There is provided a planar inductive battery charging system designed to enable electronic devices to be recharged. The system includes a planar charging module having a charging surface on which a device to be recharged is placed. Within the charging module and parallel to the charging surface is at least one and preferably an array of primary windings that couple energy inductively to a secondary winding formed in the device to be recharged. The invention also provides secondary modules that allow the system to be used with conventional electronic devices not formed with secondary windings.
|
1. A battery charging system comprising a primary module and at least one secondary module, said primary module comprising means for connecting to a mains supply, and at least one primary winding parallel to a charging surface of said primary module, and wherein said secondary module comprises a secondary winding parallel to a surface of said secondary module, circuit means for converting alternating current generated in said secondary winding to a regulated dc output, and a charging connector for connection to the charging socket of an electronic device.
2. A battery charging system as claimed in
3. A battery charging system as claimed in
4. A battery charging system as claimed in
5. A battery charging system as claimed in
6. A battery charging system as claimed in
7. A battery charging system as claimed in
8. A battery charging system as claimed in
9. A battery charging system as claimed in
|
This application is a continuation of co-pending parent U.S. patent application Ser. No. 11/009,478, filed Dec. 10, 2004, entitled “INDUCTIVE BATTERY CHARGER SYSTEM WITH PRIMARY TRANSFORMER WINDINGS FORMED IN A MULTI-LAYER STRUCTURE” (as amended), which is a continuation of PCT International Application PCT/AU03/00721, filed Jun. 10, 2003, and published under PCT Article 21(2) in English as WO 03/105308 on Dec. 18, 2003. PCT/AU03/00721 claimed benefit from British Applications 0213374.2, filed on Jun. 10, 2002; 0226893.6, filed on Nov. 18, 2002; and 0305428.5, filed on Mar. 10, 2003. Accordingly, priority for this continuation application is claimed from British Application Numbers 0213374.2, 0226893.6, and 0305428.5. The disclosures of each of the prior related applications are incorporated herein in their entirety by reference.
This invention relates to a battery charger, and in particular to a battery charger having a planar surface on which one or more battery powered devices may be placed for battery recharging through induction. The invention also extends to a battery charging system for use with conventional electronic devices and that allows conventional electronic devices to be charged using the battery charging system of the present invention.
Portable electronic equipment such as mobile phones, handheld computers, personal data assistants, and devices such as a wireless computer mouse, are normally powered by batteries. In many cases, rechargeable batteries are preferred because of environmental and economical concerns. The most common way to charge rechargeable batteries is to use a conventional charger, which normally consists of an AC-DC power supply (in case of using the ac mains) or a DC-DC power supply (in case of using a car battery). Conventional chargers normally use a cord (an electric cable for a physical electrical connection) to connect the charger circuit (a power supply) to the battery located in the portable electronic equipment. The basic schematic of the conventional battery charger is shown in
Inductive electronic chargers without direct physical electrical connection have been developed in some portable electronic equipment such as electric toothbrushes where because they are designed to be used in the bathroom in the vicinity of sinks and water, it is not safe to provide a conventional electrical connection. Various known inductive type chargers, however, use traditional transformer designs with windings wound around ferrite magnetic cores as shown in
A contactless charger using a single primary printed winding without any EMI shielding has been proposed for portable telecommunications/computing electronics. However, the magnetic flux distribution of a single spiral winding has a major problem of non-uniform magnetic flux distribution. As illustrated further below, the magnitude of the magnetic field in the centre of the core of a spiral winding is highest and decreases from the centre. This means that if the portable electronic device is not placed properly in the central region, the charging effect is not effective in this non-uniform field distribution. Furthermore, without proper EMI shielding, undesirable induced currents may flow in other metallic parts of the portable electronic equipment.
According to the present invention there is provided a battery charger system comprising a charging module comprising a primary charging circuit and being formed with a planar charging surface adapted to receive an electronic device to be charged, wherein said primary charging circuit includes the primary winding of a transformer, said primary winding being substantially parallel to said planar charging surface, wherein said primary winding is provided with electromagnetic shielding on the side of said winding opposite from said planar charging surface, and wherein said electronic device is formed with a secondary winding.
In a preferred embodiment the primary winding is formed on a planar printed circuit board.
Preferably the magnetic flux generated by the primary winding is substantially uniform over at least a major part of the planar charging surface. In this way the precise position and orientation of the electronic device on the charging surface is not critical. To achieve this the charging module may comprise a plurality of primary windings, which may preferably be disposed in a regular array.
In a preferred embodiment the primary winding is provided with electromagnetic shielding on the side of said winding opposite from said planar charging surface. This shielding may include a sheet of ferrite material, and more preferably also may further include a sheet of conductive material such as copper or aluminium
It is an advantage of the present invention that in preferred embodiments the planar charging surface may be large enough to receive two or more electronic devices, and the primary charging circuit is adapted to charge two or more devices simultaneously. In this way it is possible to charge more than one device simultaneously. For example the planar charging surface may be divided into a plurality of charging regions, which regions may be defined by providing a plurality of primary transformer windings arranged in a regular array and connecting the windings in groups to define said charging regions. A further advantage of the present invention is that it enables the possibility of allowing a device to move over the charging surface while being charged at the same time. This possibility is particularly useful to a device which is designed to be moved such as a wireless computer mouse
Viewed from another aspect the present invention provides a battery charging system comprising a charging module comprising a primary charging circuit and being formed with a charging surface for receiving an electronic device to be charged, wherein said charging module comprises a plurality of transformer primary windings arranged in a regular array.
In addition to the battery charging system, the invention also extends to a battery powered portable electronic device comprising a rechargeable battery, and wherein the device includes a planar secondary winding for receiving electrical energy from a battery charger, and electromagnetic shielding between the winding and the major electronic components of said device.
Preferably the shielding comprises a sheet of ferrite material and a sheet of conductive material such as copper.
Preferably the winding is formed integrally with a back cover of said device.
An important aspect of the present invention is that it provides a battery charging system that employs a localized charging concept. In particular, when there is an array of primary coils, it will be understood that energy is only transferred from those primary coils that are adjacent the secondary coil located in the device being charged. In other words, when a device is placed on a planar charging surface that is greater in size than the device, energy is only transferred from that part of the planar charging surface that is directly beneath the device, and possibly also immediately adjacent areas that are still able to couple to the secondary coil.
Viewed from another aspect the present invention provides a battery charging system comprising a primary module and at least one secondary module, said primary module comprising means for connecting to a mains supply, and at least one primary winding adjacent to a charging surface of said primary module, and wherein said secondary module comprises a secondary winding adjacent to a surface of said secondary module, circuit means for converting alternating current generated in said secondary winding to a regulated DC output, and a charging connector for connection to the charging socket of an electronic device.
According to another aspect the invention also extends to a secondary module for a battery charging system, comprising: a housing having at least one charging surface, a winding provided in said housing adjacent to said surface and adapted to receive magnetic flux when said surface is brought adjacent to a primary winding, circuit means for converting alternating current in said secondary winding to a regulated DC output, and a connector means for connecting said DC output to the charging socket of an electronic device.
Some embodiments of the invention will now be described by way of example and with reference to the accompanying drawings, in which:—
The present invention will now be described in respect of a preferred embodiment in the form of an inductive battery charger for portable electronic equipment such as mobile phones, handheld computers and personal digital assistants (PDA), and devices such as a wireless computer mouse.
Referring firstly to
Referring in particular to
As shown in
The primary charger circuit has (1) a switched mode power electronic circuit, (2) the primary side of a planar transformer that consists of a group of primary windings connected in series or in parallel or a combination of both, (3) an EMI shield and (4) a flat interface surface on which one or more portable electronic devices can be placed and charged simultaneously. The schematic of the primary charger system is shown in
The battery charging system can be powered by AC or DC power sources. If the power supply is the AC mains, the switched mode power electronic circuit should perform a low-frequency (50 or 60 Hz) AC to DC power conversion and then DC to high-frequency (typically in the range from 20 kHz to 10 MHz) AC power conversion. This high-frequency AC voltage will feed the primary planar windings of the primary charger circuit. If the power supply is a battery (e.g. a car battery), the switched mode power supply should perform a DC to high-frequency AC power conversion. The high-frequency voltage is fed to the primary windings of the planar transformer.
Preferably, the charger should be able to charge one or more than one items of portable electronic equipment at the same time. In order to achieve such a function, the AC magnetic flux experienced by each item of portable equipment placed on the charging surface should be as even as possible. A standard planar spiral winding as shown in
One method to ensure uniform magnetic flux or mmf distribution is to use a concentric primary winding with a planar magnetic core as shown in
In order to ensure that more than one item of portable electronic equipment can be placed on the flat charging surface and charged simultaneously, a second and more preferred method proposed is to ensure that the magnetic flux distribution experienced by each items of portable electronic equipment is as uniform as possible. This method can be realized by using a “distributed” primary planar transformer winding array structure as shown in
The primary transformer windings can also take the form of a combination of series and parallel connections if desired. Such an arrangement allows the charging surface to be divided into various charging regions to cater for different sizes of the secondary windings inside the portable electronic equipment.
The back cover of the portable electronic equipment is a detachable back cover shown in
It will thus be seen that, at least in its preferred forms, the present invention provides a new planar inductive battery charger for portable electronic equipment such as mobile phones, handheld computers, personal data assistant (PDA) and electronic watches, and wireless computer mice. The inductive charger system consists of two modules, including (1) a power delivering charger circuit that contains the primary circuit of a planar isolation transformer and a flat charging surface and (2) a separate secondary transformer circuit that consists of a printed winding, a rectifier and preferably a thin EMI shield and which is located in the portable electronic equipment to be charged.
An advantage of the present invention, at least in preferred forms, is that the primary charger circuit system has the primary side of a planar transformer and a flat interface surface on which one or more portable electronic devices can be placed and charged simultaneously. The secondary circuit can be integrated into the back cover of the portable electronic device or separately placed inside the electronic device. The invention also extends to a back cover design with an in-built secondary circuit for the portable equipment. The secondary winding of the planar transformer can be EMI shielded and integrated into the back cover adjacent to the battery in the portable electronic device. As long as the back cover sides of the portable electronic device are placed on the charger surface, one or more portable electronic devices can be charged simultaneously, regardless of their orientations.
In the embodiments described above the charging module is formed as a single integral unit (as shown for example in
In the embodiments described above a single layer of transformer arrays is provided. However, in order to generate a more uniform magnetic field distribution, multi-layer transformer arrays can be used. The following embodiments describe how multiple layers of transformer arrays may be used that can provide a very uniform magnetic field distribution on the charging surface.
A second layer with a 3×4 transformer winding array is shown in
In order to examine the ‘uniform magnetic field magnitude’ feature of the proposed overlapped multi-layer transformer arrays, this ‘magnitude smoothing’ concept is illustrated in simplified diagrams in
In this example, a multi-layer transformer winding array structure that can provide a uniform magnetic field magnitude distribution is described. This example is based on square-spiral winding patterns. In principle, winding patterns of other shapes can also be applied as long as the resultant magnetic field magnitude distribution is as uniform as possible.
The use of two layers of transformer arrays can reduce the variation in the magnetic flux over the charging surface. However, there may still be some variations and the use of a three or four layer structure may provide a still more uniform flux distribution as described in the following embodiments.
The following embodiment is a structure comprising three layers of planar winding arrays. This PCB winding structure can generate magnetomotive force (mmf) of substantially even magnitude over the charging surface. Each winding array consists of a plurality spiral windings each of which are of an hexagonal shape. A spiral winding arranged in a hexagonal shape is shown in
It can be observed from
Careful examination of
In order to confirm that the mmf over the surface has uniform mmf distribution, any distance between any two adjacent peak mmf positions can be considered as illustrated in
In another embodiment, the three-layer PCB winding array structure can be constructed as a four-layer PCB, with one of the four layers accommodating the return paths of the spiral windings to the electronic driving circuit.
A further embodiment is based again on square spiral winding patterns. In this embodiment four layers of square-spiral winding arrays are used to generate highly uniform mmf over the PCB surface. As in the hexagonal embodiment described above, for convenience of illustration each square-spiral winding pattern (
In order to reduce the mmf ripples on the surface, the peak (P) positions of a second layer of square-spiral PCB winding array can placed over some of the valley positions (•) as shown in
The inductive battery charging platform described above, which can be regarded as the primary circuit of a transformer system (or the primary inductive charging system), can be used as a standard battery charging platform for portable electronic equipment with compatible inbuilt secondary circuitry in the electronic equipment to be charged. However, existing electronic equipment that is not designed for compatibility with the abovedescribed battery charging platform cannot take advantage of the convenience offered by the battery charging platform. Another embodiment of the present invention therefore provides both a battery charging system that can stand independently and can be used to charge existing conventional devices, and a means by which a conventional electronic device can be charged using the charging platform described above.
Referring firstly to
The charging system is provided with multiple charging slots 100,101,102 for receiving secondary charging modules to be described further below. As will be explained further below each charging slot is provided with a primary winding.
Each primary winding can be a coil 105 as shown in
It will also be understood that the primary winding could be constructed as a multiple layer structure as discussed above in order to provide a particularly preferred even flux distribution over the charging surface.
As can be seen from
The secondary coil or PCB winding should be placed close to the (preferably flat) surface of the housing of the secondary charging module so as to pick up maximum changing AC magnetic flux from the primary inductive charging extension system or platform. According to Faraday's Law, an AC voltage will be induced across the secondary winding if the secondary winding senses a changing magnetic flux (that can be generated by the primary winding in the primary inductive charging system).
The terminals of the secondary winding are connected to the input terminals of an electronic circuit 205 that (1) performs the AC-DC power conversion function (i.e. rectifying the AC voltage into DC) and (2) preferably also regulate the DC voltage to a desired value (typically in the range from 3V to 24V) within a certain tolerance. Through a cable and a charger connector for connecting to charging socket in the portable equipment, this DC voltage can be used to charge the portable equipment a shown in
The secondary winding design (such as number of turns and dimensions of windings), the DC regulated voltage level and the type of connector can be designed according to the charging requirements of specific electronic products. Therefore, different secondary charging modules can be designed for different ranges of products, but all secondary modules are compatible with the same primary charging extension system as shown in
A further advantage of the secondary charging module is that it allows a conventional electronic device to be charged using the inductive battery charging platform described above. Although a conventional electronic device cannot be charged by placing it directly on the charging platform surface because it does not have the in-built secondary winding, instead a secondary charging module can be placed in the inductive charging system and charge the conventional device therefrom as shown in
In principle, the housing of the secondary charging module can have more than one preferably flat interface surface. If the housing is a cuboid it will have two large opposed interface surfaces (eg upper and lower surfaces of a relatively thin flat cuboid structure a shown in the Figures) and with this cuboid design, either interface surface of the secondary module housing can be placed on the charging slots of the primary inductive charging extension system or other charging platform. This cuboid design makes the secondary charging modules very user-friendly because it does not matter which way up the housing of the secondary module is placed on the primary charging surface.
In summary, a preferred embodiment of the secondary charging module consists of:
It will thus be seen that, at least in preferred forms, the charging system of the present invention including the proposed secondary charging modules offers users a convenient and user-friendly battery charging system for a wide range of portable electronic equipment. Using the appropriate charger connectors that are compatible with different portable equipment, the proposed charging system enables one single charging system (that occupies only one power point or socket in the ac mains) to charge a wide range of electronic equipment.
The present invention, at least in preferred forms, provides a new charging system allows more than one piece of equipment to be charged simultaneously, and regardless of their orientations on the charging surface, and allows a movable device to be charged while it moves over the charging surface.
Patent | Priority | Assignee | Title |
10033231, | Mar 17 2008 | POWERMAT TECHNOLOGIES LTD | System and method for providing wireless power transfer functionality to an electrical device |
10057963, | Jun 05 2014 | Steelcase Inc. | Environment optimization for space based on presence and activities |
10068701, | Sep 25 2007 | POWERMAT TECHNOLOGIES LTD. | Adjustable inductive power transmission platform |
10115520, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and method for wireless power transfer |
10121113, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
10161752, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
10205346, | Mar 23 2014 | SAMSUNG ELECTRONICS CO , LTD | Wireless power receiver and host control interface thereof |
10224751, | Aug 06 2013 | The University of Hong Kong | Methods for parameter identification, load monitoring and output power control in wireless power transfer systems |
10225707, | Jun 05 2014 | Steelcase Inc. | Space guidance and management system and method |
10264213, | Dec 15 2016 | Steelcase Inc | Content amplification system and method |
10353664, | Mar 07 2014 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
10374458, | Jan 23 2015 | Witech GmbH | Inductive power transmission method |
10433646, | Jun 06 2014 | Steelcase Inc | Microclimate control systems and methods |
10459611, | Jun 03 2016 | Steelcase Inc. | Smart workstation method and system |
10523036, | Dec 14 2016 | CHENGDU CONVENIENTPOWER SEMICONDUCTOR CO , LTD | Resonant wireless charging system and method for electric toothbrush |
10561006, | Jun 05 2014 | Steelcase Inc. | Environment optimization for space based on presence and activities |
10614694, | Jun 06 2014 | Steelcase Inc | Powered furniture assembly |
10638090, | Dec 15 2016 | Steelcase Inc. | Content amplification system and method |
10714986, | Jun 11 2010 | Mojo Mobility, Inc. | Intelligent initiation of inductive charging process |
10733371, | Jun 02 2015 | Steelcase Inc | Template based content preparation system for use with a plurality of space types |
10742076, | Mar 22 2007 | SAMSUNG ELECTRONICS CO , LTD | Inductive power outlet locator |
10763699, | Dec 21 2007 | Philips IP Ventures B.V. | Inductive power transfer |
10868443, | Apr 08 2009 | PHILIPS IP VENTURES B V | Selectable coil array |
10897598, | Dec 15 2016 | Steelcase Inc. | Content amplification system and method |
10970662, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
11085771, | Jun 05 2014 | Steelcase Inc. | Space guidance and management system and method |
11100282, | Jun 02 2015 | Steelcase Inc. | Template based content preparation system for use with a plurality of space types |
11114886, | Apr 12 2013 | Mojo Mobility, Inc. | Powering or charging small-volume or small-surface receivers or devices |
11114895, | Jan 29 2007 | POWERMAT TECHNOLOGIES, LTD. | Pinless power coupling |
11121580, | Jun 01 2006 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
11143510, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
11150859, | Mar 07 2014 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
11168987, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
11190731, | Dec 15 2016 | Steelcase Inc. | Content amplification system and method |
11201500, | Jan 31 2006 | Mojo Mobility, Inc. | Efficiencies and flexibilities in inductive (wireless) charging |
11211975, | May 07 2008 | Mojo Mobility, Inc. | Contextually aware charging of mobile devices |
11212898, | Jun 05 2014 | Steelcase Inc. | Environment optimization for space based on presence and activities |
11280619, | Jun 05 2014 | Steelcase Inc. | Space guidance and management system and method |
11283306, | Jun 11 2010 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Magnet with multiple opposing poles on a surface for use with magnetically sensitive components |
11292349, | Apr 12 2013 | Mojo Mobility Inc. | System and method for powering or charging receivers or devices having small surface areas or volumes |
11296557, | May 30 2017 | Wireless Advanced Vehicle Electrification, LLC | Single feed multi-pad wireless charging |
11307037, | Jun 05 2014 | Steelcase Inc. | Space guidance and management system and method |
11316371, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
11321643, | Mar 07 2014 | Steelcase Inc. | Method and system for facilitating collaboration sessions |
11329511, | Jun 01 2006 | Mojo Mobility Inc. | Power source, charging system, and inductive receiver for mobile devices |
11330647, | Jun 03 2016 | Steelcase Inc. | Smart workstation method and system |
11342792, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
11349315, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
11387688, | Jul 02 2008 | POWERMAT TECHNOLOGIES, LTD. | System and method for coded communication signals regulating inductive power transmissions |
11398747, | Jan 18 2011 | Mojo Mobility, Inc. | Inductive powering and/or charging with more than one power level and/or frequency |
11402216, | Jun 05 2014 | Steelcase Inc. | Space guidance and management system and method |
11402217, | Jun 05 2014 | Steelcase Inc. | Space guidance and management system and method |
11404909, | Jan 31 2006 | Mojo Mobillity Inc. | Systems for inductive charging of portable devices that include a frequency-dependent shield for reduction of electromagnetic interference and heat during inductive charging |
11411433, | Jan 31 2006 | Mojo Mobility, Inc. | Multi-coil system for inductive charging of portable devices at different power levels |
11437852, | Jan 29 2007 | POWERMAT TECHNOLOGIES LTD. | Pinless power coupling |
11444485, | Feb 05 2019 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive charging system with charging electronics physically separated from charging coil |
11462942, | Jan 31 2006 | Mojo Mobility, Inc. | Efficiencies and method flexibilities in inductive (wireless) charging |
11462943, | Jan 30 2018 | Wireless Advanced Vehicle Electrification, LLC | DC link charging of capacitor in a wireless power transfer pad |
11502543, | Nov 18 2016 | The University of Hong Kong | Ball and socket wireless power transfer systems |
11569685, | Jan 31 2006 | Mojo Mobility Inc. | System and method for inductive charging of portable devices |
11581124, | Feb 16 2012 | Auckland UniServices Limited | Multiple coil flux pad |
11601017, | Jun 01 2006 | Power source, charging system, and inductive receiver for mobile devices | |
11606119, | May 07 2008 | Mojo Mobility Inc. | Metal layer for inductive power transfer |
11611240, | Jan 29 2007 | POWERMAT TECHNOLOGIES LTD. | Pinless power coupling |
11621586, | May 30 2017 | Wireless Advanced Vehicle Electrification, LLC | Single feed multi-pad wireless charging |
11651891, | Aug 07 2009 | Auckland UniServices Limited | Roadway powered electric vehicle system |
11652957, | Dec 15 2016 | Steelcase Inc. | Content amplification system and method |
11687854, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
11690111, | Jun 03 2016 | Steelcase Inc. | Smart workstation method and system |
11713969, | Oct 03 2014 | Steelcase Inc. | Method and system for locating resources and communicating within an enterprise |
11744376, | Jun 06 2014 | Steelcase Inc. | Microclimate control systems and methods |
11811238, | Feb 05 2019 | Mojo Mobility Inc. | Inductive charging system with charging electronics physically separated from charging coil |
11837399, | Mar 17 2008 | POWERMAT TECHNOLOGIES, LTD. | Transmission-guard system and method for an inductive power supply |
11881717, | Jan 29 2007 | POWERMAT TECHNOLOGIES LTD. | Pinless power coupling |
11929202, | Apr 12 2013 | Mojo Mobility Inc. | System and method for powering or charging receivers or devices having small surface areas or volumes |
11956838, | Jun 03 2016 | Steelcase Inc. | Smart workstation method and system |
11979201, | Jul 02 2008 | POWERMAT TECHNOLOGIES LTD. | System and method for coded communication signals regulating inductive power transmissions |
11979959, | Jun 05 2014 | Steelcase Inc. | Environment optimization for space based on presence and activities |
11984739, | Jul 31 2020 | Steelcase Inc. | Remote power systems, apparatus and methods |
12118178, | Apr 08 2020 | Steelcase Inc | Wayfinding services method and apparatus |
7750783, | Feb 20 2007 | 138 EAST LCD ADVANCEMENTS LIMITED | Electronic instrument including a coil unit |
7786622, | Mar 01 2007 | GRACO CHILDREN S PRODUCTS INC | Juvenile product inductive power transfer |
7872445, | Jun 10 2002 | City University of Hong Kong | Rechargeable battery powered portable electronic device |
7906936, | Oct 09 2007 | Powermat Technologies, Ltd | Rechargeable inductive charger |
7948208, | Jun 01 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Power source, charging system, and inductive receiver for mobile devices |
7952322, | Jan 31 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive power source and charging system |
8049370, | Sep 25 2007 | Powermat Technologies, Ltd | Centrally controlled inductive power transmission platform |
8090550, | Mar 22 2007 | Powermat Technologies, Ltd | Efficiency monitor for inductive power transmission |
8169185, | Jan 31 2006 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | System and method for inductive charging of portable devices |
8188619, | Jul 02 2008 | Powermat Technologies, Ltd | Non resonant inductive power transmission system and method |
8193769, | Oct 18 2007 | Powermat Technologies, Ltd | Inductively chargeable audio devices |
8234509, | Sep 26 2008 | Qualcomm Incorporated | Portable power supply device for mobile computing devices |
8269456, | Jun 10 2002 | City University of Hong Kong | Secondary module for battery charging system |
8283812, | Oct 09 2007 | Powermat Technologies, Ltd | Inductive power providing system having moving outlets |
8294300, | Jan 14 2008 | Qualcomm Incorporated | Wireless powering and charging station |
8294418, | Feb 03 2010 | Convenientpower HK Ltd | Power transfer device and method |
8299753, | Jun 10 2002 | City University of Hong Kong | Inductive battery charger system with primary transfomer windings formed in a multi-layer structure |
8301077, | Sep 24 2009 | Convenientpower HK Ltd | Antenna network for passive and active signal enhancement |
8305741, | Jan 05 2009 | Qualcomm Incorporated | Interior connector scheme for accessorizing a mobile computing device with a removeable housing segment |
8319925, | Jul 08 2008 | Powermat Technologies, Ltd | Encapsulated pixels for display device |
8320143, | Apr 15 2008 | Powermat Technologies, Ltd | Bridge synchronous rectifier |
8373387, | Aug 03 2010 | DURACELL U S OPERATIONS, INC | USB inductive charger |
8380998, | Oct 09 2007 | Powermat Technologies, Ltd | Inductive receivers for electrical devices |
8385822, | Sep 26 2008 | Qualcomm Incorporated | Orientation and presence detection for use in configuring operations of computing devices in docked environments |
8395547, | Aug 27 2009 | Qualcomm Incorporated | Location tracking for mobile computing device |
8401469, | Sep 26 2008 | Qualcomm Incorporated | Shield for use with a computing device that receives an inductive signal transmission |
8427012, | Jul 02 2008 | POWERMAT TECHNOLOGIES, LTD. | Non resonant inductive power transmission system and method |
8437695, | Jul 21 2009 | Qualcomm Incorporated | Power bridge circuit for bi-directional inductive signaling |
8441364, | Mar 22 2007 | SAMSUNG ELECTRONICS CO , LTD | Inductive power outlet locator |
8456038, | Sep 25 2007 | Powermat Technologies, Ltd | Adjustable inductive power transmission platform |
8487478, | May 13 2008 | Qualcomm Incorporated | Wireless power transfer for appliances and equipments |
8527688, | Sep 26 2008 | Qualcomm Incorporated | Extending device functionality amongst inductively linked devices |
8536737, | Oct 31 2007 | Powermat Technologies, Ltd | System for inductive power provision in wet environments |
8581542, | Sep 08 2008 | Qualcomm Incorporated | Receive antenna arrangement for wireless power |
8587154, | Aug 28 2007 | PHILIPS IP VENTURES B V | Inductive power supply |
8587156, | Mar 21 2006 | Murata Manufacturing Co., Ltd. | Device for transporting energy by partial influence through a dielectric medium |
8587157, | Mar 21 2006 | Murata Manufacturing Co., Ltd. | Device for transporting energy by partial influence through a dielectric medium |
8611815, | May 13 2008 | Qualcomm Incorporated | Repeaters for enhancement of wireless power transfer |
8618695, | Jun 02 2008 | Powermat Technologies, Ltd | Appliance mounted power outlets |
8624750, | Oct 09 2007 | Powermat Technologies, Ltd | System and method for inductive power provision over an extended surface |
8626249, | Aug 12 2008 | T-Mobile USA, Inc | Charging station that operates as an intermediary device between mobile devices and other devices |
8626461, | Mar 22 2007 | Powermat Technologies, Ltd | Efficiency monitor for inductive power transmission |
8629577, | Jan 29 2007 | Powermat Technologies, Ltd | Pinless power coupling |
8629650, | May 13 2008 | Qualcomm Incorporated | Wireless power transfer using multiple transmit antennas |
8629652, | Jun 01 2006 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
8629654, | Jan 31 2006 | Mojo Mobility, Inc. | System and method for inductive charging of portable devices |
8659263, | Dec 03 2010 | MOTOROLA SOLUTIONS, INC | Power supply circuit having low idle power dissipation |
8688037, | Sep 26 2008 | Qualcomm Incorporated | Magnetic latching mechanism for use in mating a mobile computing device to an accessory device |
8704628, | Jul 23 2010 | GE HYBRID TECHNOLOGIES, LLC | Wireless power transmission system, wireless power transmission apparatus and wireless power receiving apparatus therefor |
8712324, | Sep 26 2008 | Qualcomm Incorporated | Inductive signal transfer system for computing devices |
8729738, | Mar 21 2006 | Murata Manufacturing Co., Ltd. | Device for transporting energy by partial influence through a dielectric medium |
8749097, | Mar 22 2007 | Powermat Technologies, Ltd | System and method for controlling power transfer across an inductive power coupling |
8755815, | Aug 31 2010 | Qualcomm Incorporated | Use of wireless access point ID for position determination |
8760009, | May 25 2011 | Wireless power source | |
8762749, | Oct 09 2007 | POWERMAT TECHNOLOGIES, LTD. | Inductive receivers for electrical devices |
8766487, | Dec 21 2007 | PHILIPS IP VENTURES B V | Inductive power transfer |
8766488, | Sep 25 2007 | POWERMAT TECHNOLOGIES, LTD. | Adjustable inductive power transmission platform |
8847432, | Aug 17 2007 | TMMS CO , LTD | Method and device for transporting, distributing and managing electrical energy by remote longitudinal coupling in near field between electric dipoles |
8850045, | Sep 26 2008 | Qualcomm Incorporated | System and method for linking and sharing resources amongst devices |
8868939, | Sep 26 2008 | Qualcomm Incorporated | Portable power supply device with outlet connector |
8878393, | May 13 2008 | Qualcomm Incorporated | Wireless power transfer for vehicles |
8884468, | Dec 21 2007 | PHILIPS IP VENTURES B V | Circuitry for inductive power transfer |
8884469, | Dec 21 2007 | PHILIPS IP VENTURES B V | Circuitry for inductive power transfer |
8890470, | Jun 11 2010 | MOJO MOBILITY, INC | System for wireless power transfer that supports interoperability, and multi-pole magnets for use therewith |
8892035, | May 13 2008 | Qualcomm Incorporated | Repeaters for enhancement of wireless power transfer |
8896264, | Jun 11 2010 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Inductive charging with support for multiple charging protocols |
8901881, | Jun 11 2010 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Intelligent initiation of inductive charging process |
8917057, | Jun 10 2002 | City University of Hong Kong | Battery charging system |
8947047, | Jan 31 2006 | Mojo Mobility, Inc. | Efficiency and flexibility in inductive charging |
8954001, | Jul 21 2009 | Qualcomm Incorporated | Power bridge circuit for bi-directional wireless power transmission |
8965461, | May 13 2008 | Qualcomm Incorporated | Reverse link signaling via receive antenna impedance modulation |
8965720, | Mar 22 2007 | POWERMAT TECHNOLOGIES, LTD. | Efficiency monitor for inductive power transmission |
8981598, | Jul 02 2008 | POWERMAT TECHNOLOGIES LTD | Energy efficient inductive power transmission system and method |
9006937, | Jul 02 2008 | POWERMAT TECHNOLOGIES LTD. | System and method for enabling ongoing inductive power transmission |
9035501, | Mar 17 2008 | POWERMAT TECHNOLOGIES, LTD. | System and method for providing simple feedback signals indicating if more or less power is required during inductive power transmission |
9048696, | Mar 17 2008 | Powermat Technologies, Ltd | Transmission-guard system and method for an inductive power supply |
9083204, | Mar 17 2008 | Powermat Technologies, Ltd | Transmission-guard system and method for an inductive power supply |
9083686, | Nov 12 2008 | Qualcomm Incorporated | Protocol for program during startup sequence |
9097544, | Aug 27 2009 | Qualcomm Incorporated | Location tracking for mobile computing device |
9099894, | Jul 02 2008 | POWERMAT TECHNOLOGIES, LTD. | System and method for coded communication signals regulating inductive power transmission |
9106083, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and method for positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
9112362, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Methods for improved transfer efficiency in a multi-dimensional inductive charger |
9112363, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Intelligent charging of multiple electric or electronic devices with a multi-dimensional inductive charger |
9112364, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Multi-dimensional inductive charger and applications thereof |
9124121, | Sep 23 2008 | Powermat Technologies, Ltd | Combined antenna and inductive power receiver |
9130407, | May 13 2008 | Qualcomm Incorporated | Signaling charging in wireless power environment |
9136734, | Mar 17 2008 | Powermat Technologies, Ltd | Transmission-guard system and method for an inductive power supply |
9178369, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and methods for providing positioning freedom, and support of different voltages, protocols, and power levels in a wireless power system |
9178387, | May 13 2008 | Qualcomm Incorporated | Receive antenna for wireless power transfer |
9190875, | May 13 2008 | Qualcomm Incorporated | Method and apparatus with negative resistance in wireless power transfers |
9191781, | Aug 31 2010 | Qualcomm Incorporated | Use of wireless access point ID for position determination |
9201457, | May 18 2001 | Qualcomm Incorporated | Synchronizing and recharging a connector-less portable computer system |
9203250, | Feb 20 2012 | Snap-fit separable mobile backup power supply | |
9209676, | Dec 07 2012 | MOTOROLA SOLUTIONS, INC.; MOTOROLA SOLUTIONS, INC | Method and apparatus for charging batteries having different voltage ranges with a single conversion charger |
9225392, | Mar 09 2011 | Qualcomm Incorporated | Flat power coil for wireless charging applications |
9231411, | Apr 08 2009 | PHILIPS IP VENTURES B V | Selectable coil array |
9236771, | May 13 2008 | Qualcomm Incorporated | Method and apparatus for adaptive tuning of wireless power transfer |
9276437, | Jan 31 2006 | Mojo Mobility, Inc. | System and method that provides efficiency and flexiblity in inductive charging |
9312924, | Feb 10 2009 | Qualcomm Incorporated | Systems and methods relating to multi-dimensional wireless charging |
9331750, | Mar 17 2008 | SAMSUNG ELECTRONICS CO , LTD | Wireless power receiver and host control interface thereof |
9337902, | Mar 17 2008 | POWERMAT TECHNOLOGIES LTD | System and method for providing wireless power transfer functionality to an electrical device |
9356383, | May 28 2010 | Koninklijke Philips Electronics N V | Transmitter module for use in a modular power transmitting system |
9356659, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Chargers and methods for wireless power transfer |
9362049, | Mar 22 2007 | Powermat Technologies, Ltd | Efficiency monitor for inductive power transmission |
9395827, | Jul 21 2009 | Qualcomm Incorporated | System for detecting orientation of magnetically coupled devices |
9461501, | Jun 01 2006 | Mojo Mobility, Inc. | Power source, charging system, and inductive receiver for mobile devices |
9496732, | Jan 18 2011 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | Systems and methods for wireless power transfer |
9520225, | Sep 18 2006 | Koninklijke Philips Electronics N V | Apparatus, a system and a method for enabling electromagnetic energy transfer |
9577440, | Jan 31 2006 | Mojo Mobility, Inc. | Inductive power source and charging system |
9642219, | Jun 05 2014 | Steelcase Inc. | Environment optimization for space based on presence and activities |
9666360, | Jan 29 2007 | POWERMAT TECHNOLOGIES, LTD. | Pinless power coupling |
9685795, | Mar 17 2008 | SAMSUNG ELECTRONICS CO , LTD | Transmission-guard system and method for an inductive power supply |
9722447, | Nov 13 2012 | MOJO MOBILITY, INC ; MOJO MOBILITY INC | System and method for charging or powering devices, such as robots, electric vehicles, or other mobile devices or equipment |
9793721, | Jan 31 2006 | Mojo Mobility, Inc. | Distributed charging of mobile devices |
9837846, | Apr 12 2013 | MOJO MOBILITY INC ; MOJO MOBILITY, INC | System and method for powering or charging receivers or devices having small surface areas or volumes |
9852388, | Oct 03 2014 | Steelcase Inc | Method and system for locating resources and communicating within an enterprise |
9906044, | Dec 18 2008 | PHILIPS IP VENTURES B V | Inductive power transfer |
9906047, | Dec 21 2007 | PHILIPS IP VENTURES B V | Circuitry for inductive power transfer |
9921726, | Jun 03 2016 | Steelcase Inc | Smart workstation method and system |
9948358, | Aug 28 2007 | PHILIPS IP VENTURES B V | Inductive power supply |
9954399, | May 13 2008 | Qualcomm Incorporated | Reverse link signaling via receive antenna impedance modulation |
9955318, | Jun 05 2014 | Steelcase Inc | Space guidance and management system and method |
9960640, | Mar 17 2008 | POWERMAT TECHNOLOGIES LTD | System and method for regulating inductive power transmission |
9960642, | Mar 17 2008 | Powermat Technologies, Ltd | Embedded interface for wireless power transfer to electrical devices |
9991747, | May 13 2008 | Qualcomm Incorporated | Signaling charging in wireless power environment |
D640976, | Aug 28 2008 | Qualcomm Incorporated | Support structure and/or cradle for a mobile computing device |
D687038, | Nov 17 2009 | Qualcomm Incorporated | Docking station for a computing device |
ER4334, | |||
ER5271, | |||
ER5894, | |||
ER7451, |
Patent | Priority | Assignee | Title |
4873677, | Jul 10 1987 | Seiko Epson Corporation | Charging apparatus for an electronic device |
5528113, | Oct 21 1993 | Auckland UniServices Limited | Inductive power pick-up coils |
5550452, | Jul 26 1993 | NINTENDO CO , LTD ; KYUSHU HITACHI MAXELL, LTD | Induction charging apparatus |
5821728, | Jul 22 1996 | TOLLISON, STANLEY A | Armature induction charging of moving electric vehicle batteries |
5949214, | Nov 04 1997 | INPUT OUTPUT, INC | Rechargeable battery pack |
5959433, | Aug 22 1997 | LAIRDTECHNOLOGEIS, INC | Universal inductive battery charger system |
6008622, | Sep 29 1997 | NEC ENERGY DEVICES, LTD | Non-contact battery charging equipment using a soft magnetic plate |
6172884, | Apr 26 1994 | COMARCO WIRELESS SYSTEMS LLC | Small form factor power supply for powering electronics appliances |
6184651, | Mar 20 2000 | Google Technology Holdings LLC | Contactless battery charger with wireless control link |
6265789, | Nov 20 1997 | 138 EAST LCD ADVANCEMENTS LIMITED | Electronic apparatus |
6389318, | Jul 06 1998 | ABIOMED, INC | Magnetic shield for primary coil of transcutaneous energy transfer device |
6501364, | Jun 15 2001 | Cityu Research Limited | Planar printed-circuit-board transformers with effective electromagnetic interference (EMI) shielding |
6803744, | Nov 01 1999 | Alignment independent and self aligning inductive power transfer system | |
7164255, | Jun 10 2002 | City University of Hong Kong | Inductive battery charger system with primary transformer windings formed in a multi-layer structure |
7180265, | Jun 29 2001 | Nokia Technologies Oy | Charging device with an induction coil |
20040150934, | |||
GB2399225, | |||
JP11095922, | |||
WO2004055654, | |||
WO2004073176, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 14 2006 | HUI, SHU-YUEN RON | City University of Hong Kong | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018785 | /0005 | |
Jul 27 2006 | City University of Hong Kong | Cityu Research Limited | LICENSE SEE DOCUMENT FOR DETAILS | 018785 | /0135 | |
Dec 14 2006 | Cityu Research Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 04 2012 | ASPN: Payor Number Assigned. |
Apr 01 2013 | REM: Maintenance Fee Reminder Mailed. |
Apr 23 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 23 2013 | M1554: Surcharge for Late Payment, Large Entity. |
Feb 02 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 14 2017 | LTOS: Pat Holder Claims Small Entity Status. |
Feb 02 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Feb 18 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 18 2012 | 4 years fee payment window open |
Feb 18 2013 | 6 months grace period start (w surcharge) |
Aug 18 2013 | patent expiry (for year 4) |
Aug 18 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 18 2016 | 8 years fee payment window open |
Feb 18 2017 | 6 months grace period start (w surcharge) |
Aug 18 2017 | patent expiry (for year 8) |
Aug 18 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 18 2020 | 12 years fee payment window open |
Feb 18 2021 | 6 months grace period start (w surcharge) |
Aug 18 2021 | patent expiry (for year 12) |
Aug 18 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |