We describe and claim television channel change picture-in-picture circuit and method. The circuit includes means for displaying a first channel on a primary portion of a screen, means for changing from the first channel to a second channel, and means for displaying the second channel on a secondary portion of the screen responsive to the means for changing from the first to the second channel while continuing to display the first channel on the primary portion of the screen.
|
9. A method, comprising:
displaying a first video broadcast channel on a primary portion of a screen;
responsive to a user pressing a channel change button, changing from the first video broadcast channel to a second video broadcast channel; and
responsive to the changing and to receiving an indication from a picture-in-picture (pip) source register (PIPSRC), defining a secondary portion of the screen based on a top line register (PIPT), a horizontal line register (PIPH), a left edge register (PIPL), and a width register (PIPW), displaying the second video broadcast channel on the secondary portion of the screen while continuing to display the first video broadcast channel on the primary portion of the screen, wherein the secondary portion of the screen is smaller than the primary portion of the screen, and wherein displaying the second video broadcast channel on the secondary portion of the screen is also responsive to receiving an indication from a pip enable register (PIPEN).
1. A television system, comprising:
a receiver for receiving an analog image data signal from a source and converting the analog image data signal into first and second digital video signals corresponding to first and second channels, respectively;
a controller for manipulating the first and second digital video signals, the controller comprising:
first and second ports for receiving, respectively, the first and second digital video signals from the receiver;
a frame memory for storing data pixels from the first and second digital video signals; and
a memory interface for controlling the frame memory, the memory interface comprising a picture-in-picture (pip) source register (PIPSRC), a pip enable register (PIPEN), a top line register (PIPT), a horizontal line register (PIPH), a left edge register (PIPL), and a width register (PIPW); and
a panel for receiving the data pixels from the controller, wherein the panel comprises:
a primary screen to display data pixels from the first video signal; and
a secondary screen within the primary screen to display data pixels from the second video signal, wherein the PIPT indicates a location of a top line of the secondary screen, the PIPH indicates a number of horizontal lines within the secondary screen, the PIPL defines a left edge of the secondary screen, and the PIPW defines a width of the secondary screen.
2. The television system of
4. The television system of
5. The television system of
6. The television system of
7. The television system of
8. The television system of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
responsive to the user pressing a select button, replacing the first video broadcast channel with the second video broadcast channel on the primary portion of the screen; and
removing the secondary portion of the screen.
16. The method of
17. The method of
18. The method of
|
This application is a continuation of U.S. patent application Ser. No. 11/190,216, filed on Jul. 26, 2005, titled TELEVISION CHANNEL CHANGE PICTURE-IN-PICTURE CIRCUIT AND METHOD, which is incorporated herein by reference in its entirety.
This application relates to television systems and, more particularly, to a television channel change picture-in-picture circuit and method.
A typical television (TV) has a plurality of buttons to actuate associated features. One such feature is channel changing actuated by pressing a channel up or a channel down button on, e.g., a TV's remote control or front panel. The user presses the channel up or down button once for each channel up or down, respectively, he desires to view. Every time the user presses the channel up or down buttons, the channel displayed on the TV prior to the press is replaced with the currently selected channel. That is, the TV displays the currently selected channel with each channel up or down button press, no longer displaying previously selected channels.
During channel surfing, the user scans a series of television channels to find something eye catching or to avoid commercials. It is desirable to channel surf without replacing the television's display of the currently selected channel at every channel change button press.
Accordingly, a need remains for a TV channel change picture-in-picture circuit and method.
We describe embodiments referencing the following drawings.
Likewise, a video receiver or decoder 122 decodes an analog video signal 112 from a video source 104. The video source 104 may be a video camcorder, tape player, digital video disk (DVD) player, or any other device capable of generating the analog video signal 112. The video source 104 may read (or play) external media 101. In an embodiment, a DVD player 104 plays the DVD 101. In another embodiment, a VHS tape player 104 plays a VHS tape 101. The decoder 122 converts the analog video signal 112 into the video signals 109 and/or 111 and provides it to the display controller 150. The decoder is any device capable of generating the video signals 109 and/or 111 in, e.g., Y/C or CVBS format, from the analog video signal 112. A person of reasonable skill in the art knows well the design and operation of the video source 104 and the video decoder 122.
A modem or network interface card (NIC) 124 receives data 114 from a global computer network 106 such as the Internet®. The data 114 may be in any format capable of transmission over the network 106. In an embodiment, the data 114 is packetized digital data. But the data 114 may also be in an analog form. Likewise, the modem 124 may be a digital or analog modem or any device capable of receiving and/or decoding data 114 from a network 106. The modem 124 provides video signals 109 and/or 111 to the display controller 150. A person of reasonable skill in the art knows well the design and operation of the network 106 and the modem/NIC 124.
A Digital Visual Interface (DVI) or high definition multimedia interface (HDMI) receiver 126 receives digital signals 116 from a digital source 108. In an embodiment, the source 108 provides digital RGB signals 116 to the receiver 126. The receiver 126 provides video signals 109 and/or 111 to the display controller 150. A person of reasonable skill in the art knows well the design and operation of the source 108 and the receiver 126.
A tuner 128 receives a wireless signal 118 transmitted by the antenna 119. The antenna 119 is any device capable of wirelessly transmitting or broadcasting the signal 118 to the tuner 128. In an embodiment, the antenna 119 transmits a television signal 118 to the television tuner 128. The tuner 128 may be any device capable of receiving a signal 118 transmitted wirelessly by any other device, e.g., the antenna 119, and of generating the video signals 109 and 111 from the wireless signal 118. The tuner 128 provides the video signals 109 and 111 to the controller 150. A person of reasonable skill in the art knows well the design and operation of the antenna 119 and the tuner 128.
The controller 150 may generate image data 132 and/or control signals 133 (collectively data signals 132) by manipulating the video signals 109 and 111 or any other signal it receives at its input. The display controller 150 provides the image data 132 to a panel 160 in any of a variety of manners. In an embodiment, the panel 160 is a television either analog (e.g., Cathode Ray Tube (CRT)), digital (e.g., High Definition Television (HDTV)), or otherwise. The panel 160 may be digital with a fixed pixel structure, e.g., active and passive LCD displays, plasma displays (PDP), field emissive displays (FED), electro-luminescent (EL) displays, micro-mirror technology displays, low temperature polysilicon (LTPS) displays, and the like. The panel 160 may be other than a digital display, e.g., an analog display such as a CRT as used in monitors, projectors, personal digital assistants, and other like applications. For simplicity, we refer to panel 160 as television 160 in the following description.
In an embodiment, the controller 150 may scale the video signals 109 and/or 111 for display using a variety of techniques including pixel replication, spatial and temporal interpolation, digital signal filtering and processing, and the like. In another embodiment, the controller 150 may additionally change the resolution of the digital video signal 109, changing the frame rate and/or pixel rate encoded in the video signals 109 and/or 111. We will not discuss scaling, resolution, frame and/or pixel rate conversion, and/or color manipulation in any further detail. A person of reasonable skill in the art should recognize that the controller 150 may manipulate the signals 109 and/or 111 and provide the image data 132 to the television 160 such that it is capable of properly displaying a high quality image regardless of display or panel type.
Read-only (ROM) and random access (RAM) memories 140 and 142, respectively, are coupled to the display system controller 150 and store bitmaps, FIR filter coefficients, and the like. A person of reasonable skill in the art should recognize that the ROM and RAM memories 140 and 142, respectively, may be of any type or size depending on the application, cost, and other system constraints. A person of reasonable skill in the art should recognize that the ROM and RAM memories 140 and 142, respectively, are optional in the system 100 and may be external or internal to the controller 150. RAM memory 142 may be a flash type memory device. Clock 144 controls timing associated with various operations of the controller 150.
The video signals 109 and/or 111 may be in a variety of formats, including composite or component video. Composite video describes a signal in which luminance, chrominance, and synchronization information are multiplexed in the frequency, time, and amplitude domain for single wire transmission. Component video, on the other hand, describes a system in which a color picture is represented by a number of video signals, each of which carries a component of the total video information. In a component video device, the component video signals may be processed separately and, ideally, encoding into a composite video signal occurs only once, prior to transmission. The video signals 109 and/or 111 may be a stream of digital numbers describing a continuous analog video waveform in either composite or component form.
In
Referring to
The controller 150 may capture signal 109 into a corresponding input buffer 306 from the port 302 while it captures signal 111 into a corresponding input buffer 308 from the port 304. In an embodiment, the input buffers 306 and 308 accumulate data pixels from signals 109 and 111, respectively, until the processor 312 indicates to a memory interface 311 that it can store them to a frame memory 310. The memory interface 311 may control the input buffers 306 and 308 and/or the frame memory 310 responsive to the processor 312.
The memory interface 311 may include a plurality of registers 313. The plurality of registers 113, in turn, may include a picture-in-picture (PIP) enable register (PIPEN) that is automatically set by the processor 312 or manually set by a user or manufacturer. When the PIPEN register is set, the controller 150 may concurrently capture data from the ports 302 and 304. The controller 150 may place data from one port, e.g., port 302, into a PIP window 320 while placing data from another port, e.g., port 304, in the active area 318 of the television 160.
A PIP source register (PIPSRC) may indicate which port can write to the PIP window 320. For example, if the PIPSRC is set to 1, the port 302 writes to the PIP window 320. And, for another example, if the PIPSRC is set to 0, the port 304 writes to the PIP window 320. Doing so defines what is displayed on an active area 318 and on a PIP window 320 of the television 160.
The PIP window 320 may be described and/or located by a plurality of description registers, including top line register (PIPT), horizontal line register (PIPH), the left edge register (PIPL), and width register (PIPW). The PIPT register may indicate the location of the top line while the PIPH register indicates the number of horizontal lines in the PIP window 320. The PIPL and PIPW registers may define the left edge and width (e.g., in memory words), respectively, of the PIP window 320.
With the PIPSRC set to 1, the port 302 may capture data for the active area 318 that correspond to the dimensions in memory 311. But the memory interface 311 may discard data it captures from the port 302 having write addresses that correspond to the PIP window 320. The port 304, on the other hand, captures data into the memory 310 having addresses that correspond to the PIP window 320. Although the port 304's origin can be translated relative to the port 302's origin, the port 304 uses the same frame memory (and dimensions) as the port 302 in PIP mode. Put differently, the memory interface 311 discards data it captures from the port 304 having write addresses outside the PIP window 320. Note the PIP window 320 need not match the active area 318 of the port 304's image.
During data capture, the ports 302 and 304 may write data to the memory 310 under the control of the memory interface 311 asynchronous to any clocks, e.g., graphics, video, or memory clocks.
The scalar 316 receives image data that includes the PIP window 320 image data pre-inserted through a plurality of first-in first-out (FIFO) line buffers. The scalar 316 scales the image data as a whole, including the active area 318 and PIP window 320 image data. The scalar 316 may be frame-locked to either the ports 302 and 304 (or neither), but may use separate control signaling from that used by the ports 302 and 304. A person of reasonable skill knows well the design and operation of the scalar 316. We will not discuss it in any further detail here.
Referring to
The channel change mode allows the controller 150 to operate the television 160 as follows.
With the channel change mode activated, the controller 150 determines if the user presses a channel change button 164 on the remote control 162 (block 506). If the user presses a channel change button, the controller 150 causes the television 160 to continue to to display channel 2 in the active area 318 (block 508) and channel 6 in the PIP window 320 at block 510 (
The user may cancel the channel change mode and/or the PIP mode, using the remote control 162 and/or the television 160's OSD. If the user cancels the channel change mode and/or the PIP mode at block 12, the controller 150 removes the display of the PIP window 320 on the television 160 at block 514 continuing to display the currently selected channel in the active area 318.
If the user selects to view a channel currently being previewed in the PIP window 320 e.g., channel 10, at any time by pressing a corresponding select button on the remote control 162 (block 516), the controller 150 replaces a display of channel 2 with a display of channel 10 in the active area 318 at block 518 and removes the preview display of the changed channel in the PIP window 320 at block 520 (
We have illustrated and described the principles of a television channel change picture-in-picture circuit and method by way of illustrative and not restrictive examples. Those of skill in the art will recognize certain modifications, permutations, additions, and sub-combinations to the exemplary embodiments we describe above. We intend that the following claims and those claims we introduce later be interpreted to include all such modifications, permutations, additions, sub-combinations as are within the spirit and scope.
Patent | Priority | Assignee | Title |
10015539, | Jul 25 2016 | DISH TECHNOLOGIES L L C | Provider-defined live multichannel viewing events |
10021448, | Nov 22 2016 | DISH TECHNOLOGIES L L C | Sports bar mode automatic viewing determination |
10045063, | Dec 23 2013 | DISH TECHNOLOGIES L L C | Mosaic focus control |
10158912, | Jun 17 2013 | DISH TECHNOLOGIES L L C | Event-based media playback |
10224074, | Jul 12 2017 | KARL STORZ Imaging, Inc. | Apparatus and methods for improving video quality from a digital video signal including replicated image frames |
10297287, | Oct 21 2013 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Dynamic media recording |
10349114, | Jul 25 2016 | DISH Technologies L.L.C. | Provider-defined live multichannel viewing events |
10419830, | Oct 09 2014 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Generating a customized highlight sequence depicting an event |
10432296, | Dec 31 2014 | DISH TECHNOLOGIES L L C | Inter-residence computing resource sharing |
10433030, | Oct 09 2014 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Generating a customized highlight sequence depicting multiple events |
10462516, | Nov 22 2016 | DISH Technologies L.L.C. | Sports bar mode automatic viewing determination |
10524001, | Jun 17 2013 | DISH Technologies L.L.C. | Event-based media playback |
10536758, | Oct 09 2014 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Customized generation of highlight show with narrative component |
10692535, | Jul 12 2017 | KARL STORZ Imaging, Inc. | Apparatus and methods for improving video quality from a digital video signal including replicated image frames |
10869082, | Jul 25 2016 | DISH Technologies L.L.C. | Provider-defined live multichannel viewing events |
11016788, | Nov 28 2018 | HISENSE VISUAL TECHNOLOGY CO , LTD | Application launching method and display device |
11025985, | Jun 05 2018 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Audio processing for detecting occurrences of crowd noise in sporting event television programming |
11138438, | May 18 2018 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Video processing for embedded information card localization and content extraction |
11264048, | Jun 05 2018 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Audio processing for detecting occurrences of loud sound characterized by brief audio bursts |
11290791, | Oct 09 2014 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Generating a customized highlight sequence depicting multiple events |
11373404, | May 18 2018 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Machine learning for recognizing and interpreting embedded information card content |
11582536, | Oct 09 2014 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Customized generation of highlight show with narrative component |
11594028, | May 18 2018 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Video processing for enabling sports highlights generation |
11615621, | May 18 2018 | STATS LLC | Video processing for embedded information card localization and content extraction |
11778287, | Oct 09 2014 | STATS LLC | Generating a customized highlight sequence depicting multiple events |
11863848, | Oct 09 2014 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | User interface for interaction with customized highlight shows |
11882345, | Oct 09 2014 | STATS LLC | Customized generation of highlights show with narrative component |
11922968, | Jun 05 2018 | STATS LLC | Audio processing for detecting occurrences of loud sound characterized by brief audio bursts |
8595768, | May 20 2011 | DISH TECHNOLOGIES L L C | Enhanced program preview content |
8973038, | May 03 2013 | DISH TECHNOLOGIES L L C | Missed content access guide |
9066156, | Aug 20 2013 | DISH TECHNOLOGIES L L C | Television receiver enhancement features |
9113222, | May 31 2011 | DISH TECHNOLOGIES L L C | Electronic programming guides combining stored content information and content provider schedule information |
9264779, | Aug 23 2011 | DISH TECHNOLOGIES L L C | User interface |
9420333, | Dec 23 2013 | DISH TECHNOLOGIES L L C | Mosaic focus control |
9565474, | Sep 23 2014 | DISH TECHNOLOGIES L L C | Media content crowdsource |
9602875, | Mar 15 2013 | DISH TECHNOLOGIES L L C | Broadcast content resume reminder |
9609379, | Dec 23 2013 | DISH TECHNOLOGIES L L C | Mosaic focus control |
9621959, | Aug 27 2014 | Echostar Technologies International Corporation | In-residence track and alert |
9628861, | Aug 27 2014 | DISH TECHNOLOGIES L L C | Source-linked electronic programming guide |
9681176, | Aug 27 2014 | DISH TECHNOLOGIES L L C | Provisioning preferred media content |
9681196, | Aug 27 2014 | DISH TECHNOLOGIES L L C | Television receiver-based network traffic control |
9800938, | Jan 07 2015 | DISH TECHNOLOGIES L L C | Distraction bookmarks for live and recorded video |
9848249, | Jul 15 2013 | DISH TECHNOLOGIES L L C | Location based targeted advertising |
9860477, | Dec 23 2013 | DISH TECHNOLOGIES L L C | Customized video mosaic |
9930404, | Jun 17 2013 | DISH TECHNOLOGIES L L C | Event-based media playback |
9936248, | Aug 27 2014 | DISH TECHNOLOGIES L L C | Media content output control |
9961401, | Sep 23 2014 | DISH TECHNOLOGIES L L C | Media content crowdsource |
ER2830, |
Patent | Priority | Assignee | Title |
5557338, | Apr 05 1995 | Thomson Consumer Electronics, Inc | Television receiver using received channel guide information and a secondary video signal processor for displaying secondary channel information |
6563515, | May 19 1998 | Rovi Guides, Inc; TV GUIDE, INC ; UV CORP | Program guide system with video window browsing |
6611260, | Nov 24 1997 | Pixelworks, Inc | Ultra-high bandwidth multi-port memory system for image scaling applications |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 20 2009 | Pixelworks, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 25 2014 | LTOS: Pat Holder Claims Small Entity Status. |
May 02 2014 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 24 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 18 2018 | REM: Maintenance Fee Reminder Mailed. |
Dec 10 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 02 2013 | 4 years fee payment window open |
May 02 2014 | 6 months grace period start (w surcharge) |
Nov 02 2014 | patent expiry (for year 4) |
Nov 02 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 02 2017 | 8 years fee payment window open |
May 02 2018 | 6 months grace period start (w surcharge) |
Nov 02 2018 | patent expiry (for year 8) |
Nov 02 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 02 2021 | 12 years fee payment window open |
May 02 2022 | 6 months grace period start (w surcharge) |
Nov 02 2022 | patent expiry (for year 12) |
Nov 02 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |