A medical video-teleconferencing and treatment system, having a central video-conferencing station and one or more remote video-conferencing stations and a communications link establishing video-conferencing communication therebetween. A central video monitor and audio system is located at the central video-conferencing station, and a controller unit is coupled with the communications link. The remote video-conferencing stations each have a mobile emergency center cart including a remote video monitor and audio system and a video-conferencing camera controlled by the controller unit via the communications link and capable of responding to control signals of the controller unit for panning and zoom movement of said video-conferencing camera by a medical practitioner located at the central video-conferencing station. The arrangement enables the medical practitioner to observe and to diagnose the condition of the patient and direct the medical personnel of the selected video-conferencing station to provide treatment of the patient.
|
0. 18. A method for providing professional medical evaluation services comprising the steps of:
establishing a central video-conferencing communications station;
enabling simultaneous video-conferencing connections between said central video-conferencing station and a geographically remote first medical care facility via a first video-conferencing link and between said central video-conferencing station and a geographically remote second medical care facility via a second video-conferencing link, said first medical care facility being geographically remote from said second medical care facility;
enabling simultaneous display at said central video-conferencing station of a first image of a first patient located at said first medical care facility with a first care giver and a second image of a second patient located at said second medical care facility with a second care giver;
enabling contemporaneous professional medical evaluation of said first and second patients from said central video-conferencing station via said first and second video-conferencing links;
enabling audio and video communication of professional medical evaluation from said central video-conferencing station to said first patient or said first medical care giver via said first video-conferencing link; and
enabling audio and video communication of professional medical evaluation from said central video-conferencing station to said second patient or said second medical care giver via said second video-conferencing link.
0. 12. An arrangement for diagnosing emergency medical conditions of patients comprising:
a central medical video conferencing station;
first and second satellite emergency medical care facilities which are geographically remotely located from each other and from said central medical video conferencing station;
a first video camera located at said first satellite emergency medical care facility;
a second video camera located at said second satellite emergency medical care facility;
a first video conferencing communication link established between said central medical video conferencing station and said first satellite emergency medical care facility which enables a first video image from said first video camera of a first patient at said first satellite emergency medical care facility to be displayed at said central medical video conferencing station; and
a second video conferencing communication link established between said central medical video conferencing station and said second satellite emergency medical care facility which enables a second video image from said second video camera of a second patient at said second satellite emergency medical care facility to be displayed at said central medical video conferencing station simultaneously with display of said first video image at said central medical video conferencing station;
whereby medical conditions of said first and second patients can be evaluated substantially simultaneously by an emergency room physician at said central medical video conferencing station.
4. A business method for delivery of emergency medical services utilizing a system including first and second emergency care facilities, an emergency room physician disposed at an emergency medical video-conferencing station, a first patient and a first skilled medical caregiver disposed at said first emergency care facility, and a second patient and a second skilled medical caregiver disposed at said second emergency care facility, the method comprising the steps of:
(a) establishing a first video-conferencing communication link between said emergency medical video-conferencing station and said first emergency care facility;
(b) establishing a second video-conferencing communication link between said emergency medical video-conferencing station and said second emergency care facility;
(c) displaying an image of said first patient on a first monitor disposed in said emergency medical video-conferencing station via said first video-conferencing communication link;
(d) viewing said image of said first patient by said emergency room physician;
(e) controlling a video-camera disposed in said first emergency care facility from said emergency medical video-conferencing station to control said image of said first patient;
(f) aiding a treatment of a medical condition of said first patient at said first emergency care facility by said emergency room physician from said emergency medical video-conferencing station;
(g) displaying an image of said second patient at said emergency video-conferencing station via said second video-conferencing communication link;
(h) controlling a video-camera disposed in said second emergency care facility from said emergency medical videoconferencing station to control said image of said second patient; and
(i) aiding a treatment of a medical condition of said second patient at said second emergency care facility from said emergency medical video-conferencing station contemporaneously with said step of aiding the treatment of said first patient.
0. 15. A method for delivering medical evaluation services by a medical practitioner using a system which includes a central medical video conferencing station, a plurality of satellite medical care facilities which are geographically remotely located from each other and from said central medical video conferencing station, a first remotely controllable video camera located at a first of said satellite medical facilities, and a second remotely controllable video camera located at a second of said satellite medical care facilities, the method comprising the steps performed by or on behalf of a licensed medical practitioner of:
using a first audio-video conferencing communication link between said central medical video conferencing station and said first satellite medical care facility to confer visually and audibly with a first patient or a first care giver at said first satellite medical care facility;
using a second audio-video conferencing communication link between said central medical video conferencing station and said second satellite medical care facility to confer visually and audibly with a second patient or a second care giver at said second satellite medical care facility;
controlling said first video camera from said central medical video conferencing station to produce a first video image at said central medical video conferencing station of said first patient at said first satellite medical care facility;
controlling said second video camera from said central medical video conferencing station to produce a second video image at said central medical video conferencing station of said second patient at said second satellite medical care facility; and
viewing said first image of said first patient and said second image of said second patient simultaneously at said central medical video conferencing station thereby enabling the medical practitioner to professionally evaluate conditions of said first and second patients generally contemporaneously and to confer regarding evaluations with at least one of the group consisting of said first patient, said second patient, said first care giver, and said second care giver.
0. 9. A system for delivering medical evaluation services comprising:
a video conferencing arrangement including a camera, monitor and controller located at a central medical video conferencing station;
a first remotely controllable video camera located at a first satellite medical care facility, which is one of a plurality of satellite medical care facilities which are geographically remotely located from each other and from said central medical video conferencing station;
a second remotely controllable video camera located at a second of said plurality of satellite medical care facilities;
a first audio-video conferencing communication link established between said central medical video conferencing station and said first satellite medical care facility, said first audio-video communication link enabling a medical practitioner to confer audibly with a first patient or a first care giver at said first satellite medical care facility;
a second audio-video conferencing communication link established between said central medical video conferencing station and said second satellite medical care facility, said second audio-video communication link enabling said medical practitioner to confer audibly with a second patient or a second care giver at said second satellite medical care facility;
said controller enabling said medical practitioner at said central medical video conferencing station to control a first video image of said first patient from said first camera at said first satellite medical care facility and view said first video image of said first patient at said central medical video conferencing station; and
said controller enabling said medical practitioner at said central medical video conferencing station to control a second video image of said second patient from said second camera at said second satellite medical care facility and view said second video image of said second patient at said central medical video conferencing station;
whereby said first image of said first patient and said second image of said second patient can be viewed simultaneously by said medical practitioner at said central medical video conferencing station thereby enabling said medical practitioner to professionally evaluate conditions of said first and second patients generally contemporaneously and to confer regarding evaluations with said first and second patients or said first and second care givers at said satellite medical care facilities.
1. A business method for delivery of medical services utilizing a system including a plurality of satellite medical care facilities, at least one physician disposed at a central medical video-conferencing station, and a first patient and a first medical care giver disposed in a first of said plurality of satellite medical care facilities, the method comprising the steps of:
(a) establishing a video-conferencing communications system among said central medical video-conferencing station and said plurality of satellite medical care facilities;
(b) selecting said first of said plurality of satellite medical care facilities to actively receive video and audio communication from said physician;
(c) controlling a video-conferencing system of said first of said plurality of satellite medical care facilities to control a video image received at said central medical video-conferencing station from said first of said plurality of satellite medical care facilities;
(d) diagnosing a medical condition of said first patient at said first of said plurality of satellite medical care facilities by said physician from said central medical video-conferencing station;
(e) providing instructions via said video-conferencing system to said first medical caregiver by said physician to treat said first patient at said first of said plurality of satellite medical care facilities;
(f) selecting a second of said plurality of satellite medical care facilities to actively receive video and audio communication from said physician;
(g) displaying an image of a second patient disposed at said second of said plurality of satellite emergency medical care facilities at said central medical video-conferencing station;
(h) controlling a video-conferencing system of said second of said plurality of satellite medical care facilities to control said image received at said central medical video-conferencing station from said second of said plurality of satellite medical care facilities;
(i) diagnosing a medical condition of said second patient by said physician from said central medical videoconferencing video-conferencing station; and
(j) providing instructions via said video-conferencing system to a second medical caregiver disposed at said second of said plurality of satellite medical care facilities by said physician to treat said second patient generally contemporaneously with said steps of diagnosing said medical condition of said first patient and providing instructions to said first medical caregiver.
2. The method of
controlling said video-conferencing system of said first of said plurality of satellite medical care facilities; then
controlling said video-conferencing system of said second of said plurality of satellite medical care facilities.
3. The method of
controlling said video-conferencing system of said first of said plurality of satellite medical care facilities, and simultaneously
controlling said video-conferencing system of said second of said plurality of satellite medical care facilities.
5. The method of
selectively displaying said image of said first patient on said first monitor; and
selectively displaying said image of said second patient on said first monitor.
6. The method of
selectively viewing said image of said first patient by said emergency room physician on said first monitor;
selectively viewing said image of said second patient by said emergency room physician on said first monitor; and
aiding the treatment of said medical condition of said second patient at said second emergency care facility by said emergency room physician from said emergency medical video-conferencing station contemporaneously with said step of aiding the treatment of said first patient.
7. The method of
displaying said image of said second patient on a second monitor disposed in said emergency medical video-conferencing station while simultaneously displaying said image of said first patient on said first monitor.
8. The method of
selectively viewing said image of said first patient by said emergency room physician on said first monitor;
selectively viewing said image of said second patient by said emergency room physician on said second monitor; and
aiding the treatment of said medical condition of said second patient at said second emergency care facility by said emergency room physician from said emergency medical video-conferencing station contemporaneously with said step of aiding the treatment of said first patient.
0. 10. The system of claim 9 in which:
said central medical video conferencing station includes first and second video monitors; whereby
said first video image can be displayed on said first video monitor simultaneously when said second video image is displayed on said second video monitor.
0. 11. The system of claim 9 in which:
said first satellite medical care facility is a first emergency care facility; and
said second satellite medical care facility is a second emergency care facility.
0. 13. The arrangement of claim 12 further comprising:
a control arrangement by which said first video camera at said first satellite emergency medical care facility and said second video camera at said second satellite emergency medical care facility can be controlled by said emergency room physician at said central medical video conferencing station, so as to produce different first and second video images of said first and second patients for evaluation of medical conditions.
0. 14. The arrangement of claim 12 wherein:
said first patient is attended to by a first care giver; and
said second patient is attended to by a second care giver.
0. 16. The system of claim 15 in which said central medical video conferencing station includes first and second video monitors, the method further comprising the step of:
displaying said first video image on said first video monitor and simultaneously displaying said second video image on said second video monitor.
0. 17. The system of claim 15 in which:
said first satellite medical care facility is a first emergency care facility; and
said second satellite medical care facility is a second emergency care facility.
0. 19. The method of claim 18 further comprising the steps of:
enabling control from said central video-conferencing station of a first camera located in said first medical care facility via said first video-conferencing link; and
enabling control from said central video-conferencing station of a second camera located in said second medical care facility via said second video-conferencing link.
0. 20. The method of claim 18 further comprising the step of:
enabling contemporaneous professional medical diagnosis of said first and second patients from said central video-conferencing station via said first and second video-conferencing links by an emergency room physician.
|
This application is a continuation of application number U.S. Ser. No. 10/118,445 filed on Apr. 8, 2002, now abandoned, which is a continuation of application Ser. No. 09/527,774 filed on Mar. 17, 2000, now U.S. Pat. No. 6,369,847, the priority of which is claimed.
1. Field of the Invention
This invention relates generally to the field of video-conferencing wherein a two-way video and audio system is provided enabling one or more parties at one location to be in communication with one or more parties at another location. More specifically, the present invention pertains to a medically related video-conferencing system that is particularly suited to emergency medical activities and enables a physician at a central location to diagnose and control treatment of patients located at one or more remote medical facilities. Even more specifically, the present invention concerns the use of portable video-conferencing units at each of one or more remote emergency facility locations and having components, such as a video-conferencing CODEC (Compressor/Decompressor), that can be controlled by the physician from the physician's central location to thus enable efficient diagnosis of the patient and to ensure proper treatment of the patient by the medical personnel of the remote facility.
2. Description of the Prior Art
Although the field of video-conferencing has been under development only in recent years, a number of processes, procedures and interactive communications systems have been developed to enable video-conferencing in a wide variety of commercial environments. Examples of methods and apparatus associated with video-conferencing are presented in U.S. Pat. No. 4,719,513 of Peterson, U.S. Pat. No. 5,489,938 of Maruyama, et al. U.S. Pat. No. 5,767,897 of Howell, and U.S. Pat. No. 5,900,907 of Malloy, et al. U.S. Pat. No. 4,719,513 discloses a compact video system in the form of a mobile cart having compartments for containing video and video recording equipment such as a video camera and video recorder as well as a battery for providing a source of electrical power for operation of the video and video recording system (VCR) in remote conditions and to facilitate ease of using the equipment. The mobile cart device is also provided with a camera mount enabling the video camera to be appropriately mounted on the mobile cart for use. U.S. Pat. No. 5,489,938 discloses television conference apparatus in the form of a mobile cart which has a number of storage compartments within which apparatus such as a video camera, a manuscript table, a fax machine, etc. may be stored and may be subsequently used simply by opening compartment doors, operating lights or positioning equipment.
U.S. Pat. No. 4,755,881 also discloses a mobile cart within which various video apparatus such as a video monitor, VCR, battery, video camera, etc. may be stored so as to be readily available for use. U.S. Pat. No. 5,900,907 discloses a video-conferencing unit intended to be mounted to or supported by a video monitor and being designed with a differential signal sensing sound system enabling the video camera, or its lens to be automatically directed to the source of the sound, i.e., such as an individual speaking at a video conference, by the differential sound signal.
An interactive video/audio communications system has also been developed for medical treatment of remotely located patients as set forth in U.S. Pat. No. 5,810,755. In this case, a medical practitioner's station is in communication with a medical treatment station via video-conferencing apparatus each having video cameras, audio speakers, etc. This particular medical apparatus is particularly designed for ensuring identification of the patient and for ensuring payment for medical services via credit card or insurance card.
When a remotely located patient is being treated, especially during emergency treatment at a remotely located emergency facility, the patient's condition may not be well known. It is thus desirable for a medical practitioner, located at a central facility to have the capability of controlling the orientation of a patient inspection video, including panning up or down, right or left and actuating a zoom feature of the video lens. This feature will permit the medical practitioner remote from the emergency facility to conduct independent patient inspection and to discuss aspects of the patient's condition with the medical personnel and perhaps also with the patient during the time the local medical personnel are engaged in the conduct of independent patient care of treatment activities at the direction of the medial practitioner. It is desirable, therefore, to provide an emergency room video-conferencing system wherein a medical practitioner is enabled via a video-conferencing system to direct medical personnel at several remote locations to treat patients, particularly emergency patients, according to diagnosis and treatment controlled by the medical practitioner and further enabling the medical practitioner to inspect the condition of the patient for the purpose of diagnosis and to observe the medical treatment that is being administered by local staff personnel.
To enable a medical practitioner, especially during emergency conditions, to deliver high quality of medical care to a patient, from the standpoint of close inspection and diagnosis, and to ensure that local medical personnel, such as nursing personnel are enabled to concentrate on patient treatment, rather than expend time and effort manually positioning a video camera or a mobile emergency center cart having a video camera, it is desirable that the medical practitioner have the capability of independently causing the video camera to move as desired for efficient visual inspection of the patient, including close-up viewing of selective portions of the anatomy of the patient. It is also desirable that the medical practitioner have the capability of selectively controlling the video-conferencing camera from a remote location for video-conferencing with the nursing personnel at one or more emergency medical centers and for viewing both the patient and the nursing personnel at such one or more centers to thus ensure delivery of the highest quality medical care to the patient.
It is a principle feature of the present invention to provide a novel emergency room video-conferencing arrangement having a mobile emergency center cart that can be positioned as needed within an emergency room or other medical facility and having a video camera enabling a remotely located medical practitioner to selectively and independently control various aspects of the video camera and audio equipment to thus enable the medical practitioner to visualize and communicate with both the patient and the emergency room personnel or closely inspect the physical condition of the patient so that the medical practitioner can diagnose and control the patient's treatment and visually inspect and talk with the patient prior to and during treatment;
It is another feature of the present invention to provide a novel emergency room video-conferencing arrangement wherein the mobile emergency center cart is provided with an umbilical cord of sufficient length to enable its connection with electronic signal transmission and processing equipment connected to a wall mounted connection of a remote medical facility, thus enabling the cart to be positioned at any suitable location within an emergency room to best facilitate proper diagnosis and treatment of the patient; and
Another feature of this invention to provide a novel emergency room video-conferencing arrangement wherein the emergency center cart includes positional control apparatus for the video camera thereof thus enabling the medical practitioner from a remote location to selectively position the camera or its lens equipment as needed to visualize the condition of the patient for diagnosis and to control the character of treatment that is being delivered to the patient by the medical personnel of the remote location.
It is also a feature of the present invention to provide multiple emergency centers, each having an emergency center cart with video-conferencing equipment, date transmission equipment and the like which is selectively controllable via a communications link by signals generated by a controller unit being selectively manipulated by a medical practitioner at a central office remotely located from the emergency center.
So that the manner in which the above recited features, advantages and objects of the present invention are attained and can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the preferred embodiment thereof which is illustrated in the appended drawings, which drawings are incorporated as a part hereof. It is to be noted however, that the appended drawings illustrate only a typical embodiment of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective equivalent embodiments.
In the Drawings:
Referring now to the drawings and first to
The integrated video-conferencing control unit 19 is connected via appropriate electronic circuits to a communications link circuit 30 which is in selective communication with the video-teleconferencing units of a selected one of two or more remotely located emergency room facilities 32-34. The controller device 26, operated by the medical practitioner 24, is capable of being manually controlled to individually select the equipment of one or more of the emergency room facilities 32-34 as needed to diagnose and treat patients located therein. As shown at the upper right hand portion of
Each emergency room facility is also provided with a mobile emergency center cart, shown generally at 40, which connected to the communications link circuit 30 via an umbilical cord 42 which is typically received by an umbilical cord connection mounted to the wall structure of the emergency room facility. The emergency center cart 40 may be powered by an electrical circuit contained within the umbilical cord 42 and by connection to the electrical power circuitry of the emergency room system. Other electrical or electronic conductors of the umbilical cord 42 will provide video and audio communications links to enable the medical practitioner 24 to be in visual and audio communication with both the nursing personnel 38 and the patient and to likewise provide the nursing personnel with both video and audio communication with a medical practitioner so that diagnosis and treatment of the patient can be conducted efficiently. The umbilical cord of the emergency center cart will also have electronic conductors for telemetry of medical data representing the vital signs of the patient, thus enabling the medical practitioner to consider all relevant patient data that is desirable for patient diagnosis and treatment.
Referring now to
The intermediate support platform or shelf 48 is provided for support of a document illumination device shown generally at 64 having a housing structure 66 within which may be located one or more illumination devices such as incandescent or fluorescent lighting elements. The housing will be provided with a light transparent or translucent screen or document support plate member 68 through which light may be transmitted for illumination of the image of an x-ray film or the like. The document support screen or plate member 68 also provides for support of other relevant medical data documents such as EKG's, lab reports, etc., that may be visibly inspected by a document camera. For lighting such other documents, a pair of lighting elements 70 and 72 are shown to be positioned by support members 74 and 75, respectively, which extend upwardly from the housing structure 66 of the document illumination device 64. A document inspection video camera 76 may be supported by the lower portion of the upper shelf or platform 46 but preferably by a boom arm 77 from housing 66 and is positioned so that its lens is directed to and focused on the screen or plate 68 of the document illumination device. Thus, whether the document is an x-ray film, an EKG, a lab report or any other type of document or whether it must be lighted or backlighted to be readable, it may be inspected by the medical practitioner at the central office location simply by appropriately manipulating the control device 66 and selecting operation of the document video camera 76 together with one or both of the internal lighting devices and external lighting devices of the document illumination device 64. The intermediate support platform may also be adjustably connected to the support structures to enable selective positioning of the document support and lighting device relative to the document video camera.
In the event the document video camera 76 should have a fixed lens, the position of the support platform or shelf 48 is adjustable relative to the upright structural members 44 so that the screen or plate 68 or any document located on the plate will be precisely in focus. If the document supported by the screen 68 should have a particular dimension so that its upper surface is out of focus with respect to the lens of the video camera 76 then the support shelf 48 will be adjusted downwardly or upwardly so as to bring the appropriate surface into focus. Obviously, for efficiency of inspection of such documents by the medical practitioner from a remote location, the lens of the video camera 76 is preferably adjustable to achieve focus from the level of the screen or plate 68 upwardly to a level several inches above the plate 68.
The lower shelf or platform 50 of the mobile emergency center cart 40 is typically fixed relative to the upright structural members 44 and provides support for various communications and power terminals 78 and 80. One or both of these communication and power terminals will be connected to umbilical cord 42. The communication and power terminals provide electrical power for operation of video and lighting equipment on the cart and also to provide for transmission of control signals from the controller unit operated by the medical practitioner through the communications link to provide for selective control of cart mounted video-conferencing apparatus.
Referring again now to
After the medical practitioner has diagnosed the patient's condition treatment of the condition can be published by the medical personnel 38 located at the emergency room facility. Since the EC cart 40 is provided with casters or other types of wheels 82 and is thus mobile, the medical personnel and the emergency room facility will be capable of moving the EC cart to a location that is desired by the medical practitioner 24 so that the best possible inspection of the patient may be accomplished. The umbilical cord 42 of the mobile EC 40 will be of sufficient length and flexibility that the EC 40 may be located virtually anywhere within the emergency room 32 . . . 34. Also, when treatment is in progress by the emergency room personnel 38, the medical practitioner 24 can inspect the treatment during its progress and thus insure that optimum professional medical treatment is being accomplished.
Referring now to
It should be understood that the communications links 94, 96, 98 and 104, shown in
Referring now to
To provide the apparatus supported by the EC cart 122 with additional protection against bumping into, being bumped by or being jarred by other objects, the posts 136 of the cart are provided with resilient bumper elements 148 which may be composed of rubber or any suitable rubber-like material.
The video-teleconferencing unit 134 is provided with a video camera head 152 which is capable of being controllably tilted upwardly, downwardly and to each side for the purpose of permitting the medical practitioner to achieve video inspection of the patient and other aspects of the emergency center facility as well as having the capability of zooming the lens of the video-conferencing camera so that close inspection of any selected anatomy of the patient can be selectively viewed under the control of the medical practitioner by electronic signals transmitted from the controller unit via the communications link to one or more of the selected video-conferencing systems of the mobile EC carts.
The various electrical contacts or receptacles of the video-conferencing units 134 are connected by the electronic circuit wires 154 of the umbilical cable 156 as illustrated by
The lower support shelf 126 of the cart structure functions as a communications shelf for supporting various communications devices such as an IMUX inverse multiplexer 160, NT-3 power supply 162, surge protector 164, and may also support other electrical equipment such as spare electronic and video cables that may be needed.
Referring now to
As mentioned above, in the central medical facility 102 the medical practitioner 112 is provided with a plurality of video monitors, typically one for each of the remote emergency center facilities 86, 88, 90, etc. The control unit 114 utilized by the medical practitioner typically operates by infra-red (IR) beam transmission for sending control signals to the video camera and remote control signal receiver/transmitter 18 shown in
In view of the foregoing it is evident that the present invention is one well adapted to attain all of the objects and features hereinabove set forth, together with other objects and features which are inherent in the apparatus disclosed herein.
As will be readily apparent to those skilled in the art, the present invention may easily be produced in other specific forms without departing from its spirit or essential characteristics. The present embodiment is, therefore, to be considered as merely illustrative and not restrictive, of the scope of the invention.
Patent | Priority | Assignee | Title |
10059000, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for a tele-presence robot |
10061896, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
10074148, | Mar 31 2011 | RITE AID HDQTRS CORP | Medical kiosk and method of use |
10218748, | Dec 03 2010 | TELADOC HEALTH, INC | Systems and methods for dynamic bandwidth allocation |
10223681, | Aug 15 2012 | RITE AID HDQTRS CORP | Veterinary kiosk with integrated veterinary medical devices |
10241507, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
10259119, | Sep 30 2005 | TELADOC HEALTH, INC | Multi-camera mobile teleconferencing platform |
10315312, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system with a master remote station with an arbitrator |
10328576, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
10331323, | Nov 08 2011 | TELADOC HEALTH, INC | Tele-presence system with a user interface that displays different communication links |
10334205, | Nov 26 2012 | TELADOC HEALTH, INC | Enhanced video interaction for a user interface of a telepresence network |
10343283, | May 24 2010 | TELADOC HEALTH, INC | Telepresence robot system that can be accessed by a cellular phone |
10399223, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
10404939, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
10471588, | Apr 14 2008 | TELADOC HEALTH, INC | Robotic based health care system |
10493631, | Jul 10 2008 | TELADOC HEALTH, INC | Docking system for a tele-presence robot |
10591921, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
10603792, | May 22 2012 | TELADOC HEALTH, INC | Clinical workflows utilizing autonomous and semiautonomous telemedicine devices |
10658083, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
10682763, | May 09 2007 | TELADOC HEALTH, INC | Robot system that operates through a network firewall |
10762170, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing patient and telepresence device statistics in a healthcare network |
10769739, | Apr 25 2011 | TELADOC HEALTH, INC | Systems and methods for management of information among medical providers and facilities |
10780582, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
10808882, | May 26 2010 | TELADOC HEALTH, INC | Tele-robotic system with a robot face placed on a chair |
10875182, | Mar 20 2008 | TELADOC HEALTH, INC | Remote presence system mounted to operating room hardware |
10875183, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for tele-presence robot |
10878960, | Jul 11 2008 | TELADOC HEALTH, INC | Tele-presence robot system with multi-cast features |
10882190, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
10887545, | Mar 04 2010 | TELADOC HEALTH, INC | Remote presence system including a cart that supports a robot face and an overhead camera |
10892052, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
10911715, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
10924708, | Nov 26 2012 | TELADOC HEALTH, INC | Enhanced video interaction for a user interface of a telepresence network |
10969766, | Apr 17 2009 | TELADOC HEALTH, INC | Tele-presence robot system with software modularity, projector and laser pointer |
11154981, | Feb 04 2010 | TELADOC HEALTH, INC | Robot user interface for telepresence robot system |
11205510, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
11289192, | Jan 28 2011 | INTOUCH TECHNOLOGIES, INC.; iRobot Corporation | Interfacing with a mobile telepresence robot |
11389064, | Apr 27 2018 | TELADOC HEALTH, INC | Telehealth cart that supports a removable tablet with seamless audio/video switching |
11389962, | May 24 2010 | TELADOC HEALTH, INC | Telepresence robot system that can be accessed by a cellular phone |
11399153, | Aug 26 2009 | TELADOC HEALTH, INC | Portable telepresence apparatus |
11453126, | May 22 2012 | TELADOC HEALTH, INC | Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices |
11468983, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
11472021, | Apr 14 2008 | TELADOC HEALTH, INC. | Robotic based health care system |
11515049, | May 22 2012 | TELADOC HEALTH, INC.; iRobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
11628571, | May 22 2012 | TELADOC HEALTH, INC.; iRobot Corporation | Social behavior rules for a medical telepresence robot |
11636944, | Aug 25 2017 | TELADOC HEALTH, INC | Connectivity infrastructure for a telehealth platform |
11742094, | Jul 25 2017 | TELADOC HEALTH, INC. | Modular telehealth cart with thermal imaging and touch screen user interface |
11787060, | Mar 20 2008 | TELADOC HEALTH, INC. | Remote presence system mounted to operating room hardware |
11798683, | Mar 04 2010 | TELADOC HEALTH, INC. | Remote presence system including a cart that supports a robot face and an overhead camera |
11862302, | Apr 24 2017 | TELADOC HEALTH, INC | Automated transcription and documentation of tele-health encounters |
11910128, | Nov 26 2012 | TELADOC HEALTH, INC. | Enhanced video interaction for a user interface of a telepresence network |
8209051, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system |
8340819, | Sep 18 2008 | TELADOC HEALTH, INC | Mobile videoconferencing robot system with network adaptive driving |
8401275, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
8515577, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system with a master remote station with an arbitrator |
8670017, | Mar 04 2010 | TELADOC HEALTH, INC | Remote presence system including a cart that supports a robot face and an overhead camera |
8749612, | Dec 01 2011 | GOOGLE LLC | Reduced bandwidth usage in video conferencing |
8791982, | Jun 27 2012 | GOOGLE LLC | Video multicast engine |
8836751, | Nov 08 2011 | TELADOC HEALTH, INC | Tele-presence system with a user interface that displays different communication links |
8849679, | Jun 15 2006 | TELADOC HEALTH, INC | Remote controlled robot system that provides medical images |
8849680, | Jan 29 2009 | TELADOC HEALTH, INC | Documentation through a remote presence robot |
8861750, | Apr 17 2008 | TELADOC HEALTH, INC | Mobile tele-presence system with a microphone system |
8897920, | Apr 17 2009 | TELADOC HEALTH, INC | Tele-presence robot system with software modularity, projector and laser pointer |
8902278, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
8917309, | Mar 08 2012 | GOOGLE LLC | Key frame distribution in video conferencing |
8965579, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
8983174, | Mar 27 2009 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
8996165, | Oct 21 2008 | TELADOC HEALTH, INC | Telepresence robot with a camera boom |
8996392, | Mar 31 2011 | RITE AID HDQTRS CORP | Medical kiosk and method of use |
9043217, | Mar 31 2011 | RITE AID HDQTRS CORP | Medical kiosk and method of use |
9055332, | Oct 26 2010 | GOOGLE LLC | Lip synchronization in a video conference |
9089972, | Mar 04 2010 | TELADOC HEALTH, INC | Remote presence system including a cart that supports a robot face and an overhead camera |
9092554, | Dec 13 2011 | CARE INNOVATIONS, LLC | Alzheimers support system |
9098611, | Nov 26 2012 | TELADOC HEALTH, INC | Enhanced video interaction for a user interface of a telepresence network |
9138891, | Nov 25 2008 | TELADOC HEALTH, INC | Server connectivity control for tele-presence robot |
9160783, | May 09 2007 | TELADOC HEALTH, INC | Robot system that operates through a network firewall |
9174342, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
9193065, | Jul 10 2008 | TELADOC HEALTH, INC | Docking system for a tele-presence robot |
9198728, | Sep 30 2005 | TELADOC HEALTH, INC | Multi-camera mobile teleconferencing platform |
9210302, | Aug 10 2011 | GOOGLE LLC | System, method and apparatus for multipoint video transmission |
9251313, | Apr 11 2012 | TELADOC HEALTH, INC | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
9264664, | Dec 03 2010 | TELADOC HEALTH, INC | Systems and methods for dynamic bandwidth allocation |
9296107, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
9323250, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
9361021, | May 22 2012 | TELADOC HEALTH, INC | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
9375843, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
9386273, | Jun 27 2012 | GOOGLE LLC | Video multicast engine |
9429934, | Sep 18 2008 | TELADOC HEALTH, INC | Mobile videoconferencing robot system with network adaptive driving |
9469030, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
9602765, | Aug 26 2009 | TELADOC HEALTH, INC | Portable remote presence robot |
9609275, | Jul 08 2015 | GOOGLE LLC | Single-stream transmission method for multi-user video conferencing |
9610685, | Feb 26 2004 | TELADOC HEALTH, INC | Graphical interface for a remote presence system |
9715337, | Nov 08 2011 | TELADOC HEALTH, INC | Tele-presence system with a user interface that displays different communication links |
9766624, | Jul 13 2004 | TELADOC HEALTH, INC | Mobile robot with a head-based movement mapping scheme |
9776327, | May 22 2012 | TELADOC HEALTH, INC | Social behavior rules for a medical telepresence robot |
9785149, | Jan 28 2011 | TELADOC HEALTH, INC | Time-dependent navigation of telepresence robots |
9842192, | Jul 11 2008 | TELADOC HEALTH, INC | Tele-presence robot system with multi-cast features |
9849593, | Jul 25 2002 | TELADOC HEALTH, INC | Medical tele-robotic system with a master remote station with an arbitrator |
9956690, | Dec 09 2003 | TELADOC HEALTH, INC | Protocol for a remotely controlled videoconferencing robot |
9974612, | May 19 2011 | TELADOC HEALTH, INC | Enhanced diagnostics for a telepresence robot |
D694909, | Oct 12 2011 | RITE AID HDQTRS CORP | Medical kiosk |
RE45870, | Jul 25 2002 | TELADOC HEALTH, INC | Apparatus and method for patient rounding with a remote controlled robot |
Patent | Priority | Assignee | Title |
4113331, | Oct 09 1975 | Motorola, Inc. | Modular console enclosure with writing surface |
4237344, | Nov 14 1977 | Hospital Communication Systems, Inc. | Rapid response health care communications system |
4719513, | Dec 29 1986 | Eastman Kodak Company | Compact video system |
4755881, | Dec 29 1986 | Eastman Kodak Company | Transportable video apparatus |
5390238, | Jun 15 1992 | GENERAL DYNAMICS C4 SYSTEMS, INC | Health support system |
5434611, | Dec 16 1991 | Matsushita Electric Industrial Co., Ltd. | Home health care system which employs a two-way community antenna television network to permit communication between a doctor and patients at different locations |
5441047, | Mar 25 1992 | Ambulatory patient health monitoring techniques utilizing interactive visual communication | |
5481297, | Feb 25 1994 | AVAYA Inc | Multipoint digital video communication system |
5489938, | May 13 1991 | Ricoh Company, Ltd. | Television conference apparatus including a material picturing device |
5544649, | Mar 25 1992 | CARDIOMEDIX, INC | Ambulatory patient health monitoring techniques utilizing interactive visual communication |
5553609, | Feb 09 1995 | Indiana Research and Technology Corporation; Indiana University Research and Technology Corporation | Intelligent remote visual monitoring system for home health care service |
5585839, | Apr 28 1993 | Hitachi Ltd. | Audio and video telecommunication system with remote monitoring function and remote device control function |
5594786, | Aug 03 1992 | Hill-Rom Services, Inc | Patient care and communication system |
5687717, | Aug 06 1996 | Tremont Medical, Inc. | Patient monitoring system with chassis mounted or remotely operable modules and portable computer |
5767897, | Oct 31 1994 | Polycom, Inc | Video conferencing system |
5785650, | Aug 09 1995 | Medical system for at-home patients | |
5801755, | Apr 09 1996 | MEDCOM TECHNOLOGY ASSOCIATES INC | Interactive communciation system for medical treatment of remotely located patients |
5802494, | Jul 13 1990 | Kabushiki Kaisha Toshiba | Patient monitoring system |
5810747, | Aug 21 1996 | IRDETO ACCESS, INC | Remote site medical intervention system |
5810755, | Oct 17 1994 | Medicated wound dressing | |
5822544, | Jul 27 1990 | Hill-Rom Services, Inc | Patient care and communication system |
5872922, | Mar 07 1995 | Cisco Technology, Inc | Method and apparatus for a video conference user interface |
5877675, | Aug 29 1996 | Jansys, Inc. | Wireless healthcare communication system |
5900907, | Oct 17 1997 | Polycom, Inc | Integrated videoconferencing unit |
5961446, | Oct 06 1995 | Tevital Incorporated | Patient terminal for home health care system |
5963245, | Sep 24 1997 | Video telephone | |
5987519, | Sep 20 1996 | Georgia Tech Research Corporation | Telemedicine system using voice video and data encapsulation and de-encapsulation for communicating medical information between central monitoring stations and remote patient monitoring stations |
5990932, | Dec 22 1997 | RPX CLEARINGHOUSE LLC | Collaborative shared space |
6014432, | May 19 1998 | CARESTREAM HEALTH, INC | Home health care system |
6024699, | Mar 13 1998 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT | Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients |
6046761, | Apr 09 1996 | MEDCOM TECHNOLOGY ASSOCIATES INC | Interactive communication system for medical treatment of remotely located patients |
6101478, | Mar 28 1997 | Health Hero Network; RAYA SYSTEMS, INC | Multi-user remote health monitoring system |
6151521, | Nov 19 1997 | Mitsubishi Denki Kabushiki Kaisha | Medical support system |
6168563, | Nov 17 1992 | HEALTH HERO NETWORK, INC | Remote health monitoring and maintenance system |
6319200, | Nov 13 1996 | INDUSIND BANK LIMITED | Method and system for remotely monitoring multiple medical parameters |
6369847, | Mar 17 2000 | Emtel, Inc.; EMTEL, INC | Emergency facility video-conferencing system |
6398727, | Dec 23 1998 | Baxter International Inc | Method and apparatus for providing patient care |
6437826, | Jul 06 1998 | IMPERIUM IP HOLDINGS, INC | Digital video teleconferencing camera system having a base |
6454705, | Sep 21 1999 | Cardiocom | Medical wellness parameters management system, apparatus and method |
6490490, | Nov 09 1998 | Olympus Corporation | Remote operation support system and method |
6589169, | Mar 13 1998 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT | Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients undergoing anticoagulation therapy |
6638218, | May 14 2001 | AMERICAN DOCTORS ONLINE, INC | System and method for delivering medical examination, diagnosis, and treatment over a network |
6648820, | Oct 27 1999 | F POSZAT HU, L L C | Medical condition sensing system |
6731324, | Nov 18 1998 | GMI, INC | Video teleconferencing assembly and process |
6765991, | Jun 23 2000 | Emergency telecommunication device | |
6804656, | Jun 23 1999 | VISICU, INC | System and method for providing continuous, expert network critical care services from a remote location(s) |
6820057, | Nov 29 1996 | TC1 LLC | Telemedicine system |
6870484, | Mar 24 1999 | GE Marquette Medical Systems, Inc. | Patient monitoring systems having two-way communication |
7129970, | Mar 17 2000 | Emtel, Inc. | Emergency facility video-conferencing system |
20010037366, | |||
20020188179, | |||
20030179287, | |||
20030179292, | |||
20040070615, | |||
EP505627, | |||
EP917364, | |||
H1790, | |||
JP10137197, | |||
JP407274148, | |||
JP7274148, | |||
JP8215158, | |||
WO130231, | |||
WO9624284, | |||
WO9628086, | |||
WO9712474, | |||
WO9712544, | |||
WO9808203, | |||
WO9914882, | |||
WO9959469, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 24 2008 | Emtel, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 13 2014 | REM: Maintenance Fee Reminder Mailed. |
Sep 11 2014 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Sep 11 2014 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Mar 23 2018 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Jan 31 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jan 31 2019 | M1559: Payment of Maintenance Fee under 1.28(c). |
Feb 01 2019 | PTGR: Petition Related to Maintenance Fees Granted. |
Date | Maintenance Schedule |
Apr 12 2014 | 4 years fee payment window open |
Oct 12 2014 | 6 months grace period start (w surcharge) |
Apr 12 2015 | patent expiry (for year 4) |
Apr 12 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 12 2018 | 8 years fee payment window open |
Oct 12 2018 | 6 months grace period start (w surcharge) |
Apr 12 2019 | patent expiry (for year 8) |
Apr 12 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 12 2022 | 12 years fee payment window open |
Oct 12 2022 | 6 months grace period start (w surcharge) |
Apr 12 2023 | patent expiry (for year 12) |
Apr 12 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |