium silicon oxynitride films |
8076249, | Mar 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Structures containing titanium silicon oxide |
8093638, | Jun 05 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Systems with a gate dielectric having multiple lanthanide oxide layers |
8102013, | Mar 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Lanthanide doped TiOx films |
8110469, | Aug 30 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Graded dielectric layers |
8125038, | Jul 30 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Nanolaminates of hafnium oxide and zirconium oxide |
8154066, | Aug 31 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Titanium aluminum oxide films |
8237216, | Aug 31 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus having a lanthanum-metal oxide semiconductor device |
8278225, | Jan 05 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium tantalum oxide dielectrics |
8288809, | Aug 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zirconium-doped tantalum oxide films |
8399365, | Mar 29 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming titanium silicon oxide |
8445952, | Dec 04 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zr-Sn-Ti-O films |
8471254, | Dec 27 2005 | Hana Microdisplay Technologies, Inc. | Liquid crystal cells with uniform cell gap and methods of manufacture |
8501563, | Jul 20 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Devices with nanocrystals and methods of formation |
8524618, | Jan 05 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Hafnium tantalum oxide dielectrics |
8541276, | Aug 31 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming an insulating metal oxide |
8558325, | Aug 26 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Ruthenium for a dielectric containing a lanthanide |
8652957, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High-K gate dielectric oxide |
8765616, | Aug 02 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Zirconium-doped tantalum oxide films |
8785312, | Feb 16 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Conductive layers for hafnium silicon oxynitride |
8907486, | Aug 26 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Ruthenium for a dielectric containing a lanthanide |
8921914, | Jul 20 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Devices with nanocrystals and methods of formation |
8951903, | Aug 30 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Graded dielectric structures |
9627501, | Aug 30 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Graded dielectric structures |
Patent | Priority | Assignee | Title |
3381114, | |||
4215156, | Aug 26 1977 | International Business Machines Corporation | Method for fabricating tantalum semiconductor contacts |
4333808, | Oct 30 1979 | International Business Machines Corporation | Method for manufacture of ultra-thin film capacitor |
4394673, | Sep 29 1980 | International Business Machines Corporation | Rare earth silicide Schottky barriers |
4399424, | Oct 07 1980 | ITT Industries, Inc. | Gas sensor |
4413022, | Feb 28 1979 | PLANAR INTERNATIONAL OY A CORP OF FINLAND | Method for performing growth of compound thin films |
4590042, | Dec 24 1984 | MOTOROLA, INC , A DE CORP | Plasma reactor having slotted manifold |
4647947, | Mar 15 1982 | Tokyo Shibaura Denki Kabushiki Kaisha | Optical protuberant bubble recording medium |
4767641, | Mar 04 1986 | Leybold Aktiengesellschaft | Plasma treatment apparatus |
4920071, | Mar 15 1985 | National Semiconductor Corporation | High temperature interconnect system for an integrated circuit |
4993358, | Jul 28 1989 | AVIZA TECHNOLOGY, INC | Chemical vapor deposition reactor and method of operation |
5006192, | Jun 28 1988 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for producing semiconductor devices |
5055319, | Apr 02 1990 | REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, A CORP OF CA | Controlled high rate deposition of metal oxide films |
5080928, | Oct 05 1990 | OSRAM SYLVANIA Inc | Method for making moisture insensitive zinc sulfide based luminescent materials |
5595606, | Apr 20 1995 | Tokyo Electron Limited | Shower head and film forming apparatus using the same |
5621681, | Mar 22 1995 | SAMSUNG ELECTRONICS CO , LTD | Device and manufacturing method for a ferroelectric memory |
5698022, | Aug 14 1996 | Advanced Technology Materials, Inc.; Advanced Technology Materials, Inc | Lanthanide/phosphorus precursor compositions for MOCVD of lanthanide/phosphorus oxide films |
5735960, | Apr 02 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Apparatus and method to increase gas residence time in a reactor |
5744374, | Mar 22 1995 | Samsung Electronics Co., Ltd. | Device and manufacturing method for a ferroelectric memory |
5795808, | Nov 13 1995 | Hyundai Electronics Industries C., Ltd. | Method for forming shallow junction for semiconductor device |
5801105, | Aug 04 1995 | TDK Corporation | Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film |
5810923, | Aug 17 1994 | TDK Corporation | Method for forming oxide thin film and the treatment of silicon substrate |
5822256, | Sep 06 1994 | Intel Corporation | Method and circuitry for usage of partially functional nonvolatile memory |
5828080, | Aug 17 1994 | TDK Corporation | Oxide thin film, electronic device substrate and electronic device |
5840897, | Jul 06 1990 | Entegris, Inc | Metal complex source reagents for chemical vapor deposition |
5916365, | Aug 16 1996 | ASM INTERNATIONAL N V | Sequential chemical vapor deposition |
5950925, | Oct 11 1996 | Ebara Corporation | Reactant gas ejector head |
5972847, | Jan 28 1998 | Lockheed Martin Energy Research Corporation | Method for making high-critical-current-density YBa2 Cu3 O7 superconducting layers on metallic substrates |
6013553, | Jul 24 1997 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
6020024, | Aug 04 1997 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for forming high dielectric constant metal oxides |
6027961, | Jun 30 1998 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | CMOS semiconductor devices and method of formation |
6057271, | Dec 22 1989 | Sumitomo Electric Industries, Ltd. | Method of making a superconducting microwave component by off-axis sputtering |
6059885, | Dec 19 1996 | GLOBALWAFERS JAPAN CO , LTD | Vapor deposition apparatus and method for forming thin film |
6093944, | Jun 04 1998 | Bell Semiconductor, LLC | Dielectric materials of amorphous compositions of TI-O2 doped with rare earth elements and devices employing same |
6110529, | Jul 06 1990 | Entegris, Inc | Method of forming metal films on a substrate by chemical vapor deposition |
6161500, | Sep 30 1997 | Tokyo Electron Limited | Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions |
6171900, | Apr 15 1999 | Taiwan Semiconductor Manufacturing Company | CVD Ta2O5/oxynitride stacked gate insulator with TiN gate electrode for sub-quarter micron MOSFET |
6203613, | Oct 19 1999 | International Business Machines Corporation | Atomic layer deposition with nitrate containing precursors |
6206972, | Jul 08 1999 | EUGENUS, INC | Method and apparatus for providing uniform gas delivery to substrates in CVD and PECVD processes |
6207589, | Jul 19 1999 | Sharp Laboratories of America, Inc. | Method of forming a doped metal oxide dielectric film |
6211035, | Sep 09 1998 | Texas Instruments Incorporated | Integrated circuit and method |
6225168, | Jun 04 1998 | GLOBALFOUNDRIES Inc | Semiconductor device having metal gate electrode and titanium or tantalum nitride gate dielectric barrier layer and process of fabrication thereof |
6232847, | Apr 28 1997 | Skyworks Solutions, Inc | Trimmable singleband and tunable multiband integrated oscillator using micro-electromechanical system (MEMS) technology |
6281144, | Sep 26 1997 | Novellus Systems, Inc. | Exclusion of polymer film from semiconductor wafer edge and backside during film (CVD) deposition |
6291866, | Jul 24 1997 | Texas Instruments Incorporated | Zirconium and/or hafnium oxynitride gate dielectric |
6297516, | Nov 24 1997 | The Trustees of Princeton University | Method for deposition and patterning of organic thin film |
6297539, | Feb 29 2000 | Sharp Kabushiki Kaisha | Doped zirconia, or zirconia-like, dielectric film transistor structure and deposition method for same |
6302964, | Jun 16 1998 | Applied Materials, Inc | One-piece dual gas faceplate for a showerhead in a semiconductor wafer processing system |
6303481, | Dec 29 1999 | Hyundai Electronics Industries Co., Ltd. | Method for forming a gate insulating film for semiconductor devices |
6348386, | Apr 16 2001 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for making a hafnium-based insulating film |
6368941, | Nov 08 2000 | United Microelectronics Corp. | Fabrication of a shallow trench isolation by plasma oxidation |
6380579, | Apr 12 1999 | Samsung Electronics Co., Ltd. | Capacitor of semiconductor device |
6387712, | Jun 26 1996 | TDK Corporation | Process for preparing ferroelectric thin films |
6391769, | Aug 19 1998 | Samsung Electronics Co., Ltd. | Method for forming metal interconnection in semiconductor device and interconnection structure fabricated thereby |
6420279, | Jun 28 2001 | Sharp Kabushiki Kaisha | Methods of using atomic layer deposition to deposit a high dielectric constant material on a substrate |
6432779, | May 18 2000 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Selective removal of a metal oxide dielectric |
6444039, | Mar 07 2000 | Lam Research Corporation | Three-dimensional showerhead apparatus |
6444895, | Sep 28 1998 | NEC Electronics Corporation | Device and method for nondestructive inspection on semiconductor device |
6445023, | Mar 16 1999 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Mixed metal nitride and boride barrier layers |
6448192, | Apr 16 2001 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for forming a high dielectric constant material |
6451641, | Feb 27 2002 | GLOBALFOUNDRIES U S INC | Non-reducing process for deposition of polysilicon gate electrode over high-K gate dielectric material |
6451695, | Mar 11 1999 | AIXTRON, INC | Radical-assisted sequential CVD |
6458701, | Oct 20 1999 | Samsung Electronics Co., Ltd. | Method for forming metal layer of semiconductor device using metal halide gas |
6465334, | Oct 05 2000 | GLOBALFOUNDRIES U S INC | Enhanced electroless deposition of dielectric precursor materials for use in in-laid gate MOS transistors |
6482740, | May 15 2000 | ASM INTERNATIONAL N V | Method of growing electrical conductors by reducing metal oxide film with organic compound containing -OH, -CHO, or -COOH |
6495436, | Feb 09 2001 | Micron Technology, Inc. | Formation of metal oxide gate dielectric |
6514828, | Apr 20 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of fabricating a highly reliable gate oxide |
6521911, | Jul 20 2000 | North Carolina State University | High dielectric constant metal silicates formed by controlled metal-surface reactions |
6534420, | Jul 18 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming dielectric materials and methods for forming semiconductor devices |
20010009695, | |||
20010051442, | |||
20010053082, | |||
20020022156, | |||
20020089023, | |||
20020119297, | |||
20020146916, | |||
20020155688, | |||
20020155689, | |||
20020192974, | |||
20030001241, | |||
20030003702, | |||
20030017717, | |||
JP2001332546, | |||
JP5090169, | |||
JP62199019, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 31 2004 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038669 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 038954 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 043079 | /0001 | |
Jun 29 2018 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047243 | /0001 | |
Jul 31 2019 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050937 | /0001 |
Date | Maintenance Fee Events |
Jul 21 2005 | ASPN: Payor Number Assigned. |
Jan 15 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 16 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 24 2017 | REM: Maintenance Fee Reminder Mailed. |
Sep 11 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 16 2008 | 4 years fee payment window open |
Feb 16 2009 | 6 months grace period start (w surcharge) |
Aug 16 2009 | patent expiry (for year 4) |
Aug 16 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 16 2012 | 8 years fee payment window open |
Feb 16 2013 | 6 months grace period start (w surcharge) |
Aug 16 2013 | patent expiry (for year 8) |
Aug 16 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 16 2016 | 12 years fee payment window open |
Feb 16 2017 | 6 months grace period start (w surcharge) |
Aug 16 2017 | patent expiry (for year 12) |
Aug 16 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |