A method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.
|
1. A method for monitoring a patient, comprising:
generating a robot movement input command at a remote station;
transmitting the robot movement input command;
receiving the robot movement input command at a robot that has a camera and a microphone;
moving the robot to view and hear a patient; and,
transmitting an image of the patient and a sound of the patient from the robot to the remote station.
11. A method for monitoring a patient, comprising:
generating a plurality of robot movement input commands at a remote station;
transmitting the robot movement input commands;
receiving the robot movement input commands at a robot that has a camera and a microphone;
moving the robot from a first patient room to a second patient room of a medical facility; and,
transmitting an image of a patient and a sound of the patient from the robot to the remote station.
4. The method of
5. The method of
6. The method of
7. The method of
10. The method of
13. The method of
14. The method of
15. The method of
16. The method of
19. The method of
|
This application is a continuation-in-part of application Ser. No. 10/206,457, filed on Jul. 25, 2002, now U.S. Pat. No. 6,925,357.
1. Field of the Invention
The subject matter disclosed generally relates to the field of robotics.
2. Background Information
Patient consultation is a critical component of medical care. For example, it is typically imperative that a physician visit a patient after a surgical procedure. Such visits not only allow the physician to observe the patient for follow-up care, but aids in establishing the all important personal relationship between doctor and patient. Because of various economic and regulatory issues it has become increasing difficult for physicians to develop strong relationships with patients through interactive visits.
John Hopkins Medical Institution has tested a program where tele-conferencing equipment is placed in a patient's room. The doctor can then remotely “visit” the patient through the tele-conferencing system. Such an approach would require tele-conferencing equipment in each patient room, thereby increasing the cost of equipping and maintaining the medical facility. Additionally, the tele-conferencing equipment must be placed in a position to allow the doctor to view the patient. This may be in a location adjacent to the patient's bed. Such a location may not allow the doctor to view an ambulatory patient.
Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope which has a camera that allows a surgeon to view a surgical area of a patient.
Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site. Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a videoconferencing platform that has both a camera and a monitor. The Treviranus patent also discloses embodiments with a mobile platform, and mechanisms for moving the camera and the monitor.
Publication Application No. US-2003-0050233-A1 discloses a remote robotic system wherein a plurality of remote stations can control a plurality of robotic arms used to perform a minimally invasive medical procedure. Each remote station can receive a video image provided by the endoscope inserted into the patient. The remote stations are linked to the robotic system by a dedicated communication link.
To date there has not been a utilization of mobile robots to allow a doctor to remotely visit a patient. Such a technique would allow more frequent doctor/patient visits and improve the quality of medical care.
A method for remotely monitoring a patient with a robot that has a camera and a microphone. A robot input command is generated and transmitted from a remote station. The robot input command is received by the robot. The robot moves in response to the robot input command. A video image and sound of the patient is transmitted to the remote station from the robot.
Disclosed is a method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor to visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.
Referring to the drawings more particularly by reference numbers,
The remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. The station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 is shown, it is to be understood that the system 10 may have a plurality of robots 12. In general any number of robots 12 may be controlled by any number of remote stations. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.
The robot 12 includes a movement platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user.
Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.
The system 10 may be the same or similar to a robotic system sold by the assignee InTouch-Health, Inc. of Santa Barbara, Calif. under the trademark COMPANION.
A doctor may be located at a remote station 16. The remote station 16 may be on or off the premises of the medical facility 50. The station 16 is linked to the robot 12 by the network 18 and wireless base station 14. The medical facility 50 may have a number of wireless base stations 14 located throughout the facility 50 so that the robot 12 is always linked to a station 14.
The system 10 allows the doctor to make patient rounds in the facility 50. For example, the doctor may generate robot input commands at the remote station 16 that are then transmitted and received by the robot 12. The input commands may cause the robot to move to the door of the first patient room 52A. The doctor can view a chart 54 outside the room through the robot camera. The doctor may utilize a zoom feature of the camera to read the chart.
After reading the chart the doctor may move the robot into the first patient room 52A. The system allows the doctor to conduct a two-way videoconference with the patient. The videoconference may allow the doctor to observe the patient through the robot camera. The doctor can also ask questions that can be generated by the robot speaker and/or displayed by the robot monitor. The robot monitor can display the doctor at the remote station so that the patient feels they are being “visited” by the doctor.
After the visiting the patient in the first patient room 52A the doctor can move the robot 12 to the second patient room 52B where the process is repeated. The system thus allows the doctor to visit multiple patients from a remote location. This increases the frequency of doctor visits, reduces doctor fatigue and improves the overall medical care of the patients.
The speaker 44 is coupled to the bus 156 by a digital to analog converter 164. The microphone 42 is coupled to the bus 156 by an analog to digital converter 166. The high level controller 150 may also contain random access memory (RAM) device 168, a non-volatile RAM device 170 and a mass storage device 172 that are all coupled to the bus 162. The mass storage device 172 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 172 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 45 may be coupled to a wireless transceiver 174. By way of example, the transceiver 174 may transmit and receive information in accordance with IEEE 802.11b.
The controller 154 may operate with a LINUX OS operating system. The controller 154 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 150 operates to control the communication between the robot 12 and the remote control station 16.
The high level controller 150 may be linked to the low level controller 152 by serial ports 176 and 178. The low level controller 152 includes a processor 180 that is coupled to a RAM device 182 and non-volatile RAM device 184 by a bus 186. The robot 12 contains a plurality of motors 188 and motor encoders 190. The encoders 190 provide feedback information regarding the output of the motors 188. The motors 188 can be coupled to the bus 186 by a digital to analog converter 192 and a driver amplifier 194. The encoders 190 can be coupled to the bus 186 by a decoder 196. The robot 12 also has a number of proximity sensors 198 (see also
The low level controller 152 runs software routines that mechanically actuate the robot 12. For example, the low level controller 152 provides instructions to actuate the movement platform to move the robot 12. The low level controller 152 may receive movement instructions from the high level controller 150. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.
The various electrical devices of the robot 12 may be powered by a battery(ies) 204. The battery 204 may be recharged by a battery recharger station 206 (see also
The robot 12 may have a pedestal assembly 214 that supports the camera 38 and the monitor 40. The pedestal assembly 214 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.
As shown in
The robot housing 212 may include a bumper 222. The bumper 222 may be coupled to optical position sensors 223 that detect when the bumper 222 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.
The transmission rollers 226 are coupled to a motor assembly 232. The assembly 232 corresponds to the motor 188 shown in
Rotation of the output pulley 234 rotates the ball pulleys 238. Rotation of the ball pulleys 238 causes the transmission rollers 226 to rotate and spin the ball 224 through frictional forces. Spinning the ball 224 will move the robot 12. The transmission rollers 226 are constructed to always be in contact with the drive ball 224. The brackets 242 allow the transmission rollers 226 to freely spin in a direction orthogonal to the driven direction when one of the other roller assemblies 220 is driving and moving the robot 12.
As shown in
As shown in
The robot 10 may be controlled by a number of different doctors. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 150.
By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.
A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.
Message packets may be transmitted between a robot 12 and a remote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.
The identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12. For example, a user may enter a user ID into a setup table in the application software run by the remote control station 16. The user ID is then sent with each message transmitted to the robot.
The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.
The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.
TABLE I
Access
Medical
Command
Software/Debug
Set
User
Control
Record
Override
Access
Priority
Robot
No
No
Yes (1)
No
No
Local
No
No
Yes (2)
No
No
Caregiver
Yes
Yes
Yes (3)
No
No
Doctor
No
Yes
No
No
No
Family
No
No
No
No
No
Service
Yes
No
Yes
Yes
Yes
TABLE II
Requesting User
Local
Caregiver
Doctor
Family
Service
Current
Local
Not Allowed
Warn current user of
Warn current user of
Warn current user of
Warn current user of
User
pending user
pending user
pending user
pending user
Notify requesting
Notify requesting user
Notify requesting user
Notify requesting
user that system is in
that system is in use
that system is in use
user that system is in
use
Set timeout = 5 m
Set timeout = 5 m
use
Set timeout
Call back
No timeout
Call back
Caregiver
Warn current user
Not Allowed
Warn current user of
Warn current user of
Warn current user of
of pending user.
pending user
pending user
pending user
Notify requesting
Notify requesting user
Notify requesting user
Notify requesting
user that system is
that system is in use
that system is in use
user that system is in
in use.
Set timeout = 5 m
Set timeout = 5 m
use
Release control
Queue or callback
No timeout
Callback
Doctor
Warn current user
Warn current user of
Warn current user of
Notify requesting user
Warn current user of
of pending user
pending user
pending user
that system is in use
pending user
Notify requesting
Notify requesting
Notify requesting user
No timeout
Notify requesting
user that system is
user that system is in
that system is in use
Queue or callback
user that system is in
in use
use
No timeout
use
Release control
Set timeout = 5 m
Callback
No timeout
Callback
Family
Warn current user
Notify requesting
Warn current user of
Warn current user of
Warn current user of
of pending user
user that system is in
pending user
pending user
pending user
Notify requesting
use
Notify requesting user
Notify requesting user
Notify requesting
user that system is
No timeout
that system is in use
that system is in use
user that system is in
in use
Put in queue or
Set timeout = 1 m
Set timeout = 5 m
use
Release Control
callback
Queue or callback
No timeout
Callback
Service
Warn current user
Notify requesting
Warn current user of
Warn current user of
Not Allowed
of pending user
user that system is in
request
pending user
Notify requesting
use
Notify requesting user
Notify requesting user
user that system is
No timeout
that system is in use
that system is in use
in use
Callback
No timeout
No timeout
No timeout
Callback
Queue or callback
The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.
While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.
Patent | Priority | Assignee | Title |
10059000, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for a tele-presence robot |
10061896, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
10218748, | Dec 03 2010 | TELADOC HEALTH, INC | Systems and methods for dynamic bandwidth allocation |
10223821, | Apr 25 2017 | BEYOND IMAGINATION INC | Multi-user and multi-surrogate virtual encounters |
10236080, | Jun 28 2013 | The Invention Science Fund II, LLC | Patient medical support system and related method |
10241507, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
10242666, | Apr 17 2014 | SOFTBANK ROBOTICS EUROPE | Method of performing multi-modal dialogue between a humanoid robot and user, computer program product and humanoid robot for implementing said method |
10259119, | Sep 30 2005 | TELADOC HEALTH, INC | Multi-camera mobile teleconferencing platform |
10315312, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system with a master remote station with an arbitrator |
10328576, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
10331323, | Nov 08 2011 | TELADOC HEALTH, INC | Tele-presence system with a user interface that displays different communication links |
10334205, | Nov 26 2012 | TELADOC HEALTH, INC | Enhanced video interaction for a user interface of a telepresence network |
10343283, | May 24 2010 | TELADOC HEALTH, INC | Telepresence robot system that can be accessed by a cellular phone |
10399223, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
10404939, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
10471588, | Apr 14 2008 | TELADOC HEALTH, INC | Robotic based health care system |
10493631, | Jul 10 2008 | TELADOC HEALTH, INC | Docking system for a tele-presence robot |
10591921, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
10603792, | May 22 2012 | TELADOC HEALTH, INC | Clinical workflows utilizing autonomous and semiautonomous telemedicine devices |
10645338, | Dec 12 2003 | Beyond Imagination Inc. | Virtual encounters |
10658083, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
10682763, | May 09 2007 | TELADOC HEALTH, INC | Robot system that operates through a network firewall |
10692599, | Jun 28 2013 | The Invention Science Fund II, LLC | Patient medical support system and related method |
10737393, | Dec 23 2016 | LG Electronics Inc. | Guidance robot |
10744641, | Dec 23 2016 | LG Electronics Inc. | Guidance robot |
10750920, | Mar 28 2017 | LG Electronics Inc | Control method of robot system including plurality of moving robots |
10759045, | Dec 23 2016 | LG Electronics Inc. | Robot |
10762170, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing patient and telepresence device statistics in a healthcare network |
10769739, | Apr 25 2011 | TELADOC HEALTH, INC | Systems and methods for management of information among medical providers and facilities |
10780582, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
10808882, | May 26 2010 | TELADOC HEALTH, INC | Tele-robotic system with a robot face placed on a chair |
10825218, | Apr 25 2017 | Beyond Imagination Inc. | Multi-user and multi-surrogate virtual encounters |
10875182, | Mar 20 2008 | TELADOC HEALTH, INC | Remote presence system mounted to operating room hardware |
10875183, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for tele-presence robot |
10878960, | Jul 11 2008 | TELADOC HEALTH, INC | Tele-presence robot system with multi-cast features |
10882190, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
10887545, | Mar 04 2010 | TELADOC HEALTH, INC | Remote presence system including a cart that supports a robot face and an overhead camera |
10892052, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
10911715, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
10924708, | Nov 26 2012 | TELADOC HEALTH, INC | Enhanced video interaction for a user interface of a telepresence network |
10969766, | Apr 17 2009 | TELADOC HEALTH, INC | Tele-presence robot system with software modularity, projector and laser pointer |
11154981, | Feb 04 2010 | TELADOC HEALTH, INC | Robot user interface for telepresence robot system |
11205510, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
11285611, | Oct 18 2018 | LG Electronics Inc. | Robot and method of controlling thereof |
11289192, | Jan 28 2011 | INTOUCH TECHNOLOGIES, INC.; iRobot Corporation | Interfacing with a mobile telepresence robot |
11308618, | Apr 14 2019 | Holovisions LLC | Healthy-Selfie(TM): a portable phone-moving device for telemedicine imaging using a mobile phone |
11312004, | Dec 23 2016 | LG Electronics Inc. | Guide robot |
11389064, | Apr 27 2018 | TELADOC HEALTH, INC | Telehealth cart that supports a removable tablet with seamless audio/video switching |
11389962, | May 24 2010 | TELADOC HEALTH, INC | Telepresence robot system that can be accessed by a cellular phone |
11399153, | Aug 26 2009 | TELADOC HEALTH, INC | Portable telepresence apparatus |
11453126, | May 22 2012 | TELADOC HEALTH, INC | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
11468983, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
11472021, | Apr 14 2008 | TELADOC HEALTH, INC. | Robotic based health care system |
11515049, | May 22 2012 | TELADOC HEALTH, INC.; iRobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
11553160, | Apr 27 2016 | MENDAERA, INC | Systems and methods for imaging communication and control |
11597080, | Mar 20 2020 | Tata Consultancy Services Limited | Knowledge partitioning for task execution by conversational tele-presence robots in a geographically separated environment |
11628571, | May 22 2012 | TELADOC HEALTH, INC.; iRobot Corporation | Social behavior rules for a medical telepresence robot |
11636944, | Aug 25 2017 | TELADOC HEALTH, INC | Connectivity infrastructure for a telehealth platform |
11742094, | Jul 25 2017 | TELADOC HEALTH, INC. | Modular telehealth cart with thermal imaging and touch screen user interface |
11787060, | Mar 20 2008 | TELADOC HEALTH, INC. | Remote presence system mounted to operating room hardware |
11798683, | Mar 04 2010 | TELADOC HEALTH, INC. | Remote presence system including a cart that supports a robot face and an overhead camera |
11837363, | Nov 04 2020 | Hill-Rom Services, Inc | Remote management of patient environment |
11862302, | Apr 24 2017 | TELADOC HEALTH, INC | Automated transcription and documentation of tele-health encounters |
11910128, | Nov 26 2012 | TELADOC HEALTH, INC. | Enhanced video interaction for a user interface of a telepresence network |
12093036, | Jan 21 2011 | TELADOC HEALTH, INC | Telerobotic system with a dual application screen presentation |
12138808, | Nov 25 2008 | TELADOC HEALTH, INC. | Server connectivity control for tele-presence robots |
7218993, | Oct 04 2002 | Fujitsu Limited | Robot system and autonomous mobile robot |
7526362, | Mar 12 2004 | Samsung Electronics Co., Ltd. | Remote robot control method using three-dimensional pointing procedure and robot control system using the remote robot control method |
7593030, | Jul 25 2002 | TELADOC HEALTH, INC | Tele-robotic videoconferencing in a corporate environment |
7605557, | Feb 26 2003 | Silverbrook Research Pty LTD | Mobile robot for sensing and decoding a surface coding pattern on a surface |
7769492, | Feb 22 2006 | TELADOC HEALTH, INC | Graphical interface for a remote presence system |
7813836, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
7893646, | Feb 23 2004 | Silverbrook Research Pty LTD | Game system with robotic game pieces |
8041456, | Oct 22 2008 | ANYBOTS 2 0, INC | Self-balancing robot including an ultracapacitor power source |
8077963, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
8115439, | Feb 26 2003 | Silverbrook Research Pty LTD | System for moving mobile robots in accordance with predetermined algorithm |
8116910, | Aug 23 2007 | TELADOC HEALTH, INC | Telepresence robot with a printer |
8160747, | Oct 24 2008 | ANYBOTS 2 0, INC | Remotely controlled self-balancing robot including kinematic image stabilization |
8170241, | Apr 17 2008 | TELADOC HEALTH, INC | Mobile tele-presence system with a microphone system |
8179418, | Apr 14 2008 | TELADOC HEALTH, INC | Robotic based health care system |
8209051, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system |
8306664, | May 17 2010 | ANYBOTS 2 0, INC | Self-balancing robot having a shaft-mounted head |
8340819, | Sep 18 2008 | TELADOC HEALTH, INC | Mobile videoconferencing robot system with network adaptive driving |
8359122, | Mar 27 2004 | Vision Robotics Corporation | Autonomous personal service robot |
8384755, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
8401275, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
8442661, | Nov 25 2008 | ANYBOTS 2 0, INC | Remotely controlled self-balancing robot including a stabilized laser pointer |
8463435, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for tele-presence robot |
8515577, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system with a master remote station with an arbitrator |
8600550, | Dec 12 2003 | BEYOND IMAGINATION INC | Virtual encounters |
8670017, | Mar 04 2010 | TELADOC HEALTH, INC | Remote presence system including a cart that supports a robot face and an overhead camera |
8718837, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
8836751, | Nov 08 2011 | TELADOC HEALTH, INC | Tele-presence system with a user interface that displays different communication links |
8849679, | Jun 15 2006 | TELADOC HEALTH, INC | Remote controlled robot system that provides medical images |
8849680, | Jan 29 2009 | TELADOC HEALTH, INC | Documentation through a remote presence robot |
8892260, | Mar 20 2007 | iRobot Corporation | Mobile robot for telecommunication |
8897920, | Apr 17 2009 | TELADOC HEALTH, INC | Tele-presence robot system with software modularity, projector and laser pointer |
8902278, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
8930019, | Dec 30 2010 | iRobot Corporation | Mobile human interface robot |
8935005, | May 20 2010 | AVA ROBOTICS, INC | Operating a mobile robot |
8965579, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
8983174, | Mar 27 2009 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
8996165, | Oct 21 2008 | TELADOC HEALTH, INC | Telepresence robot with a camera boom |
9014848, | May 20 2010 | iRobot Corporation | Mobile robot system |
9075906, | Jun 28 2013 | The Invention Science Fund II, LLC | Medical support system including medical equipment case |
9089972, | Mar 04 2010 | TELADOC HEALTH, INC | Remote presence system including a cart that supports a robot face and an overhead camera |
9098611, | Nov 26 2012 | TELADOC HEALTH, INC | Enhanced video interaction for a user interface of a telepresence network |
9138891, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for tele-presence robot |
9160783, | May 09 2007 | TELADOC HEALTH, INC | Robot system that operates through a network firewall |
9174342, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
9193065, | Jul 10 2008 | TELADOC HEALTH, INC | Docking system for a tele-presence robot |
9198728, | Sep 30 2005 | TELADOC HEALTH, INC | Multi-camera mobile teleconferencing platform |
9251313, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
9264664, | Dec 03 2010 | TELADOC HEALTH, INC | Systems and methods for dynamic bandwidth allocation |
9296107, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
9296109, | Mar 20 2007 | iRobot Corporation | Mobile robot for telecommunication |
9323250, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
9361021, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
9375843, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
9429934, | Sep 18 2008 | TELADOC HEALTH, INC | Mobile videoconferencing robot system with network adaptive driving |
9469030, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
9481087, | Dec 26 2014 | National Chiao Tung University | Robot and control method thereof |
9498886, | May 20 2010 | iRobot Corporation | Mobile human interface robot |
9602765, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
9610685, | Feb 26 2004 | TELADOC HEALTH, INC | Graphical interface for a remote presence system |
9715337, | Nov 08 2011 | TELADOC HEALTH, INC | Tele-presence system with a user interface that displays different communication links |
9766624, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
9776327, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
9785149, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
9838645, | Oct 31 2013 | The Invention Science Fund II, LLC | Remote monitoring of telemedicine device |
9841809, | Dec 12 2003 | BEYOND IMAGINATION INC | Virtual encounters |
9842192, | Jul 11 2008 | TELADOC HEALTH, INC | Tele-presence robot system with multi-cast features |
9846763, | Jun 28 2013 | The Invention Science Fund II, LLC | Medical support system including medical equipment case |
9849593, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system with a master remote station with an arbitrator |
9902069, | May 20 2010 | iRobot Corporation | Mobile robot system |
9948885, | Dec 12 2003 | BEYOND IMAGINATION INC | Virtual encounters |
9950421, | Jul 02 2010 | SOFTBANK ROBOTICS EUROPE | Humanoid game-playing robot, method and system for using said robot |
9956690, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
9971398, | Dec 12 2003 | BEYOND IMAGINATION INC | Virtual encounters |
9974612, | May 19 2011 | TELADOC HEALTH, INC | Enhanced diagnostics for a telepresence robot |
ER7467, | |||
RE45870, | Jul 25 2002 | TELADOC HEALTH, INC | Apparatus and method for patient rounding with a remote controlled robot |
Patent | Priority | Assignee | Title |
3821995, | |||
4413693, | Mar 27 1981 | Mobile chair | |
4471354, | Nov 23 1981 | FIRST INTERSTATE COMMERCIAL CORPORATION A CA CORP | Apparatus and method for remotely measuring temperature |
4519466, | Mar 30 1982 | Eiko Shiraishi | Omnidirectional drive system |
4638445, | Jun 08 1984 | Autonomous mobile robot | |
4733737, | Aug 29 1985 | HOENING, DOUGLAZS EDWARD | Drivable steerable platform for industrial, domestic, entertainment and like uses |
4875172, | Sep 28 1984 | Yutaka, Kanayama; Glory Kogyo Kabushiki Kaisha | Locomotion-command method for mobile robots |
5073749, | Jun 22 1989 | MURATEC AUTOMATION CO , LTD | Mobile robot navigating method |
5186270, | Oct 24 1991 | Massachusetts Institute of Technology | Omnidirectional vehicle |
5341854, | Sep 28 1989 | RED DEER GENERAL AND AUXILIARY HOSPITAL AND NURSING HOME DISTRICT NO 15 | Robotic drug dispensing system |
5374879, | Nov 04 1992 | MARTIN MARIETTA ENERGY SYSTEMS, INC | Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom |
5419008, | Oct 24 1991 | Massachusetts Institute of Technology | Ball joint |
5544649, | Mar 25 1992 | CARDIOMEDIX, INC | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
5630566, | May 30 1995 | Portable ergonomic work station | |
5636218, | Dec 07 1994 | International Business Machines Corporation | Gateway system that relays data via a PBX to a computer connected to a pots and a computer connected to an extension telephone and a lanand a method for controlling same |
5762458, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive cardiac procedures |
5802494, | Jul 13 1990 | Kabushiki Kaisha Toshiba | Patient monitoring system |
5838575, | Dec 14 1995 | GOLDASICH, DENNIS E, JR | System for dispensing drugs |
5857534, | Jun 05 1997 | Kansas State University Research Foundation | Robotic inspection apparatus and method |
5959423, | Jun 08 1995 | MONEUAL, INC | Mobile work robot system |
5966130, | May 12 1994 | Integrated virtual networks | |
6006946, | Dec 05 1997 | Parata Systems, LLC | Pill dispensing system |
6036812, | Dec 05 1997 | Parata Systems, LLC | Pill dispensing system |
6135228, | Apr 25 1996 | Massachusetts Institute of Technology | Human transport system with dead reckoning facilitating docking |
6232735, | Nov 24 1998 | TMSUK CO , LTD | Robot remote control system and robot image remote control processing system |
6259806, | Jan 21 1992 | SRI International | Method and apparatus for transforming coordinate systems in a telemanipulation system |
6292713, | May 20 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Robotic telepresence system |
6304050, | Jul 19 1999 | CAMERA-SPACE MANIPULATION INC | Means and method of robot control relative to an arbitrary surface using camera-space manipulation |
6346950, | May 20 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for display images using anamorphic video |
6369847, | Mar 17 2000 | Emtel, Inc.; EMTEL, INC | Emergency facility video-conferencing system |
6430471, | Dec 17 1998 | MONEUAL, INC | Control system for controlling a mobile robot via communications line |
6438457, | Aug 22 1997 | Sony Corporation | Storage medium, robot, information processing device and electronic pet system |
6463361, | Sep 22 1994 | Intuitive Surgical Operations, Inc | Speech interface for an automated endoscopic system |
6474434, | Jul 02 1997 | Borringis Industrie AG | Drive wheel |
6491701, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Mechanical actuator interface system for robotic surgical tools |
6496099, | Jun 24 1996 | Intuitive Surgical Operations, Inc | General purpose distributed operating room control system |
6522906, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure |
6535793, | May 01 2000 | iRobot Corporation | Method and system for remote control of mobile robot |
6549215, | May 20 1999 | Compaq Computer Corporation | System and method for displaying images using anamorphic video |
6587750, | Sep 25 2001 | Intuitive Surgical Operations, Inc | Removable infinite roll master grip handle and touch sensor for robotic surgery |
6594552, | Apr 07 1999 | Intuitive Surgical Operations, Inc | Grip strength with tactile feedback for robotic surgery |
6684129, | Sep 19 1997 | Intuitive Surgical Operations, Inc | Master having redundant degrees of freedom |
6799065, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Image shifting apparatus and method for a telerobotic system |
6804656, | Jun 23 1999 | VISICU, INC | System and method for providing continuous, expert network critical care services from a remote location(s) |
6839612, | Dec 07 2001 | Intuitive Surgical Operations, Inc | Microwrist system for surgical procedures |
6852107, | Jan 16 2002 | Intuitive Surgical Operations, Inc | Minimally invasive surgical training using robotics and tele-collaboration |
20010037163, | |||
20010054071, | |||
20020027597, | |||
20020057279, | |||
20020058929, | |||
20020063726, | |||
20020120362, | |||
20020130950, | |||
20020141595, | |||
20020183894, | |||
20030050733, | |||
20030135203, | |||
20030151658, | |||
20040143421, | |||
20040162637, | |||
20060047365, | |||
CA2289697, | |||
EP981905, | |||
JP2002046088, | |||
JP2002305743, | |||
JP7257422, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 09 2003 | WANG, YULUN | INTOUCH-HEALTH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014868 | /0186 | |
Dec 11 2003 | KAVOUSSI, LOUIS | INTOUCH-HEALTH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014868 | /0186 | |
Jan 02 2004 | INTOUCH TECHNOLOGIES, INC. | (assignment on the face of the patent) | / | |||
May 31 2005 | INTOUCH HEALTH, INC | INTOUCH TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016686 | /0356 | |
Feb 23 2018 | INTOUCH HEALTH PROVIDERS, LLC | MIDCAP FINANCIAL TRUST, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045488 | /0518 | |
Feb 23 2018 | ACUTECARE TELEMEDICINE, LLC | MIDCAP FINANCIAL TRUST, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045488 | /0518 | |
Feb 23 2018 | INTOUCH TECHNOLOGIES, INC | MIDCAP FINANCIAL TRUST, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045488 | /0518 | |
Feb 23 2018 | ITH DTC, LLC | MIDCAP FINANCIAL TRUST, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045488 | /0518 | |
Feb 23 2018 | C30 CORPORATION | MIDCAP FINANCIAL TRUST, AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045488 | /0518 | |
Jan 11 2020 | INTOUCH TECHNOLOGIES, INC | JONATA SUB TWO, INC | MERGER SEE DOCUMENT FOR DETAILS | 053705 | /0839 | |
Jan 11 2020 | JONATA SUB TWO, INC | JONATA SUB TWO, INC | MERGER SEE DOCUMENT FOR DETAILS | 053705 | /0839 | |
Jan 11 2020 | INTOUCH TECHNOLOGIES, INC | INTOUCH TECHNOLOGIES, INC | MERGER SEE DOCUMENT FOR DETAILS | 053705 | /0728 | |
Jan 11 2020 | JONATA SUB ONE, INC | INTOUCH TECHNOLOGIES, INC | MERGER SEE DOCUMENT FOR DETAILS | 053705 | /0728 | |
Jul 01 2020 | JONATA SUB ONE, INC | INTOUCH TECHNOLOGIES, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE EXEUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020, PREVIOUSLY RECORDED ON REEL 053705 FRAME 0728 ASSIGNOR S HEREBY CONFIRMS THE MERGER | 054986 | /0508 | |
Jul 01 2020 | INTOUCH TECHNOLOGIES, INC | JONATA SUB TWO, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020 PREVIOUSLY RECORDED AT REEL: 053705 FRAME: 0839 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 054999 | /0001 | |
Jul 01 2020 | JONATA SUB TWO, INC | JONATA SUB TWO, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020 PREVIOUSLY RECORDED AT REEL: 053705 FRAME: 0839 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 054999 | /0001 | |
Jul 01 2020 | INTOUCH TECHNOLOGIES, INC | INTOUCH TECHNOLOGIES, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE EXEUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020, PREVIOUSLY RECORDED ON REEL 053705 FRAME 0728 ASSIGNOR S HEREBY CONFIRMS THE MERGER | 054986 | /0508 | |
Jul 01 2020 | JONATA SUB TWO, INC | INTOUCH TECHNOLOGIES, INC | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 054690 | /0327 | |
Jul 01 2020 | INTOUCH TECHNOLOGIES, INC | INTOUCH TECHNOLOGIES, INC | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 054690 | /0327 | |
Jul 01 2020 | INTOUCH TECHNOLOGIES, INC | JONATA SUB TWO, INC | MERGER SEE DOCUMENT FOR DETAILS | 053705 | /0839 | |
Jul 01 2020 | JONATA SUB TWO, INC | JONATA SUB TWO, INC | MERGER SEE DOCUMENT FOR DETAILS | 053705 | /0839 | |
Jul 01 2020 | MIDCAP FINANCIAL TRUST, AS AGENT | ITH DTC, LLC | RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 0518 | 053117 | /0060 | |
Jul 01 2020 | MIDCAP FINANCIAL TRUST, AS AGENT | INTOUCH HEALTH PROVIDERS, LLC | RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 0518 | 053117 | /0060 | |
Jul 01 2020 | MIDCAP FINANCIAL TRUST, AS AGENT | C30 CORPORATION | RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 0518 | 053117 | /0060 | |
Jul 01 2020 | MIDCAP FINANCIAL TRUST, AS AGENT | ACUTECARE TELEMEDICINE, LLC | RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 0518 | 053117 | /0060 | |
Jul 01 2020 | MIDCAP FINANCIAL TRUST, AS AGENT | INTOUCH TECHNOLOGIES, INC | RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 0518 | 053117 | /0060 | |
Sep 02 2020 | INTOUCH TECHNOLOGIES, INC | TELADOC HEALTH, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053743 | /0661 |
Date | Maintenance Fee Events |
May 03 2010 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 10 2010 | LTOS: Pat Holder Claims Small Entity Status. |
Jun 18 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 21 2014 | R2552: Refund - Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jul 21 2014 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Jul 13 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 16 2010 | 4 years fee payment window open |
Jul 16 2010 | 6 months grace period start (w surcharge) |
Jan 16 2011 | patent expiry (for year 4) |
Jan 16 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 16 2014 | 8 years fee payment window open |
Jul 16 2014 | 6 months grace period start (w surcharge) |
Jan 16 2015 | patent expiry (for year 8) |
Jan 16 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 16 2018 | 12 years fee payment window open |
Jul 16 2018 | 6 months grace period start (w surcharge) |
Jan 16 2019 | patent expiry (for year 12) |
Jan 16 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |