A method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.

REEXAMINATION RESULTS

The questions raised in reexamination proceeding No. 90/012,069, filed Dec. 22, 2011, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e) for ex parte reexaminations, or the reexamination certificate required by 35 U.S.C. 316 as provided in 37 CFR 1.997(e) for inter partes reexaminations.

Patent
   RE45870
Priority
Jul 25 2002
Filed
Jul 06 2012
Issued
Jan 26 2016
Expiry
Jul 25 2022
Assg.orig
Entity
Large
3
642
all paid
1. A method for viewing enabling at least one of a first remote user and a second remote user to view a patient using a robot having a camera and a microphone, the first remote user having an ability to control the robot using a first remote station and the second remote user having an ability to control the robot using a second remote station, the method comprising:
electing either an exclusive mode of operation or a shared mode of operation, whereby, in the exclusive mode of operation, only of the first remote station and the second remote station has control of the robot and, in the shared mode of operation, both of the first remote station and the second remote station have control of the robot;
generating a first robot movement input command at a using the first remote station or the second remote station;
transmitting the first robot movement input command;
receiving the first robot movement input command at a the robot that has a the camera and a the microphone;
moving the camera to view a the patient; and,
transmitting an image of the patient and a sound of the patient from the robot to the first remote station or the second remote station.
0. 45. A method of using a mobile robotic system for facilitating remote monitoring of a plurality of patients in a medical facility having a plurality of patient rooms, including a first patient room and a second patient room, each of the first patient room and the second patient room containing one or more patients, the mobile robotic system comprising a first remote station adapted for use by a first user and a robot configured to be wirelessly linked to the first remote station, the robot comprising a video camera and a microphone, the method comprising:
using the first remote station to generate a first set of robot movement input commands that are transmitted to and received by the robot;
using the first set of robot movement input commands generated at the first remote station to move the robot to a vicinity of the first patient room;
capturing with the video camera of the robot and transmitting to the first remote station patient-related information related to a first patient;
after viewing the captured and transmitted patient-related information related to the first patient, using the first remote station to generate a second set of robot input commands that are transmitted to and received by the robot;
using the second set of robot input commands generated at the first remote station to move the robot into the first patient room;
conducting a two-way videoconference with the first patient in the first patient room using the video camera of the robot, a display of the robot, a video camera of the first remote station and a display of the first remote station, the two-way videoconference including moving the video camera to view the patient, transmitting an image of the patient and a sound of the patient from the robot to the first remote station;
using the first remote station to generate a third set of robot input commands that are transmitted to and received by the robot;
using the third set of robot input commands generated at the first remote station to move the robot out of the first patient room and into a vicinity of the second patient room;
capturing with the video camera of the robot and transmitting to the first remote station patient-related information related to a second patient;
after viewing the captured and transmitted patient-related information related to the second patient, using the first remote station to generate a fourth set of robot input commands that are transmitted to and received by the robot;
using the fourth set of robot input commands generated at the first remote station to move the robot into the second patient room;
conducting a two-way videoconference with the second patient in the second patient room using the video camera of the robot, the display of the robot, the video camera of the first remote station and the display of the first remote station;
using the first remote station to generate a fifth set of robot input commands that are transmitted to and received by the robot; and
using the fifth set of robot input commands generated at the first remote station to move the robot out of the second patient room.
2. The method of claim 1, further comprising generating a second robot movement command, transmitting the second robot command and moving the robot across a floor of a medical facility.
3. The method of claim 1, wherein the robot movement input command is generated by a doctor.
4. The method of claim 1, further comprising transmitting a video image and a sound of a doctor at the first remote station or the second remote station to the robot, the video image being displayed by a monitor of the robot, the sound being generated by a speaker of the robot.
5. The method of claim 1, wherein the robot movement input command causes the robot camera to zoom relative to the patient.
6. The method of claim 1, further comprising transmitting a video image of a medical chart from the robot to the first remote station or the second remote station.
7. The method of claim 1, further comprising generating and transmitting a question from the first remote station or the second remote station to the robot.
8. The method of claim 7, wherein the question is generated by a speaker of the robot.
9. The method of claim 7, wherein the question is displayed by a monitor of the robot.
10. The method of claim 1, wherein the robot movement input command is transmitted through a broadband network.
0. 11. The method of claim 1, wherein the robot movement input command is generated by a caregiver.
0. 12. The method of claim 1, further comprising detecting when the robot has contacted an object, determining a direction of contact with the object and preventing further movement toward the object.
0. 13. The method of claim 1, wherein the robot further comprises a monitor, the monitor and the camera of the robot being mounted to rotate together such that the camera and the monitor cannot be rotated independently of each other, the method further comprising at least one of pivoting and tilting the monitor and the camera together as a single unit.
0. 14. The method of claim 4, further comprising compressing, transmitting and receiving the video image and the sound of the first remote user or the second remote user using an MPEG standard.
0. 15. The method of claim 1, wherein transmitting the image of the patient and the sound of the patient from the robot to the first remote station or the second remote station comprises transmitting and receiving a video with MPEG compression software.
0. 16. The method of claim 1 further comprising
displaying the image of the patient on a display connected to the first remote station;
transmitting an image of the first user and a sound of the first user from the first remote station to the robot; and
displaying the image of the first user on the display connected to the robot.
0. 17. The method of claim 16, further comprising accessing information stored in a mass storage device of the robot.
0. 18. The method of claim 17, wherein accessing information stored in the mass storage device of the robot comprises accessing medical files associated with the patient.
0. 19. The method of claim 17, wherein accessing information stored in the mass storage device of the robot comprises recalling a still picture stored on the robot.
0. 20. The method of claim 17, further comprising displaying on the display connected to the first remote station the information stored in the mass storage device of the robot.
0. 21. The method of claim 16, further comprising transmitting a command to the robot that causes the robot to move so that the robot is coupled to a battery charger.
0. 22. The method of claim 21, wherein the robot couples to the battery charger without human intervention.
0. 23. The method of claim 16, further comprising coupling the robot to an electrical wall outlet to recharge the battery.
0. 24. The method of claim 16, further comprising moving the robot across a surface through a series of movement input commands that are transmitted from one of the first remote station and the second remote station to the robot.
0. 25. The method of claim 24, further comprising creating message packets having multiple data fields, which message packages contain the movement input commands.
0. 26. The method of claim 25, further comprising encrypting the message packets that are transmitted to the robot.
0. 27. The method of claim 25, wherein one of the multiple data fields is an ID field.
0. 28. The method of claim 25, wherein one of the multiple data fields is a forward speed field.
0. 29. The method of claim 25, wherein one of the multiple data fields is an angular speed field.
0. 30. The method of claim 25, wherein one of the multiple data fields is a stop field.
0. 31. The method of claim 25, wherein one of the multiple data fields is a bumper field.
0. 32. The method of claim 25, wherein one of the multiple data fields is a sensor range field.
0. 33. The method of claim 25, wherein one of the multiple data fields is a configuration field.
0. 34. The method of claim 25, wherein one of the multiple data fields is a text field.
0. 35. The method of claim 25, wherein one of the multiple data fields is a debug field.
0. 36. The method of claim 24, further comprising exclusively controlling the robot from multiple remote stations at different times.
0. 37. The method of claim 36, further comprising determining which of the multiple remote stations can have control of the robot.
0. 38. The method of claim 16, further comprising moving the display connected to the robot relative to the robot.
0. 39. The method of claim 38, wherein moving the display comprises tilting the display connected to the robot.
0. 40. The method of claim 38, wherein moving the display comprises rotating the display connected to the robot.
0. 41. The method of claim 38, wherein moving the display comprises pivoting the display connected to the robot.
0. 42. The method of claim 16, further comprising tilting the camera connected to the robot.
0. 43. The method of claim 16, further comprising rotating the camera connected to the robot.
0. 44. The method of claim 16, further comprising identifying obstructions to movement using one or more proximity sensors mounted to the robot.
0. 46. The method of claim 45, wherein the patient-related information related to at least one of the first patient and the second patient comprises a patient chart.
0. 47. The method of claim 45, wherein using the video camera comprises using a zoom feature to capture the information.
0. 48. The method of claim 45, further comprising displaying the first user on the display of the robot during the two-way videoconference.
0. 49. The method of claim 45, further comprising using a second station to generate robot input commands.
0. 50. The method of claim 49, further comprising selecting only one of the first remote station and the second station to control the robot such that exclusive control of the robot can be provided to one of the first remote station and the second station.
0. 51. The method of claim 49, further comprising allowing both the first remote station and the second station to control the robot such that the first remote station and the second station share control of the robot.
0. 52. The method of claim 51, further comprising using the first remote station to enable shared control such that both the first remote station and the second station share control of the robot.
0. 53. The method of claim 45, further comprising using the first remote station to control a second robot.

This application is a continuation of application Ser. No. 10/751,032, filed on Jan. 2, 2004, now U.S. Pat. No. 7,164,969 which is a continuation-in-part of application Ser. No. 10/206,457, filed on Jul. 25, 2002, now U.S. Pat. No. 6,925,357:

1. Field of the Invention

The subject matter disclosed generally relates to the field of robotics.

2. Background Information

Patient consultation is a critical component of medical care. For example, it is typically imperative that a physician visit a patient after a surgical procedure. Such visits not only allow the physician to observe the patient for follow-up care, but aids in establishing the all important personal relationship between doctor and patient. Because of various economic and regulatory issues it has become increasing difficult for physicians to develop strong relationships with patients through interactive visits.

John Hopkins Medical Institution has tested a program where tele-conferencing equipment is placed in a patient's room. The doctor can then remotely “visit” the patient through the tele-conferencing system. Such an approach would require tele-conferencing equipment in each patient room, thereby increasing the cost of equipping and maintaining the medical facility. Additionally, the tele-conferencing equipment must be placed in a position to allow the doctor to view the patient. This may be in a location adjacent to the patient's bed. Such a location may not allow the doctor to view an ambulatory patient.

Robots have been used in a variety of applications ranging from remote control of hazardous material to assisting in the performance of surgery. For example, U.S. Pat. No. 5,762,458 issued to Wang et al. discloses a system that allows a surgeon to perform minimally invasive medical procedures through the use of robotically controlled instruments. One of the robotic arms in the Wang system moves an endoscope which has a camera that allows a surgeon to view a surgical area of a patient.

Tele-robots such as hazardous waste handlers and bomb detectors may contain a camera that allows the operator to view the remote site. Canadian Pat. No. 2289697 issued to Treviranus, et al. discloses a videoconferencing platform that has both a camera and a monitor. The Treviranus patent also discloses embodiments with a mobile platform, and mechanisms for moving the camera and the monitor.

Publication Application No. US-2003-0050233-A1 discloses a remote robotic system wherein a plurality of remote stations can control a plurality of robotic arms used to perform a minimally invasive medical procedure. Each remote station can receive a video image provided by the endoscope inserted into the patient. The remote stations are linked to the robotic system by a dedicated communication link.

To date there has not been a utilization of mobile robots to allow a doctor to remotely visit a patient. Such a technique would allow more frequent doctor/patient visits and improve the quality of medical care.

A method for remotely monitoring a patient with a robot that has a camera and a microphone. A robot input command is generated and transmitted from a remote station. The robot input command is received by the robot. The robot moves in response to the robot input command. A video image and sound of the patient is transmitted to the remote station from the robot.

FIG. 1 is an illustration of a robotic system;

FIG. 2 is a schematic showing movement of a robot in a medical facility;

FIG. 3 is a schematic of an electrical system of a robot;

FIG. 4 is a further schematic of the electrical system of the robot;

FIG. 5 is side view of the robot;

FIG. 6 is a top perspective view of a holonomic platform of the robot;

FIG. 7 is aside perspective view of a roller assembly of the holonomic platform;

FIG. 8 is a bottom perspective view showing a pedestal assembly of the robot;

FIG. 9 is a sectional view showing an actuator of the pedestal assembly;

FIG. 10 is a side view of a robot head.

Disclosed is a method for remotely monitoring a patient. The method includes generating and transmitting input commands to the robot from a remote station. The remote station may include a personal computer that is operated by a doctor. The input commands can move the robot so that a video image and sounds of the patient can be captured by a robot camera and microphone, respectively, and transmitted back to the remote station. The robot may also have a monitor and a speaker to allow for two-way videoconferencing between the patient and a doctor at the remote station. The robot can move from room to room so that a doctor can make “patient rounds” within a medical facility. The system thus allows a doctor to visit patients from a remote location, thereby improving the frequency of visits and the quality of medical care.

Referring to the drawings more particularly by reference numbers, FIG. 1 shows a robotic system 10. The robotic system 10 includes a robot 12, a base station 14 and a remote control station 16. The control station 16 may be coupled to the base station 14 through a network 18. By way of example, the network 18 may be either a packet switched network such as the Internet, or a circuit switched network such has a Public Switched Telephone Network (PSTN) or other broadband system. The base station 14 may be coupled to the network 18 by a modem 20 or other broadband network interface device.

The remote control station 16 may include a computer 22 that has a monitor 24, a camera 26, a microphone 28 and a speaker 30. The computer 22 may also contain an input device 32 such as a joystick or a mouse. The station 16 is typically located in a place that is remote from the robot 12. Although only one robot 12 is shown, it is to be understood that the system 10 may have a plurality of robots 12. In general any number of robots 12 may be controlled by any number of remote stations. For example, one remote station 16 may be coupled to a plurality of robots 12, or one robot 12 may be coupled to a plurality of remote stations 16.

The robot 12 includes a movement platform 34 that is attached to a robot housing 36. Also attached to the robot housing 36 are a camera 38, a monitor 40, a microphone(s) 42 and a speaker 44. The microphone 42 and speaker 30 may create a stereophonic sound. The robot 12 may also have an antenna 45 that is wirelessly coupled to an antenna 46 of the base station 14. The system 10 allows a user at the remote control station 16 to move the robot 12 through the input device 32. The robot camera 38 is coupled to the remote monitor 24 so that a user at the remote station 16 can view a patient. Likewise, the robot monitor 40 is coupled to the remote camera 26 so that the patient can view the user. The microphones 28 and 42, and speakers 30 and 44, allow for audible communication between the patient and the user.

Each remote station computer 22 may operate Microsoft OS software and WINDOWS XP or other operating systems such as LINUX. The remote computer 22 may also operate a video driver, a camera driver, an audio driver and a joystick driver. The video images may be transmitted and received with compression software such as MPEG CODEC.

The system 10 may be the same or similar to a robotic system sold by the assignee InTouch-Health, Inc. of Santa Barbara, Calif. under the trademark COMPANION.

FIG. 2 shows an implementation of the system in a medical facility 50. The medical facility 50 may be a hospital, assisted living home, etc, that contains a plurality of patient rooms 52, including a first patient room 52A and a second patient room 52B, each containing one or more patients.

A doctor may be located at a remote station 16. The remote station 16 may be on or off the premises of the medical facility 50. The station 16 is linked to the robot 12 by the network 18 and wireless base station 14. The medical facility 50 may have a number of wireless base stations 14 located throughout the facility 50 so that the robot 12 is always linked to a station 14.

The system 10 allows the doctor to make patient rounds in the facility 50. For example, the doctor may generate robot input commands at the remote station 16 that are then transmitted and received by the robot 12. The input commands may cause the robot to move to the door of the first patient room 52A. The doctor can view a chart 54 outside the room through the robot camera. The doctor may utilize a zoom feature of the camera to read the chart.

After reading the chart the doctor may move the robot into the first patient room 52A. The system allows the doctor to conduct a two-way videoconference with the patient. The videoconference may allow the doctor to observe the patient through the robot camera. The doctor can also ask questions that can be generated by the robot speaker and/or displayed by the robot monitor. The robot monitor can display the doctor at the remote station so that the patient feels they are being “visited” by the doctor.

After the visiting the patient in the first patient room 52A the doctor can move the robot 12 to the second patient room 52B where the process is repeated. The system thus allows the doctor to visit multiple patients from a remote location. This increases the frequency of doctor visits, reduces doctor fatigue and improves the overall medical care of the patients.

FIGS. 3 and 4 show an embodiment of the robot 12. The robot 12 may include a high level control system 150 and a low level control system 152. The high level control system 150 may include a processor 154 that is connected to a bus 156. The bus 156 is coupled to the camera 38 by an input/output (I/O) port 158, and to the monitor 40 by a serial output port 160 and a VGA driver 162. The monitor 40 may include a touchscreen function that allows the patient to enter input by touching the monitor screen 40.

The speaker 44 is coupled to the bus 156 by a digital to analog converter 164. The microphone 42 is coupled to the bus 156 by an analog to digital converter 166. The high level controller 150 may also contain random access memory (RAM) device 168, a non-volatile RAM device 170 and a mass storage device 172 that are all coupled to the bus 162. The mass storage device 172 may contain medical files of the patient that can be accessed by the user at the remote control station 16. For example, the mass storage device 172 may contain a picture of the patient. The user, particularly a health care provider, can recall the old picture and make a side by side comparison on the monitor 24 with a present video image of the patient provided by the camera 38. The robot antennae 45 may be coupled to a wireless transceiver 174. By way of example, the transceiver 174 may transmit and receive information in accordance with IEEE 802.11b.

The controller 154 may operate with a LINUX OS operating system. The controller 154 may also operate MS WINDOWS along with video, camera and audio drivers for communication with the remote control station 16. Video information may be transceived using MPEG CODEC compression techniques. The software may allow the user to send e-mail to the patient and vice versa, or allow the patient to access the Internet. In general the high level controller 150 operates to control the communication between the robot 12 and the remote control station 16.

The high level controller 150 may be linked to the low level controller 152 by serial ports 176 and 178. The low level controller 152 includes a processor 180 that is coupled to a RAM device 182 and non-volatile RAM device 184 by a bus 186. The robot 12 contains a plurality of motors 188 and motor encoders 190. The encoders 190 provide feedback information regarding the output of the motors 188. The motors 188 can be coupled to the bus 186 by a digital to analog converter 192 and a driver amplifier 194. The encoders 190 can be coupled to the bus 186 by a decoder 196. The robot 12 also has a number of proximity sensors 198 (see also FIG. 1). The position sensors 198 can be coupled to the bus 186 by a signal conditioning circuit 200 and an analog to digital converter 202.

The low level controller 152 runs software routines that mechanically actuate the robot 12. For example, the low level controller 152 provides instructions to actuate the movement platform to move the robot 12. The low level controller 152 may receive movement instructions from the high level controller 150. The movement instructions may be received as movement commands from the remote control station. Although two controllers are shown, it is to be understood that the robot 12 may have one controller controlling the high and low level functions.

The various electrical devices of the robot 12 may be powered by a battery(ies) 204. The battery 204 may be recharged by a battery recharger station 206 (see also FIG. 1). The low level controller 152 may include a battery control circuit 208 that senses the power level of the battery 204. The low level controller 152 can sense when the power falls below a threshold and then send a message to the high level controller 150. The high level controller 150 may include a power management software routine that causes the robot 12 to move so that the battery 204 is coupled to the recharger 206 when the battery power falls below a threshold value. Alternatively, the user can direct the robot 12 to the battery recharger 206. Additionally, the battery 204 may be replaced or the robot 12 may be coupled to a wall power outlet by an electrical cord (not shown).

FIG. 5 shows an embodiment of the robot 12. The robot 12 may include a holonomic platform 210 that is attached to a robot housing 212. The holonomic platform 210 provides three degrees of freedom to allow the robot 12 to move in any direction.

The robot 12 may have a pedestal assembly 214 that supports the camera 38 and the monitor 40. The pedestal assembly 214 may have two degrees of freedom so that the camera 26 and monitor 24 can be swiveled and pivoted as indicated by the arrows.

As shown in FIG. 6 the holonomic platform 210 may include three roller assemblies 220 that are mounted to a base plate 221. The roller assemblies 220 allow for movement in any direction.

The robot housing 212 may include a bumper 222. The bumper 222 may be coupled to optical position sensors 223 that detect when the bumper 222 has engaged an object. After engagement with the object the robot can determine the direction of contact and prevent further movement into the object.

FIG. 7 shows an embodiment of a roller assembly 220. Each assembly 220 may include a drive ball 224 that is driven by a pair of transmission rollers 226. The assembly 220 may include a retainer ring 228 and a plurality of bushings 230 that capture and allow the ball 224 to rotate in x and y directions but prevent movement in a z direction. The assembly also holds the ball under the transmission rollers 226.

The transmission rollers 226 are coupled to a motor assembly 232. The assembly 232 corresponds to the motor 188 shown in FIG. 4. The motor assembly 232 includes an output pulley 234 attached to a motor 236. The output pulley 234 is coupled to a pair of ball pulleys 238 by a drive belt 240. The ball pulleys 238 are each attached to a transmission bracket 242. The transmission rollers 226 are attached to the transmission brackets 242.

Rotation of the output pulley 234 rotates the ball pulleys 238. Rotation of the ball pulleys 238 causes the transmission rollers 226 to rotate and spin the ball 224 through frictional forces. Spinning the ball 224 will move the robot 12. The transmission rollers 226 are constructed to always be in contact with the drive ball 224. The brackets 242 allow the transmission rollers 226 to freely spin in a direction orthogonal to the driven direction when one of the other roller assemblies 220 is driving and moving the robot 12.

As shown in FIG. 8, the pedestal assembly 214 may include a motor 250 that is coupled to a gear 252 by a belt 254. The gear 252 is attached to a shaft 256. The shaft 256 is attached to an arm 258 that is coupled to the camera 38 and monitor 40 by a bracket 260. Activation of the motor 250 rotates the gear 252 and sleeve 256, and causes the camera 38 and monitor 40 to swivel (see also FIG. 5) as indicated by the arrows 4.

As shown in FIG. 9, the assembly 214 may further include a tilt motor 262 within the arm 258 that can cause the monitor 40 and camera 38 to pivot as indicated by the arrows 5. The tilt motor 262 may rotate a worm 264 that rotates a worm gear 266. The pin 268 is rigidly attached to both the worm gear 266 and the bracket 260 so that rotation of the gear 266 pivots the camera 38 and the monitor 40. The camera 38 may also include a zoom feature to provide yet another degree of freedom for the operator.

The robot 10 may be controlled by a number of different doctors. To accommodate for this the robot may have an arbitration system. The arbitration system may be integrated into the operating system of the robot 12. For example, the arbitration technique may be embedded into the operating system of the high-level controller 150.

By way of example, the users may be divided into classes that include the robot itself, a local user, a caregiver, a doctor, a family member, or a service provider. The robot 12 may override input commands that conflict with robot operation. For example, if the robot runs into a wall, the system may ignore all additional commands to continue in the direction of the wall. A local user is a person who is physically present with the robot. The robot could have an input device that allows local operation. For example, the robot may incorporate a voice recognition system that receives and interprets audible commands.

A caregiver is someone who remotely monitors the patient. A doctor is a medical professional who can remotely control the robot and also access medical files contained in the robot memory. The family and service users remotely access the robot. The service user may service the system such as by upgrading software, or setting operational parameters.

Message packets may be transmitted between a robot 12 and a remote station 16. The packets provide commands and feedback. Each packet may have multiple fields. By way of example, a packet may include an ID field a forward speed field, an angular speed field, a stop field, a bumper field, a sensor range field, a configuration field, a text field and a debug field.

The identification of remote users can be set in an ID field of the information that is transmitted from the remote control station 16 to the robot 12. For example, a user may enter a user ID into a setup table in the application software run by the remote control station 16. The user ID is then sent with each message transmitted to the robot.

The robot 12 may operate in one of two different modes; an exclusive mode, or a sharing mode. In the exclusive mode only one user has access control of the robot. The exclusive mode may have a priority assigned to each type of user. By way of example, the priority may be in order of local, doctor, caregiver, family and then service user. In the sharing mode two or more users may share access with the robot. For example, a caregiver may have access to the robot, the caregiver may then enter the sharing mode to allow a doctor to also access the robot. Both the caregiver and the doctor can conduct a simultaneous tele-conference with the patient.

The arbitration scheme may have one of four mechanisms; notification, timeouts, queue and call back. The notification mechanism may inform either a present user or a requesting user that another user has, or wants, access to the robot. The timeout mechanism gives certain types of users a prescribed amount of time to finish access to the robot. The queue mechanism is an orderly waiting list for access to the robot. The call back mechanism informs a user that the robot can be accessed. By way of example, a family user may receive an e-mail message that the robot is free for usage. Tables 1 and 2, show how the mechanisms resolve access request from the various users.

TABLE I
Access Medical Command Software/Debug Set
User Control Record Override Access Priority
Robot No No Yes (1) No No
Local No No Yes (2) No No
Caregiver Yes Yes Yes (3) No No
Doctor No Yes No No No
Family No No No No No
Service Yes No Yes Yes Yes

TABLE II
Requesting User
Local Caregiver Doctor Family Service
Current Local Not Allowed Warn current user of Warn current user of Warn current user of Warn current user of
User pending user pending user pending user pending user
Notify requesting Notify requesting user Notify requesting user Notify requesting
user that system is in that system is in use that system is in use user that system is in use
use Set timeout = 5 m Set timeout = 5 m No timeout
Set timeout Call back Call back
Caregiver Warn current user Not Allowed Warn current user of Warn current user of Warn current user of
of pending user. pending user pending user pending user
Notify requesting Notify requesting user Notify requesting user Notify requesting
user that system is that system is in use that system is in use user that system is in use
in use. Set timeout = 5 m Set timeout = 5 m No timeout
Release control Queue or callback Callback
Doctor Warn current user Warn current user of Warn current user of Notify requesting user Warn current user of
of pending user pending user pending user that system is in use pending user
Notify requesting Notify requesting Notify requesting user No timeout Notify requesting
user that system is user that system is in that system is in use Queue or callback user that system is in use
in use use No timeout No timeout
Release control Set timeout = 5 m Callback Callback
Family Warn current user Notify requesting Warn current user of Warn current user of Warn current user of
of pending user user that system is in pending user pending user pending user
Notify requesting use Notify requesting user Notify requesting user Notify requesting
user that system is No timeout that system is in use that system is in use user that system is in use
in use Put in queue or Set timeout = 1 m Set timeout = 5 m No timeout
Release Control callback pending user Queue or callback Call back
Service Warn current user Notify requesting Warn current user of Warn current user of Not Allowed
of pending user user that system is in request pending user
Notify requesting use Notify requesting user Notify requesting user
user that system is No timeout that system is in use that system is in use
in use Callback No timeout No timeout
No timeout Callback Queue or callback

The information transmitted between the station 16 and the robot 12 may be encrypted. Additionally, the user may have to enter a password to enter the system 10. A selected robot is then given an electronic key by the station 16. The robot 12 validates the key and returns another key to the station 16. The keys are used to encrypt information transmitted in the session.

FIG. 10 shows a robot head 300 that can both pivot and spin the camera 38 and the monitor 40. The robot head 300 can be similar to the robot 12 but without the platform 210. The robot head 300 may have the same mechanisms and parts to both pivot the camera 38 and monitor 40 about the pivot axis 4, and spin the camera 38 and monitor 40 about the spin axis 5. The pivot axis may intersect the spin axis. Having a robot head 300 that both pivots and spins provides a wide viewing area. The robot head 300 may be in the system either with or instead of the mobile robot 12. The head 300 may be placed in a patient room to conduct two-way videoconferencing between a patient and a doctor at a remote location. The pivoting and spinning degrees of freedom allow the doctor to move the camera to follow an ambulatory patient.

While certain exemplary embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that this invention not be limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those ordinarily skilled in the art.

Wang, Yulun, Kavoussi, Louis

Patent Priority Assignee Title
10449671, Apr 04 2017 Toyota Jidosha Kabushiki Kaisha Methods and systems for providing robotic operation constraints for remote controllable robots
11220008, Jul 18 2017 PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD. Apparatus, method, non-transitory computer-readable recording medium storing program, and robot
11837363, Nov 04 2020 Hill-Rom Services, Inc Remote management of patient environment
Patent Priority Assignee Title
3821995,
4413693, Mar 27 1981 Mobile chair
4471354, Nov 23 1981 FIRST INTERSTATE COMMERCIAL CORPORATION A CA CORP Apparatus and method for remotely measuring temperature
4519466, Mar 30 1982 Eiko Shiraishi Omnidirectional drive system
4572594, Feb 08 1984 SCHWARTZ, JENNIFER HEITZ Arthroscopy support stand
4625274, Dec 05 1983 Motorola, Inc. Microprocessor reset system
4638445, Jun 08 1984 Autonomous mobile robot
4652204, Aug 02 1985 Apparatus for handling hazardous materials
4669168, Nov 05 1984 Nissan Motor Company, Limited Method and system for automatically attaching works onto vehicle bodies carried on a conveyor
4679152, Feb 20 1985 NEC Corporation Navigation system and method for a mobile robot
4697472, Sep 25 1982 Fujitsu Limited Multi-articulated robot
4709265, Oct 15 1985 INTANK TECHNOLOGY INC Remote control mobile surveillance system
4733737, Aug 29 1985 HOENING, DOUGLAZS EDWARD Drivable steerable platform for industrial, domestic, entertainment and like uses
4751658, May 16 1986 E T M REALTY TRUST Obstacle avoidance system
4766581, Aug 07 1984 DANIEL J EDELMAN, INC Information retrieval system and method using independent user stations
4777416, May 16 1986 E T M REALTY TRUST Recharge docking system for mobile robot
4797557, May 23 1986 Aktiebolaget Electrolux Position sensing system for a moving object wherein a lens focuses light onto a radiation sensitive matrix
4803625, Jun 30 1986 CARDINAL HEALTH 303, INC Personal health monitor
4847764, May 21 1987 OWEN HEALTHCARE, INC ; MEDITROL, INC System for dispensing drugs in health care institutions
4875172, Sep 28 1984 Yutaka, Kanayama; Glory Kogyo Kabushiki Kaisha Locomotion-command method for mobile robots
4942512, May 21 1987 Kabushiki Kaisha Toshiba Control method of robot system and apparatus for realizing the same
4942538, Nov 07 1986 Spar Aerospace Limited Telerobotic tracker
4953159, Jan 03 1989 AVAYA Inc Audiographics conferencing arrangement
4974607, Aug 20 1987 TSURUTA, YOZO System for centralized management of medical data
4977971, May 17 1989 UNIVERSITY OF FLORIDA, 223 GRINTER HALL, GAINESVILLE, FL 32611 Hybrid robotic vehicle
5006988, Apr 28 1989 BOARD OF REGENTS ACTING FOR AND ON BEHALF OF THE UNIVERSITY OF MICHIGAN, THE, ANN ARBOR, MI 48109, A CORP OF MI Obstacle-avoiding navigation system
5040116, Sep 06 1988 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
5051906, Jun 07 1989 CAREFUSION 303, INC Mobile robot navigation employing retroreflective ceiling features
5073749, Jun 22 1989 MURATEC AUTOMATION CO , LTD Mobile robot navigating method
5084828, Sep 29 1989 HEALTHTECH SERVICES CORP Interactive medication delivery system
5130794, Mar 29 1990 INTELLECTUAL VENTURS FUND 59 LLC; INTELLECTUAL VENTURES FUND 59 LLC Panoramic display system
5148591, May 17 1981 Sensor Adaptive Machines Incorporated Vision target based assembly
5153833, Jun 23 1988 VINTEN BROADCAST INC Robotic television-camera dolly system
5155684, Oct 25 1988 Tennant Company Guiding an unmanned vehicle by reference to overhead features
5157491, Oct 17 1988 Method and apparatus for video broadcasting and teleconferencing
5182641, Jun 17 1991 The United States of America as represented by the Administrator of the Composite video and graphics display for camera viewing systems in robotics and teleoperation
5186270, Oct 24 1991 Massachusetts Institute of Technology Omnidirectional vehicle
5193143, Jan 12 1988 Honeywell Inc. Problem state monitoring
5217453, Mar 18 1991 Automated surgical system and apparatus
5220263, Mar 28 1990 MURATEC AUTOMATION CO , LTD Charging control system for moving robot system
5224157, May 22 1989 Minolta Camera Kabushiki Kaisha Management system for managing maintenance information of image forming apparatus
5231693, May 09 1991 The United States of America as represented by the Administrator, Telerobot control system
5236432, Apr 26 1988 Board of Regents of the University of Washington Robot-aided system for surgery
5305427, May 21 1991 SONY CORPORATION, A CORP OF JAPAN Robot with virtual arm positioning based on sensed camera image
5315287, Jan 13 1993 Energy monitoring system for recreational vehicles and marine vessels
5319611, Mar 31 1993 National Research Council of Canada Method of determining range data in a time-of-flight ranging system
5341242, Sep 05 1991 ELBIT SYSTEMS LTD Helmet mounted display
5341457, Dec 30 1988 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Perceptual coding of audio signals
5341459, May 09 1991 The United States of America as represented by the Administrator of the Generalized compliant motion primitive
5341854, Sep 28 1989 RED DEER GENERAL AND AUXILIARY HOSPITAL AND NURSING HOME DISTRICT NO 15 Robotic drug dispensing system
5347457, Sep 18 1990 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method and apparatus for controlling vehicle suspension such that suspension characteristics are changed at a point in time when a vehicle wheel reaches a road surface irregularity detected in front of the vehicle
5350033, Apr 26 1993 Robotic inspection vehicle
5366896, Jul 30 1991 University of Virginia Robotically operated laboratory system
5374879, Nov 04 1992 MARTIN MARIETTA ENERGY SYSTEMS, INC Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom
5400068, Jul 24 1991 Hitachi, Ltd. Video telephone
5417210, May 27 1992 INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NEW YORK System and method for augmentation of endoscopic surgery
5419008, Oct 24 1991 Massachusetts Institute of Technology Ball joint
5436542, Jan 28 1994 Surgix, Inc.; SURGIX, INC Telescopic camera mount with remotely controlled positioning
5441042, Aug 05 1991 KARL STORZ GMBH & CO KG Endoscope instrument holder
5441047, Mar 25 1992 Ambulatory patient health monitoring techniques utilizing interactive visual communication
5442728, May 12 1988 HealthTech Services Corp. Interactive patient assistance device for storing and dispensing a testing device
5462051, Aug 31 1994 OMRON HEALTHCARE CO , LTD Medical communication system
5486853, Dec 13 1994 Polycom, Inc Electrical cable interface for electronic camera
5510832,
5528289, Oct 20 1993 LIBRE HOLDINGS, INC Method for automatically adjusting a videoconferencing system camera to center an object
5539741, Dec 18 1993 IBM Corporation Audio conferenceing system
5544649, Mar 25 1992 CARDIOMEDIX, INC Ambulatory patient health monitoring techniques utilizing interactive visual communication
5550577, May 19 1993 ALCATEL N V Video on demand network, including a central video server and distributed video servers with random access read/write memories
5553609, Feb 09 1995 Indiana Research and Technology Corporation; Indiana University Research and Technology Corporation Intelligent remote visual monitoring system for home health care service
5572229, Apr 22 1991 Rockwell Collins Simulation And Training Solutions LLC Head-mounted projection display system featuring beam splitter and method of making same
5572999, May 27 1992 International Business Machines Corporation Robotic system for positioning a surgical instrument relative to a patient's body
5594859, Jun 03 1992 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Graphical user interface for video teleconferencing
5600573, Dec 02 1993 Comcast IP Holdings I, LLC Operations center with video storage for a television program packaging and delivery system
5619341, Feb 23 1995 Motorola, Inc. Method and apparatus for preventing overflow and underflow of an encoder buffer in a video compression system
5630566, May 30 1995 Portable ergonomic work station
5636218, Dec 07 1994 International Business Machines Corporation Gateway system that relays data via a PBX to a computer connected to a pots and a computer connected to an extension telephone and a lanand a method for controlling same
5652849, Mar 16 1995 Regents of the University of Michigan Apparatus and method for remote control using a visual information stream
5657246, Mar 07 1995 Cisco Technology, Inc Method and apparatus for a video conference user interface
5659779, Apr 25 1994 UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY System for assigning computer resources to control multiple computer directed devices
5673082, Apr 10 1995 The United States of America as represented by the Administrator of the Light-directed ranging system implementing single camera system for telerobotics applications
5682199, Mar 28 1996 JEDMED Instrument Company Video endoscope with interchangeable endoscope heads
5684695, Mar 11 1994 Siemens Aktiengesellschaft Method and apparatus for constructing an environment map of a self-propelled, mobile unit
5701904, Jan 11 1996 HART SECURITY LTD Telemedicine instrumentation pack
5739657, May 10 1995 Fujitsu Limited; NAKANO, EIJI Apparatus for controlling motion of normal wheeled omni-directional vehicle and method thereof
5749058, Jun 29 1994 Fanuc Ltd. Robot safety system for connecting peripheral device to a robot controller
5749362, May 27 1992 International Business Machines Corporation Method of creating an image of an anatomical feature where the feature is within a patient's body
5762458, Feb 20 1996 Intuitive Surgical Operations, Inc Method and apparatus for performing minimally invasive cardiac procedures
5764731, Oct 13 1994 PALUS A21, LLC Enhanced system for transferring, storing and using signaling information in a switched telephone network
5767897, Oct 31 1994 Polycom, Inc Video conferencing system
5786846, Mar 09 1995 NEC Corporation User interface of a video communication terminal unit and a method for notifying a terminal user's deviation from an appropriate shoot range
5801755, Apr 09 1996 MEDCOM TECHNOLOGY ASSOCIATES INC Interactive communciation system for medical treatment of remotely located patients
5802494, Jul 13 1990 Kabushiki Kaisha Toshiba Patient monitoring system
5836872, Apr 13 1989 VANGUARD IMAGING LTD Digital optical visualization, enhancement, quantification, and classification of surface and subsurface features of body surfaces
5838575, Dec 14 1995 GOLDASICH, DENNIS E, JR System for dispensing drugs
5844599, Jun 20 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Voice-following video system
5857534, Jun 05 1997 Kansas State University Research Foundation Robotic inspection apparatus and method
5867653, Apr 18 1996 Cisco Technology, Inc Method and apparatus for multi-cast based video conferencing
5871451, Mar 31 1993 Draeger Medical Systems, Inc Apparatus and method for providing dual output signals in a telemetry transmitter
5872451, May 09 1997 Guzik Technical Enterprises System for locating and fixing a headstack assembly on headstack tester
5872922, Mar 07 1995 Cisco Technology, Inc Method and apparatus for a video conference user interface
5876325, Nov 02 1993 Olympus Optical Co., Ltd. Surgical manipulation system
5911036, Sep 15 1995 Intuitive Surgical Operations, Inc Head cursor control interface for an automated endoscope system for optimal positioning
5917958, Oct 31 1996 SENSORMATIC ELECTRONICS, LLC Distributed video data base with remote searching for image data features
5927423, Mar 05 1997 Massachusetts Institute of Technology Reconfigurable footprint mechanism for omnidirectional vehicles
5949758, Jun 27 1996 International Business Machines Corporation Bandwidth reservation for multiple file transfer in a high speed communication network
5954692, Jan 03 1997 Symbiosis Endoscopic robotic surgical tools and methods
5959423, Jun 08 1995 MONEUAL, INC Mobile work robot system
5961446, Oct 06 1995 Tevital Incorporated Patient terminal for home health care system
5966130, May 12 1994 Integrated virtual networks
5973724, Feb 24 1995 Apple Inc Merging multiple teleconferences
5974446, Oct 24 1996 Academy of Applied Science Internet based distance learning system for communicating between server and clients wherein clients communicate with each other or with teacher using different communication techniques via common user interface
5983263, Jan 02 1998 Intel Corporation Method and apparatus for transmitting images during a multimedia teleconference
5995884, Mar 07 1997 Computer peripheral floor cleaning system and navigation method
5999977, Feb 24 1995 Apple Inc System for terminating multicast channel and data broadcast when at least two second endpoints do not transmit positive acknowledgment message to first endpont
6006946, Dec 05 1997 Parata Systems, LLC Pill dispensing system
6036812, Dec 05 1997 Parata Systems, LLC Pill dispensing system
6047259, Dec 30 1997 Medical Management International, Inc. Interactive method and system for managing physical exams, diagnosis and treatment protocols in a health care practice
6133944, Dec 18 1995 Regents of the University of California, The Head mounted displays linked to networked electronic panning cameras
6135228, Apr 25 1996 Massachusetts Institute of Technology Human transport system with dead reckoning facilitating docking
6148100, Dec 20 1996 Battelle Energy Alliance, LLC 3-dimensional telepresence system for a robotic environment
6170929, Dec 02 1998 OMNICELL, INC Automated medication-dispensing cart
6175779, Sep 29 1998 PROVIDENCE HEALTH TECHNOLOGIES, LLC Computerized unit dose medication dispensing cart
6189034, May 08 1996 Apple Inc Method and apparatus for dynamic launching of a teleconferencing application upon receipt of a call
6201984, Jun 13 1991 International Business Machines Corporation System and method for augmentation of endoscopic surgery
6211903, Jan 14 1997 CAMBRIDGE TECHNOLOGY DEVELOPMENT, INC Video telephone headset
6219587, May 27 1998 OMNICELL, INC Automated pharmaceutical management and dispensing system
6232735, Nov 24 1998 TMSUK CO , LTD Robot remote control system and robot image remote control processing system
6233504, Apr 16 1998 California Institute of Technology Tool actuation and force feedback on robot-assisted microsurgery system
6233735, Nov 13 1995 Sony Corporation Near video-on-demand system and broadcasting method therefor
6256556, Nov 16 1999 Burnham Institute for Medical Research Remote operation system for a robot
6259806, Jan 21 1992 SRI International Method and apparatus for transforming coordinate systems in a telemanipulation system
6259956, Jan 14 1999 Rawl & Winstead, Inc. Method and apparatus for site management
6266162, Nov 14 1994 Canon Kabushiki Kaisha Image communication apparatus for selectively controlling output of communication management information
6266577, Jul 13 1998 Raytheon BBN Technologies Corp System for dynamically reconfigure wireless robot network
6289263, Dec 16 1997 HANGER SOLUTIONS, LLC Spherical mobile robot
6292713, May 20 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Robotic telepresence system
6304050, Jul 19 1999 CAMERA-SPACE MANIPULATION INC Means and method of robot control relative to an arbitrary surface using camera-space manipulation
6317652, Sep 14 1998 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot
6321137, Sep 04 1997 Dynalog, Inc. Method for calibration of a robot inspection system
6325756, Mar 27 1998 Medtronic, Inc. Concepts to implement medconnect
6327516, Nov 09 1999 Mitsubishi Denki Kabushiki Kaisha Operation terminal and remote operation system for a robot
6330486, Jul 16 1997 RPX Corporation Acoustic perspective in a virtual three-dimensional environment
6330493, Sep 16 1999 Fanuc Ltd. Control system for synchronously cooperative operation of plurality of robots
6346950, May 20 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P System and method for display images using anamorphic video
6346962, Feb 27 1998 TELADOC HEALTH, INC Control of video conferencing system with pointing device
6369847, Mar 17 2000 Emtel, Inc.; EMTEL, INC Emergency facility video-conferencing system
6381515, Jan 25 1999 Sony Corporation Robot apparatus
6389329, Nov 27 1997 Mobile robots and their control system
6400378, Sep 26 1997 Sony Corporation; Sony Electronics, Inc. Home movie maker
6408230, Jan 17 2000 FUJI ELECTRIC CO , LTD Omnidirectional vehicle and method of controlling the same
6430471, Dec 17 1998 MONEUAL, INC Control system for controlling a mobile robot via communications line
6430475, Apr 10 2000 JAPAN AEROSPACE EXPLORATION AGENCY Pressure-distribution sensor for controlling multi-jointed nursing robot
6438457, Aug 22 1997 Sony Corporation Storage medium, robot, information processing device and electronic pet system
6452915, Jul 10 1998 Intellectual Ventures I LLC IP-flow classification in a wireless point to multi-point (PTMP) transmission system
6457043, Oct 23 1998 Verizon Patent and Licensing Inc Speaker identifier for multi-party conference
6459955, Nov 18 1999 The Procter & Gamble Company Home cleaning robot
6463352, Jan 21 1999 Amada Cutting Technologies, Inc. System for management of cutting machines
6463361, Sep 22 1994 Intuitive Surgical Operations, Inc Speech interface for an automated endoscopic system
6466844, Mar 06 2000 Matsushita Electric Industrial Co., Ltd. Robot, robot system, and robot control method
6468265, Nov 20 1998 Intuitive Surgical Operations, Inc Performing cardiac surgery without cardioplegia
6474434, Jul 02 1997 Borringis Industrie AG Drive wheel
6480762, Sep 27 1999 OLYMPUS OPTICAL CO , LTD Medical apparatus supporting system
6491701, Dec 08 1998 Intuitive Surgical Operations, Inc Mechanical actuator interface system for robotic surgical tools
6496099, Jun 24 1996 Intuitive Surgical Operations, Inc General purpose distributed operating room control system
6496755, Nov 24 1999 Vision Robotics Corporation Autonomous multi-platform robot system
6501740, Mar 07 1997 AT&T Corp System and method for teleconferencing on an internetwork comprising connection-oriented and connectionless networks
6507773, Jun 14 2001 SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY Multi-functional robot with remote and video system
6522906, Dec 08 1998 Intuitive Surgical Operations, Inc Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
6523629, Jun 07 1999 National Technology & Engineering Solutions of Sandia, LLC Tandem mobile robot system
6526332, Oct 11 2000 Sony Corporation Robot control system and method for introducing robot control software
6529765, Apr 21 1998 NEUTAR L L C Instrumented and actuated guidance fixture for sterotactic surgery
6529802, Jun 23 1998 Sony Corporation Robot and information processing system
6532404, Nov 27 1997 Mobile robots and their control system
6535182, Dec 07 1998 Koninklijke Philips Electronics N V Head-mounted projection display system
6535793, May 01 2000 iRobot Corporation Method and system for remote control of mobile robot
6540039, Aug 19 1999 Massachusetts Institute of Technology Omnidirectional vehicle with offset wheel pairs
6543899, Dec 05 2000 Eastman Kodak Company Auto-stereoscopic viewing system using mounted projection
6549215, May 20 1999 Compaq Computer Corporation System and method for displaying images using anamorphic video
6563533, Jan 06 1998 Sony Corporation Ergonomically designed apparatus for selectively actuating remote robotics cameras
6580246, Aug 13 2001 DIVERSEY, INC Robot touch shield
6581798, Oct 18 1995 ARXIUM, INC Method for controlling a drug dispensing system
6584376, Aug 31 1999 Swisscom AG Mobile robot and method for controlling a mobile robot
6587750, Sep 25 2001 Intuitive Surgical Operations, Inc Removable infinite roll master grip handle and touch sensor for robotic surgery
6590604, Apr 07 2000 Polycom, Inc. Personal videoconferencing system having distributed processing architecture
6594269, Sep 24 1996 InterVoice Limited Partnership Interactive information transaction processing system on IP telephony platform
6594552, Apr 07 1999 Intuitive Surgical Operations, Inc Grip strength with tactile feedback for robotic surgery
6602469, Nov 09 1998 POLYMER TECHNOLOGY SYSTEMS, INC Health monitoring and diagnostic device and network-based health assessment and medical records maintenance system
6604019, May 27 1998 OMNICELL, INC Automated pharmaceutical management and dispensing system
6604021, Jun 21 2001 ADVANCED TELECOMMUNICATIONS RESEARCH INSTITUTE INTERNATIONAL Communication robot
6611120, Apr 18 2001 Samsung Gwangju Electronics Co., Ltd. Robot cleaning system using mobile communication network
6646677, Oct 25 1996 Canon Kabushiki Kaisha Image sensing control method and apparatus, image transmission control method, apparatus, and system, and storage means storing program that implements the method
6650748, Apr 13 1998 AVAYA Inc Multiple call handling in a call center
6666374, Dec 03 1999 Diebold, Incorporated Automated transaction system and method
6684129, Sep 19 1997 Intuitive Surgical Operations, Inc Master having redundant degrees of freedom
6691000, Oct 26 2001 NATIONAL INSTITUTE OF INFORMATION AND Robot-arm telemanipulating system presenting auditory information
6710797,
6724823, Sep 07 2000 STMICROELECTRONICS S R L VLSI architecture, in particular for motion estimation applications
6728599, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6763282, Jun 04 2001 Humatics Corporation Method and system for controlling a robot
6764373, Oct 29 1999 Sony Corporation Charging system for mobile robot, method for searching charging station, mobile robot, connector, and electrical connection structure
6769771, Mar 14 2002 TRUMBULL VENTURES, LLC Method and apparatus for producing dynamic imagery in a visual medium
6781606, May 20 1999 Hewlett Packard Enterprise Development LP System and method for displaying images using foveal video
6784916, Feb 11 2002 Telbotics Inc. Video conferencing apparatus
6785589, Nov 30 2001 AESYNT HOLDINGS, INC ; OMNICELL, INC Dispensing cabinet with unit dose dispensing drawer
6791550, Dec 12 2000 Virentem Ventures, LLC Management of presentation time in a digital media presentation system with variable rate presentation capability
6798753, Oct 14 1999 Cisco Technology, Inc Automatically establishing conferences from desktop applications over the Internet
6799065, Dec 08 1998 Intuitive Surgical Operations, Inc Image shifting apparatus and method for a telerobotic system
6799088, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6804580, Apr 03 2003 KUKA Roboter GmbH Method and control system for controlling a plurality of robots
6804656, Jun 23 1999 VISICU, INC System and method for providing continuous, expert network critical care services from a remote location(s)
6810411, Sep 13 1999 Intel Corp Method and system for selecting a host in a communications network
6816192, Sep 20 1999 Kabushiki Kaisha Toshiba Motion pictures sending apparatus and motion pictures communication apparatus
6836703, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6839612, Dec 07 2001 Intuitive Surgical Operations, Inc Microwrist system for surgical procedures
6840904, Oct 11 2001 IDEAL LIFE INC Medical monitoring device and system
6845297, May 01 2000 iRobot Corporation Method and system for remote control of mobile robot
6852107, Jan 16 2002 Intuitive Surgical Operations, Inc Minimally invasive surgical training using robotics and tele-collaboration
6853878, Feb 10 2000 Kabushiki Kaisha Yaskawa Denki Robot controller
6853880, Aug 22 2001 Honda Giken Kogyo Kabushiki Kaisha Autonomous action robot
6871117, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6879879, Oct 31 2002 HTC Corporation Telepresence system with automatic user-surrogate height matching
6888333, Jul 02 2003 TELADOC HEALTH, INC Holonomic platform for a robot
6892112, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6895305, Feb 27 2001 III Holdings 1, LLC Robotic apparatus and wireless communication system
6898484, May 01 2002 Robotic manufacturing and assembly with relative radio positioning using radio based location determination
6914622, May 07 1997 TELBOTICS INC ; Ryerson Polytechnic University; UNIVERSITY OF TORONTO, THE Teleconferencing robot with swiveling video monitor
6925357, Jul 25 2002 TELADOC HEALTH, INC Medical tele-robotic system
6951535, Jan 16 2002 Intuitive Surgical Operations, Inc Tele-medicine system that transmits an entire state of a subsystem
6952470, Aug 23 2001 Bellsouth Intellectual Property Corporation Apparatus and method for managing a call center
6957712, Apr 18 2001 Samsung Gwangju Electronics Co., Ltd. Robot cleaner, system employing the same and method for re-connecting to external recharging device
6958706, Jul 27 1990 Hill-Rom Services, Inc Patient care and communication system
6965394, Mar 30 2001 Koninklijke Philips Electronics N.V.; Koninklijke Philips Electronics N V Remote camera control device
6995664, Jun 20 2001 WC TECHNOLOGIES, LLC; Rest Assured, LLC Remote supervision system and method
7030757, Nov 29 2002 Kabushiki Kaisha Toshiba Security system and moving robot
7058689, Oct 16 2001 Sprint Communications Company L.P. Sharing of still images within a video telephony call
7092001, Nov 26 2003 SAP SE Video conferencing system with physical cues
7096090, Nov 03 2003 Mobile robotic router with web server and digital radio links
7115102, Nov 17 2003 RNK PRODUCTS, INC Electronic stethoscope system
7117067, Apr 16 2002 FLIR DETECTION, INC System and methods for adaptive control of robotic devices
7123285, May 07 1997 Telbotics Inc.; Ryerson Polytechnic University and the University of Toronto Teleconferencing robot with swiveling video monitor
7123974, Nov 19 2002 ROCKWELL AUTOMATION, INC System and methodology providing audit recording and tracking in real time industrial controller environment
7123991, Jul 27 2002 KUKA Roboter GmbH Method for the exchange of data between controls of machines, particularly robots
7127325, Mar 27 2001 Kabushiki Kaisha Yaskawa Denki Controllable object remote control and diagnosis apparatus
7129970, Mar 17 2000 Emtel, Inc. Emergency facility video-conferencing system
7133062, Jul 31 2003 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Graphical user interface for video feed on videoconference terminal
7142945, Jul 25 2002 TELADOC HEALTH, INC Medical tele-robotic system
7142947, Jul 25 2002 TELADOC HEALTH, INC Medical tele-robotic method
7151982, Oct 18 1995 ARXIUM, INC Pharmaceutical dispensing system
7154526, Jul 11 2003 FUJIFILM Business Innovation Corp Telepresence system and method for video teleconferencing
7155306, Nov 07 2000 3AM IP, LLC Medication administration system
7156809, Dec 17 1999 Koninklijke Philips Electronics N V Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
7158859, Jan 15 2003 TELADOC HEALTH, INC 5 degrees of freedom mobile robot
7158860, Feb 24 2003 TELADOC HEALTH, INC Healthcare tele-robotic system which allows parallel remote station observation
7161322, Nov 18 2003 TELADOC HEALTH, INC Robot with a manipulator arm
7162338, Dec 17 2002 iRobot Corporation Systems and methods for computing a relative pose for global localization in a visual simultaneous localization and mapping system
7164969, Jul 25 2002 TELADOC HEALTH, INC Apparatus and method for patient rounding with a remote controlled robot
7171286, Feb 24 2003 TELADOC HEALTH, INC Healthcare tele-robotic system with a robot that also functions as a remote station
7174238, Sep 02 2003 Mobile robotic system with web server and digital radio links
7184559, Feb 23 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P System and method for audio telepresence
7188000, Sep 13 2002 iRobot Corporation Navigational control system for a robotic device
7199790, Dec 01 1995 Immersion Corporation Providing force feedback to a user of an interface device based on interactions of a user-controlled cursor in a graphical user interface
7202851, May 04 2001 IMMERSION MEDICAL, INC Haptic interface for palpation simulation
7206627, Mar 06 2002 MAKO SURGICAL CORP System and method for intra-operative haptic planning of a medical procedure
7215786, Jun 09 2000 Japan Science and Technology Agency Robot acoustic device and robot acoustic system
7219364, Nov 22 2000 BEIJING ZITIAO NETWORK TECHNOLOGY CO , LTD System and method for selectable semantic codec pairs for very low data-rate video transmission
7227334, Oct 21 2003 Samsung Electronics Co., Ltd. Charging apparatus used with a mobile robot
7256708, Jun 23 1999 VISICU, INC Telecommunications network for remote patient monitoring
7262573, Mar 06 2003 TELADOC HEALTH, INC Medical tele-robotic system with a head worn device
7283153, Mar 16 2000 France Telecom Home-based remote medical assistance
7289883, Jul 25 2002 TELADOC HEALTH, INC Apparatus and method for patient rounding with a remote controlled robot
7292912, Dec 05 2003 TELADOC HEALTH, INC Door knocker control system for a remote controlled teleconferencing robot
7321807, Oct 16 2002 ABB Schweiz AG Robotic wash cell using recycled pure water
7346429, May 05 2003 CHINA SUPERROBOTICS LIMITED Mobile robot hybrid communication link
7382399, May 13 1991 Sony Corporation Omniview motionless camera orientation system
7386730, Sep 05 2001 Olympus Corporation Remote medical supporting system
7391432, Feb 09 2001 FUJIFILM Corporation Videoconference system
7404140, Jan 31 2003 CERNER INNOVATION, INC System for managing form information for use by portable devices
7432949, Aug 20 2003 Mobile videoimaging, videocommunication, video production (VCVP) system
7441953, Oct 07 2004 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC Radiographic medical imaging system using robot mounted source and sensor for dynamic image capture and tomography
7525281, Sep 01 2004 Honda Motor Co., Ltd. Charging system for legged walking robot
7535486, Jun 04 2004 Sovereign Peak Ventures, LLC Display control device, display control method, program, and portable apparatus
7593030, Jul 25 2002 TELADOC HEALTH, INC Tele-robotic videoconferencing in a corporate environment
7624166, Dec 02 2003 FUJIFILM Business Innovation Corp System and methods for remote control of multiple display and devices
7647320, Jan 18 2002 Peoplechart Corporation Patient directed system and method for managing medical information
7719229, Feb 14 2006 HONDA MOTOR CO , LTD Charging system for legged mobile robot
7761185, Oct 03 2006 TELADOC HEALTH, INC Remote presence display through remotely controlled robot
7769492, Feb 22 2006 TELADOC HEALTH, INC Graphical interface for a remote presence system
7813836, Dec 09 2003 TELADOC HEALTH, INC Protocol for a remotely controlled videoconferencing robot
7831575, Aug 02 2001 BRIDGEWORKS LTD Library virtualisation module
7835775, Jun 21 2002 Sharp Kabushiki Kaisha Foldable cellular telephone
7860680, Mar 07 2002 Lord Corporation Robotic system for powering and interrogating sensors
7924323, Dec 24 2003 Inventor Holdings, LLC Method and apparatus for automatically capturing and managing images
7982763, Aug 20 2003 Portable pan-tilt camera and lighting unit for videoimaging, videoconferencing, production and recording
8077963, Jul 13 2004 TELADOC HEALTH, INC Mobile robot with a head-based movement mapping scheme
8116910, Aug 23 2007 TELADOC HEALTH, INC Telepresence robot with a printer
8170241, Apr 17 2008 TELADOC HEALTH, INC Mobile tele-presence system with a microphone system
8179418, Apr 14 2008 TELADOC HEALTH, INC Robotic based health care system
8180486, Oct 02 2006 Honda Motor Co., Ltd. Mobile robot and controller for same
8209051, Jul 25 2002 TELADOC HEALTH, INC Medical tele-robotic system
8265793, Mar 20 2007 iRobot Corporation Mobile robot for telecommunication
8348675, Oct 19 2000 Life Success Academy Apparatus and method for delivery of instructional information
20010002448,
20010010053,
20010034475,
20010034544,
20010037163,
20010051881,
20010054071,
20010055373,
20020010596,
20020015296,
20020027597,
20020049517,
20020055917,
20020057279,
20020058929,
20020059587,
20020063726,
20020073429,
20020082498,
20020095238,
20020098879,
20020104094,
20020106998,
20020109770,
20020111988,
20020120362,
20020130950,
20020141595,
20020143923,
20020177925,
20020183894,
20020184674,
20020186243,
20030030397,
20030048481,
20030050733,
20030060808,
20030063600,
20030069752,
20030100892,
20030104806,
20030114962,
20030126361,
20030135203,
20030144579,
20030144649,
20030151658,
20030171710,
20030174285,
20030180697,
20030199000,
20030206242,
20030216834,
20030220541,
20030220715,
20030231244,
20030232649,
20040010344,
20040012362,
20040013295,
20040019406,
20040024490,
20040041904,
20040065073,
20040068657,
20040078219,
20040080610,
20040088077,
20040093409,
20040098167,
20040102167,
20040117065,
20040135879,
20040138547,
20040143421,
20040148638,
20040153211,
20040157612,
20040162637,
20040167666,
20040167668,
20040170300,
20040172301,
20040174129,
20040175684,
20040179714,
20040189700,
20040201602,
20040205664,
20040215490,
20040222638,
20040224676,
20040230340,
20040240981,
20040241981,
20050003330,
20050007445,
20050013149,
20050021182,
20050021183,
20050021187,
20050021309,
20050024485,
20050027567,
20050027794,
20050028221,
20050035862,
20050038416,
20050038564,
20050049898,
20050052527,
20050065435,
20050065438,
20050065659,
20050065813,
20050071046,
20050078816,
20050083011,
20050099493,
20050104964,
20050110867,
20050122390,
20050154265,
20050182322,
20050192721,
20050204438,
20050212478,
20050219356,
20050225634,
20050231156,
20050232647,
20050267826,
20050283414,
20060007943,
20060013263,
20060013469,
20060013488,
20060029065,
20060047365,
20060048286,
20060052676,
20060052684,
20060064212,
20060074525,
20060074719,
20060082642,
20060087746,
20060095158,
20060095170,
20060098573,
20060103659,
20060104279,
20060106493,
20060122482,
20060142983,
20060161303,
20060164546,
20060173712,
20060178776,
20060189393,
20060195569,
20060259193,
20060293788,
20070021871,
20070046237,
20070050937,
20070064092,
20070078566,
20070112700,
20070117516,
20070120965,
20070122783,
20070135967,
20070142964,
20070176060,
20070192910,
20070197896,
20070198128,
20070199108,
20070216347,
20070250212,
20070262884,
20070273751,
20070291109,
20070291128,
20080011904,
20080065268,
20080082211,
20080126132,
20080133052,
20080201017,
20080215987,
20080229531,
20080255703,
20080263451,
20080269949,
20080281467,
20090030552,
20090055023,
20090070135,
20090105882,
20090125147,
20090164255,
20090237317,
20090240371,
20090259339,
20100010672,
20100010673,
20100019715,
20100063848,
20100070079,
20100073490,
20100076600,
20100088232,
20100115418,
20100116566,
20100131103,
20100191375,
20100268383,
20100323783,
20110050841,
20110071702,
20110172822,
20110187875,
20110190930,
20110218674,
20110245973,
20110292193,
20110301759,
20120023506,
20120072023,
20120092157,
CA2289697,
CN101106939,
CN101390098,
CN101507260,
CN101730894,
CN101866396,
CN101978365,
CN102203759,
CN1554193,
CN1554985,
EP981905,
EP20020981905,
EP20021262142,
EP20041536660,
EP20051536660,
EP20051573406,
EP20051594660,
EP20071791464,
EP20071800476,
EP20071856644,
EP20081928310,
EP20092027716,
EP20102145274,
EP20102214111,
EP20102263158,
EP20112300930,
EP20112342651,
EP92466492,
EP92488673,
EP968084328,
JP10079097,
JP10288689,
JP11220706,
JP2000032319,
JP2000049800,
JP2000079587,
JP2000196876,
JP2001125641,
JP2001147718,
JP2001179663,
JP2001188124,
JP2001198865,
JP2001198868,
JP2001199356,
JP2002000574,
JP2002046088,
JP2002101333,
JP2002112970,
JP2002235423,
JP2002305743,
JP2002355779,
JP2004261941,
JP2004289379,
JP2004524824,
JP2005028066,
JP2005059170,
JP2006109094,
JP2006224294,
JP2006246438,
JP2006508806,
JP2007081646,
JP2009002542,
JP2010064154,
JP2010246954,
JP2010532109,
JP957213753,
JP957248823,
JP957257422,
JP968084328,
JP968320727,
JP979267276,
KR20060037979,
KR2006037979,
KR20090012542,
KR20100019479,
KR2010009479,
KR20100139037,
KR2010039037,
RE42288, Mar 17 2000 Emtel, Inc. Emergency facility video-conferencing system
WO33726,
WO3077745,
WO2004008738,
WO2004012018,
WO2004075456,
WO2006012797,
WO2006044847,
WO2006078611,
WO2007041038,
WO2007041295,
WO2008100272,
WO2009117274,
WO2009128997,
WO2009145958,
WO2010006205,
WO2010006211,
WO2010033666,
WO2010047881,
WO2010062798,
WO2010065257,
WO2010120407,
WO2011028589,
WO2011097130,
WO2011097132,
WO2011109336,
WO2011149902,
WO9306690,
WO9851078,
WO9967067,
WO9742761,
////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 06 2012INTOUCH TECHNOLOGIES, INC.(assignment on the face of the patent)
Feb 23 2018INTOUCH TECHNOLOGIES, INC MIDCAP FINANCIAL TRUST, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454880518 pdf
Feb 23 2018ACUTECARE TELEMEDICINE, LLCMIDCAP FINANCIAL TRUST, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454880518 pdf
Feb 23 2018C30 CORPORATIONMIDCAP FINANCIAL TRUST, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454880518 pdf
Feb 23 2018INTOUCH HEALTH PROVIDERS, LLCMIDCAP FINANCIAL TRUST, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454880518 pdf
Feb 23 2018ITH DTC, LLCMIDCAP FINANCIAL TRUST, AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0454880518 pdf
Jan 11 2020INTOUCH TECHNOLOGIES, INC JONATA SUB TWO, INC MERGER SEE DOCUMENT FOR DETAILS 0537050839 pdf
Jan 11 2020JONATA SUB ONE, INC INTOUCH TECHNOLOGIES, INC MERGER SEE DOCUMENT FOR DETAILS 0537050728 pdf
Jan 11 2020INTOUCH TECHNOLOGIES, INC INTOUCH TECHNOLOGIES, INC MERGER SEE DOCUMENT FOR DETAILS 0537050728 pdf
Jan 11 2020JONATA SUB TWO, INC JONATA SUB TWO, INC MERGER SEE DOCUMENT FOR DETAILS 0537050839 pdf
Jul 01 2020MIDCAP FINANCIAL TRUST, AS AGENTINTOUCH TECHNOLOGIES, INC RELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 05180531170060 pdf
Jul 01 2020JONATA SUB TWO, INC JONATA SUB TWO, INC CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020 PREVIOUSLY RECORDED AT REEL: 053705 FRAME: 0839 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0549990001 pdf
Jul 01 2020INTOUCH TECHNOLOGIES, INC JONATA SUB TWO, INC CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020 PREVIOUSLY RECORDED AT REEL: 053705 FRAME: 0839 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0549990001 pdf
Jul 01 2020JONATA SUB ONE, INC INTOUCH TECHNOLOGIES, INC CORRECTIVE ASSIGNMENT TO CORRECT THE EXEUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020, PREVIOUSLY RECORDED ON REEL 053705 FRAME 0728 ASSIGNOR S HEREBY CONFIRMS THE MERGER 0549860508 pdf
Jul 01 2020INTOUCH TECHNOLOGIES, INC INTOUCH TECHNOLOGIES, INC CORRECTIVE ASSIGNMENT TO CORRECT THE EXEUTION DATE OF THE MERGER FROM 01 11 2020 TO 07 01 2020, PREVIOUSLY RECORDED ON REEL 053705 FRAME 0728 ASSIGNOR S HEREBY CONFIRMS THE MERGER 0549860508 pdf
Jul 01 2020JONATA SUB TWO, INC INTOUCH TECHNOLOGIES, INC MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0546900327 pdf
Jul 01 2020INTOUCH TECHNOLOGIES, INC INTOUCH TECHNOLOGIES, INC MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0546900327 pdf
Jul 01 2020JONATA SUB TWO, INC JONATA SUB TWO, INC MERGER SEE DOCUMENT FOR DETAILS 0537050839 pdf
Jul 01 2020INTOUCH TECHNOLOGIES, INC JONATA SUB TWO, INC MERGER SEE DOCUMENT FOR DETAILS 0537050839 pdf
Jul 01 2020MIDCAP FINANCIAL TRUST, AS AGENTACUTECARE TELEMEDICINE, LLCRELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 05180531170060 pdf
Jul 01 2020MIDCAP FINANCIAL TRUST, AS AGENTC30 CORPORATIONRELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 05180531170060 pdf
Jul 01 2020MIDCAP FINANCIAL TRUST, AS AGENTITH DTC, LLCRELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 05180531170060 pdf
Jul 01 2020MIDCAP FINANCIAL TRUST, AS AGENTINTOUCH HEALTH PROVIDERS, LLCRELEASE OF SECURITY INTEREST IN INTELLECTUAL PROPERTY AT REEL FRAME NO 45488 05180531170060 pdf
Sep 02 2020INTOUCH TECHNOLOGIES, INC TELADOC HEALTH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0537430661 pdf
Date Maintenance Fee Events
Apr 29 2019M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jan 26 20194 years fee payment window open
Jul 26 20196 months grace period start (w surcharge)
Jan 26 2020patent expiry (for year 4)
Jan 26 20222 years to revive unintentionally abandoned end. (for year 4)
Jan 26 20238 years fee payment window open
Jul 26 20236 months grace period start (w surcharge)
Jan 26 2024patent expiry (for year 8)
Jan 26 20262 years to revive unintentionally abandoned end. (for year 8)
Jan 26 202712 years fee payment window open
Jul 26 20276 months grace period start (w surcharge)
Jan 26 2028patent expiry (for year 12)
Jan 26 20302 years to revive unintentionally abandoned end. (for year 12)