An edge-sealed, encapsulated environmentally sensitive device. The device includes an environmentally sensitive device, and at least one edge-sealed barrier stack. The edge-sealed barrier stack includes a decoupling layer and at least two barrier layers. The environmentally sensitive device is sealed between an edge-sealed barrier stack and either a substrate or another edge-sealed barrier stack. A method of making the edge-sealed, encapsulated environmentally sensitive device is also disclosed.

Patent
   7727601
Priority
Oct 25 1999
Filed
Mar 29 2007
Issued
Jun 01 2010
Expiry
Dec 26 2019
Extension
62 days
Assg.orig
Entity
Large
19
334
EXPIRED
1. An edge-sealed, encapsulated environmentally sensitive device comprising:
a substrate;
an environmentally sensitive device adjacent to the substrate; and
an edge-sealed barrier stack adjacent to the environmentally sensitive device, the edge-sealed barrier stack comprising a decoupling layer and at least two barrier layers, wherein the decoupling layer comprises a polymeric decoupling layer, wherein the decoupling layer has an area, wherein the first barrier layer has an area, and wherein the second barrier layer has an area, the area of the first and second barrier layers being greater than the area of the decoupling layer, the area of the first and second barrier layers extending beyond the edges of the area of the first decoupling layer forming an edge seal, wherein the decoupling layer is positioned between the first and second barrier layers, and wherein the decoupling layer is edge sealed between the first and second barrier layers; and
wherein at least one barrier layer of the edge-sealed barrier stack is in contact with the substrate, sealing the environmentally sensitive device between the substrate and the edge-sealed barrier stack forming an environmentally sensitive device seal, wherein an oxygen transmission rate through the environmentally sensitive device seal is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity.
9. An edge-sealed, encapsulated environmentally sensitive device comprising:
a substrate;
a first edge-sealed barrier stack adjacent to the substrate, the first edge-sealed barrier stack comprising a decoupling layer and at least two barrier layers, wherein the decoupling layer comprises a polymeric decoupling layer, wherein the decoupling layer has an area, wherein the first barrier layer has an area, and wherein the second barrier layer has an area, the area of the first and second barriers layer being greater than the area of the decoupling layer, the area of the first and second barrier layers extending beyond the edges of the area of the first decoupling layer forming an edge seal, and wherein the first decoupling layer is edge sealed between the first and second barrier layers; and
an environmentally sensitive device adjacent to the first edge-sealed barrier stack; and
a second edge-sealed barrier stack adjacent to the environmentally sensitive device, the second edge-sealed barrier stack comprising a decoupling layer and at least two barrier layers, wherein the decoupling layer comprises a polymeric decoupling layer, wherein the decoupling layer has an area, wherein the first barrier layer has an area, and wherein the second barrier layer has an area, the area of the first and second barrier layers being greater than the area of the decoupling layer, the area of the first and second barrier layers extending beyond the edges of the area of the first decoupling layer forming an edge seal, and wherein the decoupling layer is edge sealed between the first and second barrier layers; and
wherein one of the barrier layers of the first edge-sealed barrier stack is in contact with the one of the barrier layers of the second edge-sealed barrier stack, sealing the environmentally sensitive device between the first and second edge sealed barrier stacks forming an environmentally sensitive device seal, wherein an oxygen transmission rate through the environmentally sensitive device seal is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity.
2. The edge-sealed, encapsulated environmentally sensitive device of claim 1 wherein at least one of the decoupling layers is selected from organic polymers, inorganic polymers, or hybrid organic/inorganic polymer systems.
3. The edge-sealed, encapsulated environmentally sensitive device of claim 1 wherein at least one of the barrier layers comprises a barrier material selected from metals, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, or combinations thereof.
4. The edge-sealed, encapsulated environmentally sensitive device of claim 1 wherein at least one of the barrier layers comprises a barrier material selected from aluminum, titanium, indium, tin, tantalum, zirconium, niobium, hafnium, yttrium, nickel, tungsten, chromium, zinc, alloys thereof, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, hafnium oxide, yttrium oxide, nickel oxide, tungsten oxide, chromium oxide, zinc oxide, aluminum nitride, silicon nitride, boron nitride, germanium nitride, chromium nitride, nickel nitride, boron carbide, tungsten carbide, silicon carbide, aluminum oxynitride, silicon oxynitride, boron oxynitride, zirconium oxyboride, titanium oxyboride, and combinations thereof.
5. The edge-sealed, encapsulated environmentally sensitive device of claim 1 wherein the environmentally sensitive device is selected from organic light emitting devices, liquid crystal displays, displays using electrophoretic inks, light emitting diodes, displays using light emitting polymers, electroluminescent devices, phosphorescent devices, organic solar cells, inorganic solar cells, thin film batteries, or thin film devices with vias, or combinations thereof.
6. The edge-sealed, encapsulated environmentally sensitive device of claim 1 wherein the substrate is flexible.
7. The edge-sealed, encapsulated environmentally sensitive device of claim 1 further comprising a barrier stack positioned between the substrate and the environmentally sensitive device, the barrier stack comprising at least one decoupling layer and at least one barrier layer, and wherein at least one barrier layer of the edge-sealed barrier stack is in contact with at least one barrier layer of the barrier stack, sealing the environmentally sensitive device between the at least one barrier layer of the barrier stack and the edge-sealed barrier stack forming the environmentally sensitive device seal.
8. The edge-sealed environmentally sensitive device of claim 7 wherein the substrate is flexible.
10. The edge-sealed, encapsulated environmentally sensitive device of claim 9 wherein at least one of the decoupling layers is selected from organic polymers, inorganic polymers, or hybrid organic/inorganic polymer systems.
11. The edge-sealed, encapsulated environmentally sensitive device of claim 9 wherein at least one of the barrier layers comprises a barrier material selected from metals, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, or combinations thereof.
12. The edge-sealed, encapsulated environmentally sensitive device of claim 9 wherein the environmentally sensitive device is selected from organic light emitting devices, liquid crystal displays, displays using electrophoretic inks, light emitting diodes, displays using light emitting polymers, electroluminescent devices, phosphorescent devices, organic solar cells, inorganic solar cells, thin film batteries, or thin film devices with vias, or combinations thereof.
13. The edge-sealed, encapsulated environmentally sensitive device of claim 9 wherein the substrate is flexible.
14. The edge-sealed, encapsulated environmentally sensitive device of claim 9 further comprising a barrier stack positioned between the substrate and the environmentally sensitive device, the barrier stack comprising at least one decoupling layer and at least one barrier layer, and wherein the barrier layer of the edge-sealed barrier stack is in contact with at least one barrier layer of the barrier stack, sealing the environmentally sensitive device and the decoupling layer between the at least one barrier layer of the barrier stack and the barrier layer of the edge-sealed barrier stack forming the environmentally sensitive device seal.
15. The edge-sealed, encapsulated environmentally sensitive device of claim 14 wherein the substrate is flexible.

This application is a continuation of application Ser. No. 11/112,860, filed Apr. 22, 2005, entitled Method for Edge Sealing Barrier Films, now U.S. Pat. No. 7,198,832, which is a continuation-in-part of application Ser. No. 11/068,356, filed Feb. 28, 2005, entitled Method for Edge Sealing Barrier Films, which is a division of application Ser. No. 09/966,163, filed Sep. 28, 2001, entitled Method for Edge Sealing Barrier Films, now U.S. Pat. No. 6,866,901, which is a continuation-in-part of application Ser. No. 09/427,138, filed Oct. 25, 1999, entitled Environmental Barrier Material for Organic Light Emitting Device and Method of Making, now U.S. Pat. No. 6,522,067.

The invention relates generally to multilayer, thin film barrier composites, and more particularly, to multilayer, thin film barrier composites having the edges sealed against lateral moisture and gas diffusion.

Multilayer, thin film barrier composites having alternating layers of barrier material and polymer material are known. These composites are typically formed by depositing alternating layers of barrier material and polymer material, such as by vapor deposition. If the polymer layers are deposited over the entire surface of the substrate, then the edges of the polymer layers are exposed to oxygen, moisture, and other contaminants. This potentially allows the moisture, oxygen, or other contaminants to diffuse laterally into an encapsulated environmentally sensitive device from the edge of the composite, as shown in FIG. 1. The multilayer, thin film barrier composite 100 includes a substrate 105 and alternating layers of decoupling material 110 and barrier material 115. The scale of FIG. 1 is greatly expanded in the vertical direction. The area of the substrate 105 will typically vary from a few square centimeters to several square meters. The barrier layers 115 are typically a few hundred Angstroms thick, while the decoupling layers 110 are generally less than ten microns thick. The lateral diffusion rate of moisture and oxygen is finite, and this will eventually compromise the encapsulation. One way to reduce the problem of edge diffusion is to provide long edge diffusion paths. However, this decreases the area of the substrate which is usable for active environmentally sensitive devices. In addition, it only lessens the problem, but does not eliminate it.

A similar edge diffusion problem will arise when a substrate containing a multilayer, thin film barrier composite is scribed and separated to create individual components.

Thus, there is a need for an edge-sealed barrier film composite, and for a method of making such a composite.

The present invention solves this need by providing an edge-sealed, encapsulated environmentally sensitive device. The edge-sealed, environmentally sensitive device includes at least one initial barrier stack comprising at least one decoupling layer and at least one barrier layer. A first decoupling layer of a first initial barrier stack has an area and a first barrier layer of the first initial barrier stack has an area, the area of the first barrier layer of the first initial barrier stack being greater than the area of the first decoupling layer of the first initial barrier stack. The first barrier layer of the first initial barrier stack is in contact with a third barrier layer or an optional substrate, sealing the first decoupling layer of the first initial barrier stack between the first barrier layer of the first initial barrier stack and the third barrier layer or the optional substrate. An environmentally sensitive device is adjacent to the at least one initial barrier stack. At least one additional barrier stack is adjacent to the environmentally sensitive device on a side opposite the at least one initial barrier stack. The at least one additional barrier stack comprises at least one decoupling layer and at least one barrier layer. A first decoupling layer of a first additional barrier stack has an area and a first barrier layer of the first additional barrier stack has an area, the area of the first barrier layer of the first additional barrier stack being greater than the area of the first decoupling layer of the first additional barrier stack. The first barrier layer of the first additional barrier stack is in contact with a fourth barrier layer, sealing the first decoupling layer of the first additional barrier stack between the first barrier layer of the first additional barrier stack and the fourth barrier layer. At least one barrier layer of at least one initial barrier stack is in contact with at least one barrier layer of at least one additional barrier stack, sealing the environmentally sensitive device between the at least one initial barrier stack and the at least one additional barrier stack forming an environmentally sensitive device seal, wherein an oxygen transmission rate through the environmentally sensitive device seal is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity.

By adjacent, we mean next to, but not necessarily directly next to. There can be additional layers intervening between the substrate and the barrier stacks, and between the barrier stacks and the environmentally sensitive device, etc.

Another aspect of the invention is a method of making an edge-sealed, encapsulated environmentally sensitive device. The method includes providing at least one initial barrier stack, the at least one initial barrier stack comprising at least one decoupling layer and at least one barrier layer, wherein a first decoupling layer of a first initial barrier stack has an area and wherein a first barrier layer of the first initial barrier stack has an area, the area of the first barrier layer of the first initial barrier stack being greater than the area of the first decoupling layer of the first initial barrier stack, and wherein the first barrier layer of the first initial barrier stack is in contact with a third barrier layer or an optional substrate, sealing the first decoupling layer of the first initial barrier stack between the first barrier layer of the first initial barrier stack and the third barrier layer or the optional substrate; placing an environmentally sensitive device adjacent to the at least one initial barrier stack; and placing at least one additional barrier stack adjacent to the environmentally sensitive device on a side opposite the at least one initial barrier stack, the at least one additional barrier stack comprising at least one decoupling layer and at least one barrier layer, wherein a first decoupling layer of a first additional barrier stack has an area and wherein a first barrier layer of the first additional barrier stack has an area, the area of the first barrier layer of the first additional barrier stack being greater than the area of the first decoupling layer of the first additional barrier stack, wherein the first barrier layer of the first additional barrier stack is in contact with a fourth barrier layer, sealing the first decoupling layer of the first additional barrier stack between the first barrier layer of the first additional barrier stack and the fourth barrier layer, and wherein at least one barrier layer of at least one initial barrier stack is in contact with at least one barrier layer of at least one additional barrier stack, sealing the environmentally sensitive device between the at least one initial barrier stack and the at least one additional barrier stack forming an environmentally sensitive device seal, wherein an oxygen transmission rate through the environmentally sensitive device seal is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity.

FIG. 1 is a cross-section of a barrier composite of the prior art.

FIG. 2 is a cross-section of one embodiment of an edge-sealed, encapsulated environmentally sensitive device of the present invention.

FIG. 3 shows a successful barrier layer without a seal after 750 hours at 60° C. and 90% relative humidity.

FIG. 4 shows a successful edge seal after 750 hours at 60° C. and 90% relative humidity.

FIG. 5 shows a failed edge seal after 750 hours at 60° C. and 90% relative humidity.

FIG. 6 shows a cross-section of one embodiment of a substrate and mask arrangement and a plan view of the resulting seal.

FIG. 7 shows a cross-section of another embodiment of a substrate and mask arrangement and a plan view of the resulting seal.

FIG. 2 shows an edge-sealed, encapsulated environmentally sensitive device 400. There is a substrate 405 which can be removed after the device is made, if desired. The environmentally sensitive device 430 is encapsulated between initial barrier stack 422 on one side and additional barrier stack 440 on the other side. There is another initial barrier stack 420 between the substrate 405 and initial barrier stack 422.

The environmentally sensitive device can be any device requiring protection from moisture, gas, or other contaminants. Environmentally sensitive devices include, but are not limited to, organic light emitting devices, liquid crystal displays, displays using electrophoretic inks, light emitting diodes, light emitting polymers, electroluminescent devices, phosphorescent devices, organic solar cells, inorganic solar cells, thin film batteries, and thin film devices with vias, and combinations thereof.

The substrate, which is optional, can be any suitable substrate, and can be either rigid or flexible. Suitable substrates include, but are not limited to: polymers, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or high temperature polymers, such as polyether sulfone (PES), polyimides, or Transphan™ (a high glass transition temperature cyclic olefin polymer available from Lofo High Tech Film, GMBH of Weil am Rhein, Germany); metals and metal foils; paper; fabric; glass, including thin, flexible, glass sheet (for example, flexible glass sheet available from Corning Inc. under the glass code 0211. This particular thin, flexible glass sheet has a thickness of less than 0.6 mm and will bend at a radium of about 8 inches.); ceramics; semiconductors; silicon; and combinations thereof.

Barrier stack 420 has a barrier layer 415 which has an area greater than the area of the decoupling layer 410 which seals the decoupling layer 410 within the area of the barrier layer 415. Barrier stack 422 has two barrier layers 415, 417 and two decoupling layers 410, 412. Barrier layer 415 has an area greater than that of the decoupling layers 410, 412 which seals the decoupling layers 410, 412 within the area of the barrier layer 415. There is a second barrier layer 417. Because the decoupling layers 410, 412 are sealed within the area covered by the barrier layer 415, ambient moisture, oxygen, and other contaminants cannot diffuse through the decoupling layers to the environmentally sensitive device.

On the other side of the environmentally sensitive device 430, there is an additional barrier stack 440. Barrier stack 440 includes two decoupling layers 410 and two barrier layers 415 which may be of approximately the same size. Barrier stack 440 also includes barrier layer 435 which has an area greater than the area of the decoupling layers 410 which seals the decoupling layers 410 within the area of barrier layer 435.

It is not required that all of the barrier layers have an area greater than all of the decoupling layers, but at least one of the barrier layers must have an area greater than at least one of the decoupling layers. If not all of the barrier layers have an area greater than of the decoupling layers, the barrier layers which do have an area greater than the decoupling layers should form a seal around those which do not so that there are no exposed decoupling layers within the barrier composite, although, clearly it is a matter of degree. The fewer the edge areas of decoupling layers exposed, the less the edge diffusion. If some diffusion is acceptable, then a complete barrier is not required.

The barrier stacks of the present invention on polymeric substrates, such as PET, have measured oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) values well below the detection limits of current industrial instrumentation used for permeation measurements (Mocon Ox Tran 2/20L and Permatran). Table 1 shows the OTR and WVTR values (measured according to ASTM F 1927-98 and ASTM F 1249-90, respectively) measured at Mocon (Minneapolis, Minn.) for several barrier stacks on 7 mil PET, along with reported values for other materials.

TABLE 1
Oxygen Water Vapor
Permeation Rate Permeation
(cc/m2/day) (g/m2/day)+
Sample 23° C. 38° C. 23° C. 38° C.
Native 7 mil PET 7.62
1-barrier stack <0.005 <0.005* 0.46+
1-barrier stack with ITO <0.005 <0.005* 0.011+
2-barrier stacks <0.005 <0.005* <0.005+
2-barrier stacks with ITO <0.005 <0.005* <0.005+
5-barrier stacks <0.005 <0.005* <0.005+
5-barrier stacks with ITO <0.005 <0.005* <0.005+
DuPont film1 0.3
(PET/Si3N4 or PEN/Si3N4)
Polaroid3 <1.0
PET/Al2 0.6 0.17
PET/silicon oxide2 0.7–1.5 0.15–0.9
Teijin LCD film <2 <5
(HA grade - TN/STN)3
*38° C., 90% RH, 100% O2
+38° C., 100% RH
1P. F. Carcia, 46th International Symposium of the American Vacuum Society, Oct. 1999
2Langowski, H. C., 39th Annual Technical Conference Proceedings, SVC, pp. 398–401 (1996)
3Technical Data Sheet

As the data in Table 1 shows, the barrier stacks of the present invention provide oxygen and water vapor permeation rates several orders of magnitude better than PET coated with aluminum, silicon oxide, or aluminum oxide. Typical oxygen permeation rates for other barrier coatings range from about 1 to about 0.1 cc/m2/day. The oxygen transmission rate for the barrier stacks of the present invention is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and at 38° C. and 90% relative humidity. The water vapor transmission rate is less than 0.005 g/m2/day at 38° C. and 100% relative humidity. The actual transmission rates are lower, but cannot be measured with existing equipment.

In theory, a good edge seal should be no more permeable than the overall barrier layer. This should result in failure at the edges occurring at a rate statistically the same as that observed anywhere else. In practice, the areas closest to the edge show failure first, and the inference is that edge failure is involved.

The Mocon test for the barrier layers requires significant surface area, and cannot be used to test the edge seal directly. A test using a layer of calcium was developed to measure barrier properties. The calcium test is described in Nisato et al., “Thin Film Encapsulation for OLEDs: Evaluation of Multi-layer Barriers using the Ca Test,” SID 03 Digest, 2003, p. 550-553, which is incorporated herein by reference. The calcium test can be used to evaluate edge seal performance for both oxygen transmission rate and water vapor transmission rate. An encapsulated device is made, and the edges are observed for degradation in response to permeation by oxygen and water. The determination is qualitative: pass/fail. Failure is noted at the edges, and the failure progresses inwards from the edges over time. An edge seal which passes the calcium test has an oxygen transmission rate for the edge seal of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and at 38° C. and 90% relative humidity. It would also have a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity.

FIGS. 3-5 show results from calcium tests after 750 hours at 60° C. and 90% relative humidity. FIG. 3 shows a successful barrier layer without a seal. The edge of the barrier layer is more than 50 mm from the calcium edge. FIG. 4 shows a successful edge seal. The edge of the barrier layer is 3 mm from the calcium edge, and no degradation is observed. FIG. 5 shows an edge seal which failed. The edge of the barrier layer is 3 mm from the calcium edge, and severe degradation can be seen.

The number of barrier stacks is not limited. The number of barrier stacks needed depends on the substrate material used and the level of permeation resistance needed for the particular application. One or two barrier stacks may provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.

The barrier stacks can have one or more decoupling layers and one or more barrier layers. There could be one decoupling layer and one barrier layer, there could be one or more decoupling layers on one side of one or more barrier layers, there could be one or more decoupling layers on both sides of one or more barrier layers, or there could be one or more barrier layers on both sides of one or more decoupling layers. The important feature is that the barrier stack have at least one decoupling layer and at least one barrier layer. The barrier layers in the barrier stacks can be made of the same material or of a different material, as can the decoupling layers. The barrier layers are typically about 100-400 Å thick, and the decoupling layers are typically about 1000-10,000 Å thick.

The barrier stacks can have the same or different layers, and the layers can be in the same or different sequences.

If there is only one barrier stack and it has only one decoupling layer and one barrier layer, then the decoupling layer must be first in order for the barrier layer to seal it. The decoupling layer will be sealed between the substrate (or the upper layer of the previous barrier stack) and the barrier layer. Although a device can be made with a single barrier stack having one decoupling layer and one barrier layer on each side of the environmentally sensitive device, there will typically be at least two barrier stacks on each side, each stack having one (or more) decoupling layer and one (or more) barrier layer. In this case, the first layer in the stack can be either a decoupling layer or a barrier layer, as can the last layer.

The barrier layer which seals the decoupling layer may be the first barrier layer in the barrier stack, as shown in barrier stack 420. It may also be a second (or later) barrier layer as shown in barrier stack 440. Barrier layer 435 which seals the barrier stack 440 is the third barrier layer in the barrier stack following two barrier layers 415 which do not seal the barrier stack. Thus, the use of the terms first decoupling layer and first barrier layer in the claims does not refer to the actual sequence of layers, but to layers which meet the limitations. Similarly, the terms first initial barrier stack and first additional barrier stack do not refer to the actual sequence of the initial and additional barrier stacks.

The decoupling layers may be made from the same decoupling material or different decoupling material. The decoupling layer can be made of any suitable decoupling material, including, but not limited to, organic polymers, inorganic polymers, organometallic polymers, hybrid organic/inorganic polymer systems, silicates, and combinations thereof. Organic polymers include, but are not limited to, urethanes, polyamides, polyimides, polybutylenes, isobutylene isoprene, polyolefins, epoxies, parylenes, benzocyclobutadiene, polynorbornenes, polyarylethers, polycarbonates, alkyds, polyaniline, ethylene vinyl acetate, ethylene acrylic acid, and combinations thereof. Inorganic polymers include, but are not limited to, silicones, polyphosphazenes, polysilazanes, polycarbosilanes, polycarboranes, carborane siloxanes, polysilanes, phosphonitriles, sulfur nitride polymers, siloxanes, and combinations thereof. Organometallic polymers include, but are not limited to, organometallic polymers of main group metals, transition metals, and lanthanide/actinide metals, or combinations thereof. Hybrid organic/inorganic polymer systems include, but are not limited to, organically modified silicates, preceramic polymers, polyimide-silica hybrids, (meth)acrylate-silica hybrids, polydimethylsiloxane-silica hybrids, ceramers, and combinations thereof.

The barrier layers may be made from the same barrier material or different barrier material. The barrier layer can be made from any suitable barrier material. The barrier material can be transparent or opaque depending on what the composite is to be used for. Suitable barrier materials include, but are not limited to, metals, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. Metals include, but are not limited to, aluminum, titanium, indium, tin, tantalum, zirconium, niobium, hafnium, yttrium, nickel, tungsten, chromium, zinc, alloys thereof, and combinations thereof. Metal oxides include, but are not limited to, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, hafnium oxide, yttrium oxide, nickel oxide, tungsten oxide, chromium oxide, zinc oxide, and combinations thereof. Metal nitrides include, but are not limited to, aluminum nitride, silicon nitride, boron nitride, germanium nitride, chromium nitride, nickel nitride, and combinations thereof. Metal carbides include, but are not limited to, boron carbide, tungsten carbide, silicon carbide, and combinations thereof. Metal oxynitrides include, but are not limited to, aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof. Metal oxyborides include, but are limited to, zirconium oxyboride, titanium oxyboride, and combinations thereof. Suitable barrier materials also include, but are not limited to, opaque metals, opaque ceramics, opaque polymers, and opaque cermets, and combinations thereof. Opaque cermets include, but are not limited to, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride, and combinations thereof.

The barrier layers may be deposited by any suitable process including, but not limited to, conventional vacuum processes such as sputtering, evaporation, sublimation, chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.

The decoupling layer can be produced by a number of known processes which provide improved surface planarity, including both atmospheric processes and vacuum processes. The decoupling layer may be formed by depositing a layer of liquid and subsequently processing the layer of liquid into a solid film. Depositing the decoupling layer as a liquid allows the liquid to flow over the defects in the substrate or previous layer, filling in low areas, and covering up high points, providing a surface with significantly improved planarity. When the decoupling layer is processed into a solid film, the improved surface planarity is retained. Suitable processes for depositing a layer of liquid material and processing it into a solid film include, but are not limited to, vacuum processes and atmospheric processes. Suitable vacuum processes include, but are not limited to, those described in U.S. Pat. Nos. 5,260,095, 5,395,644, 5,547,508, 5,691,615, 5,902,641, 5,440,446, and 5,725,909, which are incorporated herein by reference. The liquid spreading apparatus described in U.S. Pat. Nos. 5,260,095, 5,395,644, and 5,547,508 can be further configured to print liquid monomer in discrete, precisely placed regions of the receiving substrate.

Suitable atmospheric processes include, but are not limited to, spin coating, printing, ink jet printing, and/or spraying. By atmospheric processes, we mean processes run at pressures of about 1 atmosphere that can employ the ambient atmosphere. The use of atmospheric processes presents a number of difficulties including the need to cycle between a vacuum environment for depositing the barrier layer and ambient conditions for the decoupling layer, and the exposure of the environmentally sensitive device to environmental contaminants, such as oxygen and moisture. One way to alleviate these problems is to use a specific gas (purge gas) during the atmospheric process to control exposure of the receiving substrate to the environmental contaminants. For example, the process could include cycling between a vacuum environment for barrier layer deposition and an ambient pressure nitrogen environment for the atmospheric process. Printing processes, including ink jet printing, allow the deposition of the decoupling layer in a precise area without the use of masks.

One way to make a decoupling layer involves depositing a polymer precursor, such as a (meth)acrylate containing polymer precursor, and then polymerizing it in situ to form the decoupling layer. As used herein, the term polymer precursor means a material which can be polymerized to form a polymer, including, but not limited to, monomers, oligomers, and resins. As another example of a method of making a decoupling layer, a preceramic precursor could be deposited as a liquid by spin coating and then converted to a solid layer. Full thermal conversion is possible for a film of this type directly on a glass or oxide coated substrate. Although it cannot be fully converted to a ceramic at temperatures compatible with some flexible substrates, partial conversion to a cross-lined network structure would be satisfactory. Electron beam techniques could be used to crosslink and/or densify some of these types of polymers and can be combined with thermal techniques to overcome some of the substrate thermal limitations, provided the substrate can handle the electron beam exposure. Another example of making a decoupling layer involves depositing a material, such as a polymer precursor, as a liquid at a temperature above its melting point and subsequently freezing it in place.

One method of making the composite of the present invention includes providing a substrate, and depositing a barrier layer adjacent to the substrate at a barrier deposition station. The substrate with the barrier layer is moved to a decoupling material deposition station. A mask is provided with an opening which limits the deposition of the decoupling layer to an area which is smaller than, and contained within, the area covered by the barrier layer. The first layer deposited could be either the barrier layer or the decoupling layer, depending on the design of the composite.

In order to encapsulate multiple small environmentally sensitive devices contained on a single large motherglass, the decoupling material may be deposited through multiple openings in a single shadow mask, or through multiple shadow masks. This allows the motherglass to be subsequently diced into individual environmentally sensitive devices, each of which is edge sealed.

For example, the mask may be in the form of a rectangle with the center removed (like a picture frame). The decoupling material is then deposited through the opening in the mask. The layer of decoupling material formed in this way will cover an area less than the area covered by the layer of barrier material. This type of mask can be used in either a batch process or a roll coating process operated in a step and repeat mode. With these processes, all four edges of the decoupling layer will be sealed by the barrier material when a second barrier layer which has an area greater than the area of the decoupling layer is deposited over the decoupling layer.

The method can also be used in a continuous roll to roll process using a mask having two sides which extend inward over the substrate. The opening is formed between the two sides of the mask which allows continuous deposition of decoupling material. The mask may have transverse connections between the two sides so long as they are not in the deposition area for the decoupling layer. The mask is positioned laterally and at a distance from the substrate so as to cause the decoupling material to be deposited over an area less than that of the barrier layer. In this arrangement, the lateral edges of the decoupling layer are sealed by the barrier layer.

The substrate can then be moved to a barrier deposition station (either the original barrier deposition station or a second one), and a second layer of barrier material deposited on the decoupling layer. Since the area covered by the first barrier layer is greater than the area of the decoupling layer, the decoupling layer is sealed between the two barrier layers. These deposition steps can be repeated if necessary until sufficient barrier material is deposited for the particular application.

When one of the barrier stacks includes two or more decoupling layers, the substrate can be passed by one or more decoupling material deposition stations one or more times before being moved to the barrier deposition station. The decoupling layers can be made from the same decoupling material or different decoupling material. The decoupling layers can be deposited using the same process or using different processes.

Similarly, one or more barrier stacks can include two or more barrier layers. The barrier layers can be formed by passing the substrate (either before or after the decoupling layers have been deposited) past one or more barrier deposition stations one or more times, building up the number of layers desired. The layers can be made of the same or different barrier material, and they can be deposited using the same or different processes.

In another embodiment, the method involves providing a substrate and depositing a layer of barrier material on the surface of the substrate at a barrier deposition station. The substrate with the barrier layer is moved to a decoupling material deposition station where a layer of decoupling material is deposited over substantially the whole surface of the barrier layer. A solid mask is then placed over the substrate with the barrier layer and the decoupling layer. The mask protects the central area of the surface, which would include the areas covered by the active environmentally sensitive devices. A reactive plasma can be used to etch away the edges of the layer of decoupling material outside the mask, which results in the layer of etched decoupling material covering an area less than the area covered by the layer of barrier material. Suitable reactive plasmas include, but are not limited to, O2, CF4, and H2, and combinations thereof. A layer of barrier material covering an area greater than that covered by the etched decoupling layer can then be deposited, sealing the etched decoupling layer between the layers of barrier material.

To ensure good coverage of the edge of the decoupling layer by the barrier layer, techniques for masking and etching the decoupling layer to produce a feathered edge, i.e., a gradual slope instead of a sharp step, may be employed. Several such techniques are known to those in the art, including, but not limited to, standing off the mask a short distance above a polymer surface to be etched.

The deposition and etching steps can be repeated until sufficient barrier material is deposited. This method can be used in a batch process or in a roll coating process operated in a step and repeat mode. In these processes, all four edges of the decoupling layer may be etched. This method can also be used in continuous roll to roll processes. In this case, only the edges of the decoupling material in the direction of the process are etched.

Alternatively, two masks can be used, one for the decoupling material and one for the barrier material. This would allow encapsulation with an edge seal of device which has electrical contacts which extend outside the encapsulation. The electrical contacts can remain uncoated (or require only minimal post-encapsulation cleaning.) The electrical contacts will typically be thin layer constructions that are sensitive to post-encapsulation cleaning or may be difficult to expose by selective etching of the encapsulation. In addition, if a mask is applied only for the decoupling material, a thick barrier layer could extend over the areas between the devices and cover the contacts. Furthermore, cutting through the thick barrier layer could be difficult.

As shown in FIGS. 6 and 7, the mask 500 for the decoupling material has a smaller opening than the mask 505 for the barrier material. This allows the barrier layer 510 to encapsulate the decoupling layer 515.

The masks 500, 505 can optionally have an undercut 520, 525 that keeps the deposited decoupling material and/or barrier material from contacting the mask at the point where the mask contacts the substrate 530. The undercut 520 for the decoupling mask 500 can be sufficient to place the decoupling mask contact point 535 outside edge of barrier layer 510, as shown in FIG. 7.

If a composite is made using a continuous process and the edged sealed composite is cut in the transverse direction, the cut edges will expose the edges of the decoupling layers. These cut edges may require additional sealing if the exposure compromises barrier performance.

One method for sealing edges which are to be cut involves depositing a ridge on the substrate before depositing the barrier stack. The ridge interferes with the deposition of the decoupling layer so that the area of barrier material is greater than the area of decoupling material and the decoupling layer is sealed by the barrier layer within the area of barrier material. The ridge should be fairly pointed, for example, triangular shaped, in order to interrupt the deposition and allow the layers of barrier material to extend beyond the layers of decoupling material. The ridge can be deposited anywhere that a cut will need to be made, such as around individual environmentally sensitive devices. The ridge can be made of any suitable material, including, but not limited to, photoresist and barrier materials, such as described previously.

While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Burrows, Paul E., Gross, Mark E., Bennett, Wendy D., Martin, Peter M., Graff, Gordon L., Hall, Michael G., Mast, Eric S., Bonham, Charles C.

Patent Priority Assignee Title
10038112, Aug 04 2011 3M Innovative Properties Company Edge protected barrier assemblies
10040968, Aug 31 2015 Kateeva, Inc.; KATEEVA, INC Di- and mono(meth)acrylate based organic thin film ink compositions
10190018, Aug 31 2015 Kateeva, Inc.; KATEEVA, INC Di- and mono(meth)acrylate based organic thin film ink compositions
10923680, Oct 11 2018 The Boeing Company Multifunctional composite panels and methods for the same
11085111, Oct 11 2018 The Boeing Company Laminate composite structural components and methods for the same
11393679, Jun 13 2016 GVD Corporation Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles
11522243, Dec 21 2020 International Business Machines Corporation Hermetic packaging of a micro-battery device
11539088, Mar 09 2020 International Business Machines Corporation Ultra-thin microbattery packaging and handling
11679412, Jun 13 2016 GVD Corporation Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles
11844234, Apr 21 2017 Kateeva, Inc. Compositions and techniques for forming organic thin films
8912018, Dec 17 2012 UNIVERSAL DISPLAY CORPORATION Manufacturing flexible organic electronic devices
8957579, Sep 14 2012 UNIVERSAL DISPLAY CORPORATION Low image sticking OLED display
9035338, Jan 16 2012 Samsung Display Co., Ltd.; SAMSUNG DISPLAY CO , LTD , A CORPORATION CHARTERED IN AND EXISTING UNDER THE LAWS OF THE REPUBLIC OF KOREA Organic light-emitting display device and method of manufacturing the same
9045822, Feb 01 2012 Samsung Display Co., Ltd.; SAMSUNG DISPLAY CO , LTD , A CORPORATION CHARTERED IN AND EXISTING UNDER THE LAWS OF THE REPUBLIC OF KOREA Deposition source, deposition apparatus, and method of manufacturing organic light-emitting display apparatus
9054060, Sep 04 2012 Samsung Display Co., Ltd. Organic light-emitting display device
9318723, Sep 04 2012 Samsung Display Co., Ltd. Organic light-emitting display device
9373817, Jul 11 2014 Hannstar Display Corporation Substrate structure and device employing the same
9614113, Aug 04 2011 3M Innovative Properties Company Edge protected barrier assemblies
9909022, Jul 25 2014 Kateeva, Inc.; KATEEVA, INC Organic thin film ink compositions and methods
Patent Priority Assignee Title
2382432,
2384500,
3475307,
3496427,
3607365,
3661117,
3941630, Apr 29 1974 RCA Corporation Method of fabricating a charged couple radiation sensing device
4283482, Mar 29 1979 Nihon Shinku Gijutsu Kabushiki Kaisha Dry Lithographic Process
4313254, Oct 30 1979 The Johns Hopkins University Thin-film silicon solar cell with metal boride bottom electrode
4581337, Jul 07 1983 DADE BEHRING INC ; BADE BEHRING INC Polyether polyamines as linking agents for particle reagents useful in immunoassays
4842893, Dec 19 1983 3M Innovative Properties Company High speed process for coating substrates
4843036, Jun 29 1987 Eastman Kodak Company Method for encapsulating electronic devices
4889609, Sep 06 1988 OIS OPTICAL IMAGING SYSTEMS, INC Continuous dry etching system
4913090, Oct 02 1987 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber
4934315, Jul 23 1984 Alcatel N.V. System for producing semicondutor layer structures by way of epitaxial growth
4954371, Jun 23 1986 3M Innovative Properties Company Flash evaporation of monomer fluids
5032461, Dec 19 1983 3M Innovative Properties Company Method of making a multi-layered article
5036249, Dec 11 1989 Molex Incorporated Electroluminescent lamp panel and method of fabricating same
5047131, Nov 08 1989 Von Ardenne Anlagentechnik GmbH; Applied Films Corporation Method for coating substrates with silicon based compounds
5124204, Jul 14 1988 Sharp Kabushiki Kaisha Thin film electroluminescent (EL) panel
5189405, Jan 26 1989 Sharp Kabushiki Kaisha Thin film electroluminescent panel
5237439, Sep 30 1991 Sharp Kabushiki Kaisha Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide
5260095, Aug 21 1992 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
5336324, Dec 04 1991 Veeco Instruments INC Apparatus for depositing a coating on a substrate
5354497, Apr 20 1992 Sharp Kabushiki Kaisha Liquid crystal display
5395644, Aug 21 1992 Battelle Memorial Institute; Battelle Memorial Institute K1-53 Vacuum deposition and curing of liquid monomers
5427638, Jun 04 1992 AlliedSignal Inc. Low temperature reaction bonding
5440446, Oct 04 1993 3M Innovative Properties Company Acrylate coating material
5464667, Aug 16 1994 Minnesota Mining and Manufacturing Company Jet plasma process and apparatus
5512320, Jan 28 1993 Applied Materials, Inc. Vacuum processing apparatus having improved throughput
5536323, Jul 06 1990 Entegris, Inc Apparatus for flash vaporization delivery of reagents
5547508, Aug 21 1992 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers apparatus
5554220, May 19 1995 PORTAL CONNECT, INC Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
5576101, Dec 18 1992 Bridgestone Corporation Gas barrier rubber laminate for minimizing refrigerant leakage
5578141, Jul 01 1993 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
5607789, Jan 23 1995 GILLETTE COMPANY, THE Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
5620524, Feb 27 1995 IPPRIME INC Apparatus for fluid delivery in chemical vapor deposition systems
5629389, Jun 06 1995 Innolux Corporation Polymer-based electroluminescent device with improved stability
5654084, Jul 22 1994 Martin Marietta Energy Systems, Inc. Protective coatings for sensitive materials
5681615, Jul 27 1995 Battelle Memorial Institute Vacuum flash evaporated polymer composites
5681666, Jan 23 1995 GILLETTE COMPANY, THE Light transparent multilayer moisture barrier for electrochemical celltester and cell employing same
5684084, Dec 21 1995 AXALTA COATING SYSTEMS IP CO , LLC Coating containing acrylosilane polymer to improve mar and acid etch resistance
5686360, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivation of organic devices
5693956, Jul 29 1996 UNIVERSAL DISPLAY CORPORATION Inverted oleds on hard plastic substrate
5695564, Aug 19 1994 Tokyo Electron Limited Semiconductor processing system
5711816, Jul 06 1990 Entegris, Inc Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
5725909, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating process
5731661, Jul 15 1996 UNIVERSAL DISPLAY CORPORATION Passivation of electroluminescent organic devices
5736207, Oct 27 1994 SCHOTT AG Vessel of plastic having a barrier coating and a method of producing the vessel
5747182, Jul 27 1992 Cambridge Display Technology Limited Manufacture of electroluminescent devices
5757126, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivated organic device having alternating layers of polymer and dielectric
5759329, Jan 06 1992 MARTINREA INDUSTRIES INC Fluoropolymer composite tube and method of preparation
5771177, May 17 1993 Kyoei Automatic Control Technology Co., Ltd. Method and apparatus for measuring dynamic load
5771562, May 02 1995 UNIVERSAL DISPLAY CORPORATION Passivation of organic devices
5792550, Oct 24 1989 JDS Uniphase Corporation Barrier film having high colorless transparency and method
5795399, Jun 30 1994 Kabushiki Kaisha Toshiba Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
5811177, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivation of electroluminescent organic devices
5811183, Apr 06 1995 3M Innovative Properties Company Acrylate polymer release coated sheet materials and method of production thereof
5821138, Feb 16 1995 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using a metal which promotes crystallization of silicon and substrate bonding
5821692, Nov 26 1996 UNIVERSAL DISPLAY CORPORATION Organic electroluminescent device hermetic encapsulation package
5844363, Jan 23 1997 TRUSTEES OF PRINCETON UNIVERSITY, THE Vacuum deposited, non-polymeric flexible organic light emitting devices
5861658, Oct 03 1996 GLOBALFOUNDRIES Inc Inorganic seal for encapsulation of an organic layer and method for making the same
5872355, Apr 09 1997 Innolux Corporation Electroluminescent device and fabrication method for a light detection system
5895228, Nov 14 1996 Innolux Corporation Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives
5902641, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Flash evaporation of liquid monomer particle mixture
5902688, Jul 16 1996 AVAGO TECHNOLOGIES ECBU IP SINGAPORE PTE LTD Electroluminescent display device
5912069, Dec 19 1996 Sigma Laboratories of Arizona, LLC Metal nanolaminate composite
5920080, Jun 23 1997 ALLIGATOR HOLDINGS, INC Emissive display using organic light emitting diodes
5922161, Jun 30 1995 Commonwealth Scientific and Industrial Research Organisation Surface treatment of polymers
5929562, Apr 18 1995 Cambridge Display Technology Limited Organic light-emitting devices
5934856, May 23 1994 Tokyo Electron Limited Multi-chamber treatment system
5945174, Apr 06 1995 3M Innovative Properties Company Acrylate polymer release coated sheet materials and method of production thereof
5948552, Aug 27 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Heat-resistant organic electroluminescent device
5952778, Mar 18 1997 Innolux Corporation Encapsulated organic light emitting device
5965907, Sep 29 1997 UNIVERSAL DISPLAY CORPORATION Full color organic light emitting backlight device for liquid crystal display applications
5996498, Mar 12 1998 MARK ANDY, INC Method of lithographic imaging with reduced debris-generated performance degradation and related constructions
6004660, Mar 12 1998 DUPONT TEIJIN FILMS U S LIMITED PARTNERSHIP Oxygen barrier composite film structure
6040017, Oct 02 1998 Sigma Laboratories of Arizona, LLC Formation of multilayered photonic polymer composites
6066826, Mar 16 1998 Sigma Laboratories of Arizona, LLC Apparatus for plasma treatment of moving webs
6083628, Nov 04 1994 Sigma Laboratories of Arizona, LLC Hybrid polymer film
6092269, Apr 04 1996 Sigma Laboratories of Arizona, Inc. High energy density capacitor
6106627, Apr 04 1996 Sigma Laboratories of Arizona, Inc. Apparatus for producing metal coated polymers
6118218, Feb 01 1999 Sigma Laboratories of Arizona, LLC Steady-state glow-discharge plasma at atmospheric pressure
6137221, Jul 08 1998 Innolux Corporation Organic electroluminescent device with full color characteristics
6146225, Jul 30 1998 Innolux Corporation Transparent, flexible permeability barrier for organic electroluminescent devices
6146462, May 08 1998 Sigma Laboratories of Arizona, LLC Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
6150187, Nov 20 1997 UNILOC 2017 LLC Encapsulation method of a polymer or organic light emitting device
6195142, Dec 28 1995 JOLED INC Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
6198217, May 12 1997 JOLED INC Organic electroluminescent device having a protective covering comprising organic and inorganic layers
6198220, Jul 11 1997 ALLIGATOR HOLDINGS, INC Sealing structure for organic light emitting devices
6203898, Aug 29 1997 3M Innovative Properties Company Article comprising a substrate having a silicone coating
6207238, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition for high and/or low index of refraction polymers
6207239, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition of conjugated polymer
6214422, Nov 04 1994 Sigma Laboratories of Arizona, LLC Method of forming a hybrid polymer film
6217947, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced polymer deposition onto fixtures
6224948, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition with low vapor pressure compounds
6228434, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making a conformal coating of a microtextured surface
6228436, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making light emitting polymer composite material
6231939, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating
6264747, Dec 15 1997 3M Innovative Properties Company Apparatus for forming multicolor interference coating
6268695, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Environmental barrier material for organic light emitting device and method of making
6274204, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making non-linear optical polymer
6348237, Aug 29 1997 3M Innovative Properties Company Jet plasma process for deposition of coatings
6358570, Mar 31 1999 SAMSUNG DISPLAY CO , LTD Vacuum deposition and curing of oligomers and resins
6387732, Jun 18 1999 Micron Technology, Inc. Methods of attaching a semiconductor chip to a leadframe with a footprint of about the same size as the chip and packages formed thereby
6397776, Jun 11 2001 SABIC INNOVATIVE PLASTICS IP B V Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators
6420003, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating
6436544, Jul 17 1997 Toray Plastics Europe S.A. Composite metal-coated polyester films with barrier properties
6465953, Jun 12 2000 BOE TECHNOLOGY GROUP CO , LTD Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices
6492026, Apr 20 2000 SAMSUNG DISPLAY CO , LTD Smoothing and barrier layers on high Tg substrates
6497924, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making non-linear optical polymer
6509065, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition of conjugated polymer
6537688, Dec 01 2000 UNIVERSAL DISPLAY CORPORATION Adhesive sealed organic optoelectronic structures
6544600, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition of conjugated polymer
6548912, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Semicoductor passivation using barrier coatings
6570325, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Environmental barrier material for organic light emitting device and method of making
6573652, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Encapsulated display devices
6576351, Feb 16 2001 UNIVERSAL DISPLAY CORPORATION Barrier region for optoelectronic devices
6592969, Apr 02 1998 Cambridge Display Technology Limited Flexible substrates for organic devices
6597111, Nov 27 2001 UNIVERSAL DISPLAY CORPORATION Protected organic optoelectronic devices
6613395, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making molecularly doped composite polymer material
6614057, Feb 07 2001 UNIVERSAL DISPLAY CORPORATION Sealed organic optoelectronic structures
6624568, Mar 28 2001 UNIVERSAL DISPLAY CORPORATION Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
6627267, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition with low vapor pressure compounds
6628071, Sep 03 2002 AU Optronics Corporation Package for organic electroluminescent device
6653780, May 11 2001 Pioneer Corporation Luminescent display device and method of manufacturing same
6656537, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition with low vapor pressure compounds
6660409, Sep 16 1999 JOLED INC Electronic device and process for producing the same
6664137, Mar 29 2001 UNIVERSAL DISPLAY CORPORATION Methods and structures for reducing lateral diffusion through cooperative barrier layers
6681716, Nov 27 2001 SABIC INNOVATIVE PLASTICS IP B V Apparatus and method for depositing large area coatings on non-planar surfaces
6720203, Apr 28 1999 LG Chem, Ltd Flexible organic electronic device with improved resistance to oxygen and moisture degradation
6734625, Jul 30 2002 LG DISPLAY CO , LTD Organic light emitting device (OLED) with multiple capping layers passivation region on an electrode
6737753, Sep 28 2001 Osram Opto Semiconductor GmbH Barrier stack
6743524, May 23 2002 BOE TECHNOLOGY GROUP CO , LTD Barrier layer for an article and method of making said barrier layer by expanding thermal plasma
6749940, May 26 2000 Kureha Corporation Moistureproof multilayered film
6765351, Dec 20 2001 The Trustees of Princeton University Organic optoelectronic device structures
6803245, Sep 28 2001 OSRAM Opto Semiconductors GmbH Procedure for encapsulation of electronic devices
6815887, Dec 26 2001 SAMSUNG DISPLAY CO , LTD Organic electroluminescent display device
6818291, Aug 17 2002 3M Innovative Properties Company Durable transparent EMI shielding film
6827788, Dec 27 2000 Anelva Corporation Substrate processing device and through-chamber
6836070, Nov 27 2001 Innolux Corporation Organic electro-luminescent display and method of sealing the same
6837950, Nov 05 1998 INTERFACE, INC Separation of floor covering components for recycling
6864629, Jan 29 1999 Pioneer Corporation Organic electroluminescence (EL) cell that prevents moisture from deteriorating light-emitting characteristics and a method for producing the same
6866901, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method for edge sealing barrier films
6867539, Jul 12 2000 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
6872114, Oct 17 2001 Innolux Corporation Method of sealing organo electro-luminescent display
6872248, Mar 29 2002 Canon Kabushiki Kaisha Liquid-phase growth process and liquid-phase growth apparatus
6878467, Apr 10 2001 Innolux Corporation Organic electro-luminescence element used in a display device
6888305, Nov 06 2001 UNIVERSAL DISPLAY CORPORATION Encapsulation structure that acts as a multilayer mirror
6888307, Aug 21 2001 UNIVERSAL DISPLAY CORPORATION Patterned oxygen and moisture absorber for organic optoelectronic device structures
6891330, Mar 29 2002 BOE TECHNOLOGY GROUP CO , LTD Mechanically flexible organic electroluminescent device with directional light emission
6897474, Apr 12 2002 UNIVERSAL DISPLAY CORPORATION Protected organic electronic devices and methods for making the same
6897607, Sep 25 2000 Pioneer Corporation Organic electroluminescent display panel having an inorganic barrier film
6905769, Jun 08 2001 DAI NIPPON PRINTING CO , LTD Gas barrier film
6923702, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method of making encapsulated display devices
6936131, Jan 31 2002 3M Innovative Properties Company Encapsulation of organic electronic devices using adsorbent loaded adhesives
6975067, Dec 19 2002 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
6994933, Sep 16 2002 OAK RIDGE MICRO ENERGY, INC , A NEVADA CORPORATION Long life thin film battery and method therefor
6998648, Aug 25 2003 UNIVERSAL DISPLAY CORPORATION Protected organic electronic device structures incorporating pressure sensitive adhesive and desiccant
7002294, Dec 20 2001 UNIVERSAL DISPLAY CORPORATION Method of protecting organic optoelectronic devices
7012363, Jan 10 2002 UNIVERSAL DISPLAY CORPORATION OLEDs having increased external electroluminescence quantum efficiencies
7015640, Sep 11 2002 BOE TECHNOLOGY GROUP CO , LTD Diffusion barrier coatings having graded compositions and devices incorporating the same
7018713, Apr 02 2003 3M Innovative Properties Company Flexible high-temperature ultrabarrier
7029765, Apr 22 2003 UNIVERSAL DISPLAY CORPORATION Organic light emitting devices having reduced pixel shrinkage
7122418, Oct 04 2002 AU Optronics Corporation Method of fabricating organic light emitting diode device
7166007, Dec 17 1999 OSRAM Opto Semiconductors GmbH; Institute of Materials Research and Engineering Encapsulation of electronic devices
7183197, Jun 25 2004 Applied Materials, Inc. Water-barrier performance of an encapsulating film
7186465, Nov 02 1998 3M Innovative Properties Company Transparent conductive oxides for plastic flat panel displays
7221093, Jun 10 2002 Institute of Materials Research and Engineering; Osram Opto Semiconductor GmbH Patterning of electrodes in OLED devices
7255823, Sep 06 2000 Institute of Materials Research and Engineering Encapsulation for oled devices
7621794, Nov 09 2005 INTERNATIONAL DISPLAY SYSTEMS, INC Method of encapsulating an organic light-emitting device
20010015620,
20010044035,
20020015818,
20020022156,
20020068143,
20020069826,
20020102818,
20020125822,
20020139303,
20020140347,
20030038590,
20030045021,
20030085652,
20030098647,
20030117068,
20030124392,
20030127973,
20030134487,
20030197197,
20030218422,
20040029334,
20040071971,
20040113542,
20040115402,
20040115859,
20040119028,
20040175512,
20040175580,
20040187999,
20040209090,
20040219380,
20040229051,
20040241454,
20040263038,
20050003098,
20050006786,
20050051094,
20050079295,
20050079380,
20050093001,
20050093437,
20050094394,
20050095736,
20050112378,
20050115603,
20050122039,
20050129841,
20050133781,
20050140291,
20050146267,
20050174045,
20050202646,
20050212419,
20050224935,
20050238846,
20060001040,
20060003474,
20060028128,
20060061272,
20060062937,
20060063015,
20060132461,
20060291034,
20070281089,
20080032076,
20090258235,
BE704297,
CA2353506,
DE102004063619,
DE19603746,
DE69615510,
EP299753,
EP340935,
EP390540,
EP547550,
EP590467,
EP611037,
EP722787,
EP777280,
EP777281,
EP787826,
EP915105,
EP916394,
EP931850,
EP977469,
EP1127381,
EP1278244,
EP1426813,
EP1719808,
EP1857270,
JP10016150,
JP10312883,
JP10334744,
JP10725,
JP11017106,
JP11040344,
JP11149826,
JP11255923,
JP2000058258,
JP2002505969,
JP2003282239,
JP2006294780,
JP2183230,
JP3183759,
JP3290375,
JP3579556,
JP41440,
JP414440,
JP4267097,
JP5147678,
JP5217158,
JP5290972,
JP5501587,
JP6234186,
JP63136316,
JP6418441,
JP7074378,
JP8179292,
JP8318590,
JP8325713,
JP872188,
JP9059763,
JP9161967,
JP9201897,
JP9232553,
WO36661,
WO36665,
WO53423,
WO157904,
WO181649,
WO182336,
WO182389,
WO189006,
WO2051626,
WO2071506,
WO226973,
WO3098716,
WO2004006199,
WO2004016992,
WO2004070840,
WO2004089620,
WO2005015655,
WO2005045947,
WO2005048368,
WO2005050754,
WO2006036492,
WO2006093898,
WO2008097297,
WO2008140313,
WO2008142645,
WO2008144080,
WO8707848,
WO9107519,
WO9510117,
WO9704885,
WO9716053,
WO9722631,
WO9810116,
WO9818852,
WO9916557,
WO9916931,
WO9933651,
WO9946120,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 29 2007Vitex Systems, Inc.(assignment on the face of the patent)
Nov 17 2010VITEX SYSTEMS, INC SAMSUNG MOBILE DISPLAY CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0255240860 pdf
Jul 02 2012SAMSUNG MOBILE DISPLAY CO , LTD SAMSUNG DISPLAY CO , LTD MERGER SEE DOCUMENT FOR DETAILS 0289120083 pdf
Date Maintenance Fee Events
Oct 28 2013ASPN: Payor Number Assigned.
Nov 25 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 21 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 17 2022REM: Maintenance Fee Reminder Mailed.
Jul 04 2022EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 01 20134 years fee payment window open
Dec 01 20136 months grace period start (w surcharge)
Jun 01 2014patent expiry (for year 4)
Jun 01 20162 years to revive unintentionally abandoned end. (for year 4)
Jun 01 20178 years fee payment window open
Dec 01 20176 months grace period start (w surcharge)
Jun 01 2018patent expiry (for year 8)
Jun 01 20202 years to revive unintentionally abandoned end. (for year 8)
Jun 01 202112 years fee payment window open
Dec 01 20216 months grace period start (w surcharge)
Jun 01 2022patent expiry (for year 12)
Jun 01 20242 years to revive unintentionally abandoned end. (for year 12)