systems and methods for medical care, and more particularly, systems and methods for providing remote diagnostics and support for surgical systems. A central computer system is communicatively coupled to one or more computer-based surgical machines. The central computer system is programmed to monitor the operation of each of the surgical machines, diagnose any problems that occur with the machines, and notify a technician of potential problems with the machines to provide for an efficient support system that minimizes undesirable downtime of the surgical machines.
|
8. A support system for a plurality of remotely located ophthalmic surgical machines, the support system comprising:
a plurality of personal digital assistants; and
a central computer system comprising a network connection communicatively coupled to each of the plurality of ophthalmic surgical machines and to each of the plurality of personal digital assistants, the central computer system further comprising a database of system profiles associated with each of the ophthalmic surgical machines, a database of technician profiles associated with each of the personal digital assistants, and a diagnostics engine configured to receive diagnostics data from the ophthalmic surgical machines, the diagnostics engine including a computer-based algorithm configured to:
detect an operation fault of at least one of the plurality of ophthalmic surgical machines based on the diagnostics data and the database of system profiles, the operation fault indicating a service requirement of the at least one of the plurality of ophthalmic surgical machines; and
transmit an alert to at least one of the personal digital assistants using the database of technician profiles, the alert indicating the operation fault.
1. A service system for supporting ophthalmic surgical systems, the service system comprising: a plurality of remotely located ophthalmic surgical machines each configured to transmit diagnostics data;
a plurality of personal digital assistants; and
a central computer system comprising a network connection communicatively coupled to each of the plurality of ophthalmic surgical machines and to each of the plurality of personal digital assistant, the central computer system further comprising a database of system profiles associated with each of the ophthalmic surgical machines, a database of technician profiles associated with each of the personal digital assistants, and a diagnostics engine configured to receive the diagnostics data from the ophthalmic surgical machines, the diagnostics engine including a computer-based algorithm configured to:
detect an operation fault of at least one of the plurality of ophthalmic surgical machines based on the diagnostics data and the database of system profiles, the operation fault indicating a service requirement of the at least one of the plurality of ophthalmic surgical machines; and
notify at least one of the personal digital assistants of the operation fault using the database of technician profiles.
2. The service system of
3. The service system of
monitor the total output energy amount of each of the one or more ophthalmic laser surgical machines; and
detect the operation fault when the total output energy amount of at least one of the one or more ophthalmic laser surgical machines exceeds a threshold energy level.
4. The service system of
5. The service system of
determine a rate of change of the total output energy amount of each of the one or more ophthalmic laser surgical machines; and
detect the operation fault when the rate of change of the total output energy amount of at least one of the one or more ophthalmic laser surgical machines exceeds a threshold rate.
6. The service system of
monitor a total usage of the rotary vain pump of each of the one or more phacoemulsification machines; and
detect the operation fault when the total usage of the rotary vain pump of at least one of the one or more phacoemulsification machines exceeds a threshold value.
7. The service system of
9. The ophthalmic surgical system of
10. The ophthalmic surgical system of
monitor the amount of total output energy of each of the one or more ophthalmic laser surgical machines; and
notify at least one of the personal digital assistants when the amount of total output energy of one or more ophthalmic laser surgical machines exceeds a threshold energy level.
11. The ophthalmic surgical system of
calculate a rate of change of the amount of total output energy for each of the one or more ophthalmic laser surgical machines; and
notify at least one of the personal digital assistants when the rate of change of the amount of total output energy for one or more of the ophthalmic laser surgical machines exceeds a threshold rate.
12. The ophthalmic surgical system of
monitor a total usage of the rotary vain pump of each of the one or more phacoemulsification machines; and
notify at least one of the personal digital assistants when the total usage of one of the rotary vain pumps exceeds a threshold value.
13. The ophthalmic surgical system of
14. The ophthalmic surgical system of
|
The field of the invention relates to systems and methods for medical care, and more particularly to systems and methods for providing remote diagnostics and support for surgical systems.
A surgical system typically has a large and complex set of inter-operating components, each contributing to the proper operation of the system. For example, an exemplary ophthalmic laser system is shown in
Referring to
Another complex surgical system is a phacoemulsification system, which removes the lens of an eye (e.g., following impairment by cataract). Turning to
The phacoemulsification system 100 includes a microprocessor computer 110 that is operably connected to and controls a number of other elements of the system 100. In some embodiments, the system 100 includes a variable speed pump 112 (e.g., a peristaltic and/or venturi pump, and the like) to provide a vacuum source, a pulsed ultrasonic power source 114, a pump speed controller 16, and an ultrasonic power level controller 118. A vacuum sensor 120 provides an input signal to the computer 110 representing the vacuum level on the output side of the pump 112. Venting may be provided by a vent 122. The system 100 may also include a phase detector 124 to provide an input to the computer 100 that represents a phase shift between a sine wave representation of the voltage applied to the handpiece 104 and the resultant current into the handpiece 104. The functional representation of the system 100 also includes a system bus 126 that enables the various elements to operably communicate with each other.
In operation, the control unit 102 supplies ultrasonic power to the phacoemulsification handpiece 104. An irrigation fluid source 128 provides irrigation fluid to the handpiece 104. The irrigation fluid and an ultrasonic pulse are applied by the handpiece 104 to a patient's eye E, which are indicated by arrows F and P, respectively. Aspiration of the eye E is achieved by the pump 112, which is indicated by arrow A. The handpiece 104 may include a switch 130 for enabling a surgeon to select an amplitude of electrical pulses to the handpiece 104 via the computer 110, the power level controller 118, and the ultrasonic power source 114. The operation of the system 100 in general may be in accordance with the disclosure of U.S. Pat. No. 6,629,948, which is incorporated herein in entirety by reference.
For any of these systems, a failure of any one of these components could disable the operation of the entire system. However, fail-safe mechanisms are typically deployed with these systems to de-activate the corresponding component(s) and/or indicate a service alert in the event an improper operating status is detected. In response to the alert, a service technician is dispatched to diagnose the system. However, contacting the technician and waiting for the technician to arrive generally increases system downtime, prevents treatment of patients, and substantially increases costs to the system owner. One approach has been to provide preventative maintenance on a scheduled routine basis. This, however can create unnecessary service visits, particularly when the preventative maintenance schedule does not correlate with actual system performance and needs. Moreover, once one or more components, or the entire system, have been de-activated, the accessible information is generally insufficient for proper diagnosis. Accordingly, improved systems and methods for diagnosing and supporting surgical systems to reduce system downtime are desirable.
The invention is generally directed to systems and methods for medical care, and more particularly to systems and methods for providing remote diagnostics and support for surgical systems. The invention includes a central computer system communicatively coupled to one or more computer-based surgical machines via a computer network, such as the Internet. The central computer system is programmed to monitor the operation of one or more of the surgical machines, diagnose any problems that occur with one or more of the machines, and notify a technician of any potential problems with any of the machines to provide for an efficient support system that minimizes any potential undesirable downtime of the surgical machines.
In one embodiment, a service system for supporting ophthalmic surgical systems is provided. The service system includes a plurality of remotely located ophthalmic surgical machines, a plurality of personal digital assistants, and a central computer system communicatively coupled to each of the plurality of ophthalmic surgical machines and to each of the plurality of personal digital assistant. The central computer system is configured to detect an operation fault of at least one of the plurality of ophthalmic surgical machines and notify at least one of the personal digital assistants of the operation fault. The operation fault indicates a service requirement of the ophthalmic surgical machine.
In another embodiment, a method of servicing a plurality of surgical systems is provided. The method includes monitoring the plurality of surgical systems to obtain data indicating a status for each of the plurality of surgical systems, determining an operation fault of at least one surgical system of the plurality of surgical systems based on the data and a database of pre-determined profiles corresponding to each of the plurality of surgical systems, and notifying at least one technician of the operation fault.
In yet another embodiment, a support system for a plurality of remotely located ophthalmic surgical machines is provided. The support system includes a plurality of personal digital assistants and a central computer system communicatively coupled to each of the plurality of ophthalmic surgical machines and to each of the plurality of personal digital assistants. The central computer system is configured to receive data from at least one of the plurality of ophthalmic surgical machines, detect an operation fault of at least one of the plurality of ophthalmic surgical machines based on the data and a database on profiles corresponding to each of the plurality of ophthalmic surgical machines, and transmit an alert to at least one of the personal digital assistants. The operation fault indicates a service requirement of the ophthalmic surgical machine, and the alert indicates the operation fault.
Other systems, methods, features and advantages of the invention will be or will become apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features mid advantages be included within this description, be within the scope of the invention, and be protected by the accompanying claims.
In order to better appreciate how the above-recited and other advantages and objects of the inventions are obtained, a more particular description of the embodiments briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. It should be noted that the components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. Moreover, in the figures, like reference numerals designate corresponding parts throughout the different views. However, like parts do not always have like reference numerals. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely.
Referring to the drawings, a computer-based diagnostics system 1000 is shown in
In one embodiment, each surgical system 1300 includes a computer-based monitoring subsystem 1350 known in the art (e.g., a controller or a processor and a data storage device, such as a memory) that is configured to monitor various aspects of components critical to the operation of the surgical system 1300, although non-critical components may also be monitored. The monitoring subsystem 1350 collects the diagnostics related information for transmission to the central server system 1010. The PDAs 1200 are used by field technicians who can travel to the various surgical systems 1300 to resolve any problems, and the PDAs 1200 transmit and receive diagnostics related information specific to the corresponding surgical system 1300 to and from, respectively, the central server system 1010 and/or the various surgical systems 1300. The PDAs 1200 may include, by way of example and not limitation, to laptop computers, cell phones, or other portable wireless computing devices with network capabilities.
The central server system 1010 further includes a database of profiles 1130 associated with each monitored surgical system 1300. The surgical system database 1130 stores information about each surgical system 1300, e.g., type of system 1300 (e.g., an excimer laser, a femtosecond laser, and/or an ultrasound system), model, account information, owner, schedule of surgeries, surgeons approved to use the system 1300, location, usage history, diagnostics information, such as error logs and service history, and the like. Some fields are described below and based upon the type of surgical system 1300.
The central server system 1010 also includes a database 1120 of technician profiles that stores information about various technicians, e.g., location, schedule, completed service requests, time of completion, outstanding service requests, initiation time of service requests (e.g., to gauge quality of service), and the like. The server system 1010 can further include a global positioning system module 1125 that locates technicians based on the respective PDA 1200 to determine if a particular technician within a pre-determined vicinity of a surgical system 1300 requiring service or repair.
The central server system 1010 can provide a user interface (not shown) in the form of a webpage for convenient access and control of the central server system 1010 and the surgical systems 1300. In one embodiment, the interface includes a dashboard that is updated in real-time with the most current information about the surgical systems 1300. This dashboard can be configurable by the user and incorporate parameters from other business metrics to manage resources, cost, quality, and the like. The central server system 1010 can further include configuration management systems such as those described in U.S. patent application Ser. No. 11/839,074, which is hereby incorporated by reference in entirety.
Another component included in the central server system 1010 is a surgical system diagnostics engine 1170. This engine 1170 receives diagnostics related data from the various surgical systems 1300 and the surgical system profile database 1130 to determine the operating status of one or more components for a particular system 1300 or to receive an alert from a particular surgical system 1300 indicating the status of one or more components of the particular surgical system 1300 (e.g., a problem has occurred with one or more components of the particular surgical system 1300). This engine 1170 includes a computer-based algorithm tailored to diagnosing one or more types of surgical systems 1300, e.g., an excimer laser, a femtosecond laser, a cataract removal system, and the like. The central server 1010 can also include a number of computer servers located throughout different locations (e.g., across the world) to provide redundancy and reduce latency, as one of ordinary skill in the art would appreciate.
In another embodiment, some operation faults may be categorized for technician attention, regardless of the ability to remotely correct the operation fault. In these cases, the operation fault is compared with a pre-determined database of operation faults categorized for technician attention, instead of determining the remote resolution. A variety of factors may be used to establish this database, such as historical experience, industry standards, operating capacity buffers or margins, and the like, although any parameter that would degrade over time may be monitored.
For an ophthalmic laser system 1300, e.g., a femtosecond laser known in the art (such as that shown in
For example, the service visit may include adjusting mirror positions, diode power, or other electrical settings to increase the output energy level from a predicted or detected decrease. In addition, the slope of the data points over time can be determined, either by the surgical system 1300 or the diagnostics engine 1170, to indicate a decline, change, or normal rate of the total energy output. For example, in the event the slope of the total energy output is steeper than a pre-determined threshold rate, the technician is notified of the operation fault of the surgical system 1300. Technician attention can thus be expedited to resolve an operation fault that may be indicative of a potential problem other than normal wear, for example, a failure of a component within the optical path of the laser. Other aspects of the laser surgical system 1300 that can be monitored, verified, and/or calibrated utilizing the diagnostics system 1000 include, but are not necessarily limited to, beam steering error, coolant level error, shutter error, laser diode error, galvo positioning error, energy sensors, wavefront measurements, voltage measurements, and the like. History logs for each of these aspects of the laser surgical system 1300 can be stored in the surgical profile database 1130 and used to predict the operation or performance status of the system 1300 (e.g., predict when performance of one or more corresponding components of the system 1300 degrades beyond the pre-determined threshold level).
For a phacoemulsification surgical system 1300, such as shown in
In one embodiment, the diagnostics system 1000 is combined with an inventory management system, where the surgical system profile database 1130 can further include surgery schedules, required inventory for a particular surgery, patient surgery information, and the like. An example system is described in U.S. Patent Application No. 61/005,459, filed Dec. 3, 2007, which is hereby incorporated in entirety by reference.
In the foregoing specification, the invention has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, the specific ordering and combination of process actions described herein is merely illustrative, and the invention may appropriately be performed using different or additional process actions, or a different combination or ordering of process actions. For example, this invention is particularly suited for applications involving medical systems, but can be used beyond medical systems in general. As a further example, each feature of one embodiment can be mixed and matched with other features shown in other embodiments. Additionally, and obviously, features may be added or subtracted as desired. Accordingly, the invention is not to be restricted except in light of the attached claims and equivalents thereof.
Morris, Wes, Loschy, Robert V.
Patent | Priority | Assignee | Title |
10109170, | Feb 22 2013 | PRECISION BIOSENSOR INC | Method and system for implementing alarms for medical device through mobile device |
10404784, | Feb 22 2013 | PRECISION BIOSENSOR INC | Method and system for transmitting result of examination of specimen from medical device to destination |
10411794, | Feb 22 2013 | PRECISION BIOSENSOR INC | Method and system for transmitting result of examination of specimen from medical device to destination through mobile device |
10747406, | Dec 09 2011 | Medaxion, Inc. | Updating an electronic medical record for a patient |
10898622, | Dec 28 2017 | Cilag GmbH International | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
10932806, | Oct 30 2017 | Cilag GmbH International | Reactive algorithm for surgical system |
10932872, | Dec 28 2017 | Cilag GmbH International | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
10943454, | Dec 28 2017 | Cilag GmbH International | Detection and escalation of security responses of surgical instruments to increasing severity threats |
10944728, | Dec 28 2017 | Cilag GmbH International | Interactive surgical systems with encrypted communication capabilities |
10959744, | Oct 30 2017 | Cilag GmbH International | Surgical dissectors and manufacturing techniques |
10966791, | Dec 28 2017 | Cilag GmbH International | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
10973520, | Mar 28 2018 | Cilag GmbH International | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
10980560, | Oct 30 2017 | Cilag GmbH International | Surgical instrument systems comprising feedback mechanisms |
10987178, | Dec 28 2017 | Cilag GmbH International | Surgical hub control arrangements |
11013563, | Dec 28 2017 | Cilag GmbH International | Drive arrangements for robot-assisted surgical platforms |
11026687, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising clip advancing systems |
11026712, | Oct 30 2017 | Cilag GmbH International | Surgical instruments comprising a shifting mechanism |
11026713, | Oct 30 2017 | Cilag GmbH International | Surgical clip applier configured to store clips in a stored state |
11026751, | Dec 28 2017 | Cilag GmbH International | Display of alignment of staple cartridge to prior linear staple line |
11045197, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising a movable clip magazine |
11045591, | Dec 28 2017 | Cilag GmbH International | Dual in-series large and small droplet filters |
11051836, | Oct 30 2017 | Cilag GmbH International | Surgical clip applier comprising an empty clip cartridge lockout |
11051876, | Dec 28 2017 | Cilag GmbH International | Surgical evacuation flow paths |
11056244, | Dec 28 2017 | Cilag GmbH International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
11058498, | Dec 28 2017 | Cilag GmbH International | Cooperative surgical actions for robot-assisted surgical platforms |
11069012, | Dec 28 2017 | Cilag GmbH International | Interactive surgical systems with condition handling of devices and data capabilities |
11071560, | Oct 30 2017 | Cilag GmbH International | Surgical clip applier comprising adaptive control in response to a strain gauge circuit |
11076921, | Dec 28 2017 | Cilag GmbH International | Adaptive control program updates for surgical hubs |
11090047, | Mar 28 2018 | Cilag GmbH International | Surgical instrument comprising an adaptive control system |
11096688, | Mar 28 2018 | Cilag GmbH International | Rotary driven firing members with different anvil and channel engagement features |
11096693, | Dec 28 2017 | Cilag GmbH International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
11103268, | Oct 30 2017 | Cilag GmbH International | Surgical clip applier comprising adaptive firing control |
11109866, | Dec 28 2017 | Cilag GmbH International | Method for circular stapler control algorithm adjustment based on situational awareness |
11109878, | Oct 30 2017 | Cilag GmbH International | Surgical clip applier comprising an automatic clip feeding system |
11114195, | Dec 28 2017 | Cilag GmbH International | Surgical instrument with a tissue marking assembly |
11123070, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising a rotatable clip magazine |
11129611, | Mar 28 2018 | Cilag GmbH International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
11129636, | Oct 30 2017 | Cilag GmbH International | Surgical instruments comprising an articulation drive that provides for high articulation angles |
11132462, | Dec 28 2017 | Cilag GmbH International | Data stripping method to interrogate patient records and create anonymized record |
11141160, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising a motor controller |
11147607, | Dec 28 2017 | Cilag GmbH International | Bipolar combination device that automatically adjusts pressure based on energy modality |
11160605, | Dec 28 2017 | Cilag GmbH International | Surgical evacuation sensing and motor control |
11166716, | Mar 28 2018 | Cilag GmbH International | Stapling instrument comprising a deactivatable lockout |
11166772, | Dec 28 2017 | Cilag GmbH International | Surgical hub coordination of control and communication of operating room devices |
11179175, | Dec 28 2017 | Cilag GmbH International | Controlling an ultrasonic surgical instrument according to tissue location |
11179204, | Dec 28 2017 | Cilag GmbH International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
11179208, | Dec 28 2017 | Cilag GmbH International | Cloud-based medical analytics for security and authentication trends and reactive measures |
11197668, | Mar 28 2018 | Cilag GmbH International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
11202570, | Dec 28 2017 | Cilag GmbH International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
11207067, | Mar 28 2018 | Cilag GmbH International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
11207090, | Oct 30 2017 | Cilag GmbH International | Surgical instruments comprising a biased shifting mechanism |
11213294, | Mar 28 2018 | Cilag GmbH International | Surgical instrument comprising co-operating lockout features |
11213359, | Dec 28 2017 | Cilag GmbH International | Controllers for robot-assisted surgical platforms |
11219453, | Mar 28 2018 | Cilag GmbH International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
11229436, | Oct 30 2017 | Cilag GmbH International | Surgical system comprising a surgical tool and a surgical hub |
11234756, | Dec 28 2017 | Cilag GmbH International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
11253315, | Dec 28 2017 | Cilag GmbH International | Increasing radio frequency to create pad-less monopolar loop |
11257589, | Dec 28 2017 | Cilag GmbH International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
11259806, | Mar 28 2018 | Cilag GmbH International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
11259807, | Feb 19 2019 | Cilag GmbH International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
11259830, | Mar 08 2018 | Cilag GmbH International | Methods for controlling temperature in ultrasonic device |
11266468, | Dec 28 2017 | Cilag GmbH International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
11272931, | Feb 19 2019 | Cilag GmbH International | Dual cam cartridge based feature for unlocking a surgical stapler lockout |
11273001, | Dec 28 2017 | Cilag GmbH International | Surgical hub and modular device response adjustment based on situational awareness |
11278280, | Mar 28 2018 | Cilag GmbH International | Surgical instrument comprising a jaw closure lockout |
11278281, | Dec 28 2017 | Cilag GmbH International | Interactive surgical system |
11284936, | Dec 28 2017 | Cilag GmbH International | Surgical instrument having a flexible electrode |
11291444, | Feb 19 2019 | Cilag GmbH International | Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout |
11291445, | Feb 19 2019 | Cilag GmbH International | Surgical staple cartridges with integral authentication keys |
11291465, | Oct 30 2017 | Cilag GmbH International | Surgical instruments comprising a lockable end effector socket |
11291495, | Dec 28 2017 | Cilag GmbH International | Interruption of energy due to inadvertent capacitive coupling |
11291510, | Oct 30 2017 | Cilag GmbH International | Method of hub communication with surgical instrument systems |
11298129, | Feb 19 2019 | Cilag GmbH International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
11298130, | Feb 19 2019 | Cilag GmbH International | Staple cartridge retainer with frangible authentication key |
11298148, | Mar 08 2018 | Cilag GmbH International | Live time tissue classification using electrical parameters |
11304699, | Dec 28 2017 | Cilag GmbH International | Method for adaptive control schemes for surgical network control and interaction |
11304720, | Dec 28 2017 | Cilag GmbH International | Activation of energy devices |
11304745, | Dec 28 2017 | Cilag GmbH International | Surgical evacuation sensing and display |
11304763, | Dec 28 2017 | Cilag GmbH International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
11308075, | Dec 28 2017 | Cilag GmbH International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
11311306, | Dec 28 2017 | Cilag GmbH International | Surgical systems for detecting end effector tissue distribution irregularities |
11311342, | Oct 30 2017 | Cilag GmbH International | Method for communicating with surgical instrument systems |
11317915, | Feb 19 2019 | Cilag GmbH International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
11317919, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising a clip crimping system |
11317937, | Mar 08 2018 | Cilag GmbH International | Determining the state of an ultrasonic end effector |
11324557, | Dec 28 2017 | Cilag GmbH International | Surgical instrument with a sensing array |
11331100, | Feb 19 2019 | Cilag GmbH International | Staple cartridge retainer system with authentication keys |
11331101, | Feb 19 2019 | Cilag GmbH International | Deactivator element for defeating surgical stapling device lockouts |
11337746, | Mar 08 2018 | Cilag GmbH International | Smart blade and power pulsing |
11344326, | Mar 08 2018 | Cilag GmbH International | Smart blade technology to control blade instability |
11357503, | Feb 19 2019 | Cilag GmbH International | Staple cartridge retainers with frangible retention features and methods of using same |
11364075, | Dec 28 2017 | Cilag GmbH International | Radio frequency energy device for delivering combined electrical signals |
11369377, | Jun 25 2019 | Cilag GmbH International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
11376002, | Dec 28 2017 | Cilag GmbH International | Surgical instrument cartridge sensor assemblies |
11382697, | Dec 28 2017 | Cilag GmbH International | Surgical instruments comprising button circuits |
11389164, | Dec 28 2017 | Cilag GmbH International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
11389188, | Mar 08 2018 | Cilag GmbH International | Start temperature of blade |
11399858, | Mar 08 2018 | Cilag GmbH International | Application of smart blade technology |
11406382, | Mar 28 2018 | Cilag GmbH International | Staple cartridge comprising a lockout key configured to lift a firing member |
11406390, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising interchangeable clip reloads |
11410259, | Dec 28 2017 | Cilag GmbH International | Adaptive control program updates for surgical devices |
11413042, | Oct 30 2017 | Cilag GmbH International | Clip applier comprising a reciprocating clip advancing member |
11419630, | Dec 28 2017 | Cilag GmbH International | Surgical system distributed processing |
11419667, | Dec 28 2017 | Cilag GmbH International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
11423007, | Dec 28 2017 | Cilag GmbH International | Adjustment of device control programs based on stratified contextual data in addition to the data |
11424027, | Dec 28 2017 | Cilag GmbH International | Method for operating surgical instrument systems |
11432885, | Dec 28 2017 | Cilag GmbH International | Sensing arrangements for robot-assisted surgical platforms |
11446052, | Dec 28 2017 | Cilag GmbH International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
11457944, | Mar 08 2018 | Cilag GmbH International | Adaptive advanced tissue treatment pad saver mode |
11464511, | Feb 19 2019 | Cilag GmbH International | Surgical staple cartridges with movable authentication key arrangements |
11464532, | Mar 08 2018 | Cilag GmbH International | Methods for estimating and controlling state of ultrasonic end effector |
11464535, | Dec 28 2017 | Cilag GmbH International | Detection of end effector emersion in liquid |
11464559, | Dec 28 2017 | Cilag GmbH International | Estimating state of ultrasonic end effector and control system therefor |
11471156, | Mar 28 2018 | Cilag GmbH International | Surgical stapling devices with improved rotary driven closure systems |
11504192, | Oct 30 2014 | Cilag GmbH International | Method of hub communication with surgical instrument systems |
11510741, | Oct 30 2017 | Cilag GmbH International | Method for producing a surgical instrument comprising a smart electrical system |
11517309, | Feb 19 2019 | Cilag GmbH International | Staple cartridge retainer with retractable authentication key |
11529187, | Dec 28 2017 | Cilag GmbH International | Surgical evacuation sensor arrangements |
11534196, | Mar 08 2018 | Cilag GmbH International | Using spectroscopy to determine device use state in combo instrument |
11540855, | Dec 28 2017 | Cilag GmbH International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
11559307, | Dec 28 2017 | Cilag GmbH International | Method of robotic hub communication, detection, and control |
11559308, | Dec 28 2017 | Cilag GmbH International | Method for smart energy device infrastructure |
11564703, | Oct 30 2017 | Cilag GmbH International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
11564756, | Oct 30 2017 | Cilag GmbH International | Method of hub communication with surgical instrument systems |
11571234, | Dec 28 2017 | Cilag GmbH International | Temperature control of ultrasonic end effector and control system therefor |
11576677, | Dec 28 2017 | Cilag GmbH International | Method of hub communication, processing, display, and cloud analytics |
11589865, | Mar 28 2018 | Cilag GmbH International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
11589888, | Dec 28 2017 | Cilag GmbH International | Method for controlling smart energy devices |
11589915, | Mar 08 2018 | Cilag GmbH International | In-the-jaw classifier based on a model |
11589932, | Dec 28 2017 | Cilag GmbH International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
11596291, | Dec 28 2017 | Cilag GmbH International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
11601371, | Dec 28 2017 | Cilag GmbH International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
11602366, | Oct 30 2017 | Cilag GmbH International | Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power |
11602393, | Dec 28 2017 | Cilag GmbH International | Surgical evacuation sensing and generator control |
11612408, | Dec 28 2017 | Cilag GmbH International | Determining tissue composition via an ultrasonic system |
11612444, | Dec 28 2017 | Cilag GmbH International | Adjustment of a surgical device function based on situational awareness |
11617597, | Mar 08 2018 | Cilag GmbH International | Application of smart ultrasonic blade technology |
11633237, | Dec 28 2017 | Cilag GmbH International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
11648022, | Oct 30 2017 | Cilag GmbH International | Surgical instrument systems comprising battery arrangements |
11659023, | Dec 28 2017 | Cilag GmbH International | Method of hub communication |
11666331, | Dec 28 2017 | Cilag GmbH International | Systems for detecting proximity of surgical end effector to cancerous tissue |
11672605, | Dec 28 2017 | Cilag GmbH International | Sterile field interactive control displays |
11678881, | Dec 28 2017 | Cilag GmbH International | Spatial awareness of surgical hubs in operating rooms |
11678901, | Mar 08 2018 | Cilag GmbH International | Vessel sensing for adaptive advanced hemostasis |
11678927, | Mar 08 2018 | Cilag GmbH International | Detection of large vessels during parenchymal dissection using a smart blade |
11696760, | Dec 28 2017 | Cilag GmbH International | Safety systems for smart powered surgical stapling |
11696778, | Oct 30 2017 | Cilag GmbH International | Surgical dissectors configured to apply mechanical and electrical energy |
11701139, | Mar 08 2018 | Cilag GmbH International | Methods for controlling temperature in ultrasonic device |
11701162, | Mar 08 2018 | Cilag GmbH International | Smart blade application for reusable and disposable devices |
11701185, | Dec 28 2017 | Cilag GmbH International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
11707293, | Mar 08 2018 | Cilag GmbH International | Ultrasonic sealing algorithm with temperature control |
11712303, | Dec 28 2017 | Cilag GmbH International | Surgical instrument comprising a control circuit |
11737668, | Dec 28 2017 | Cilag GmbH International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
11744604, | Dec 28 2017 | Cilag GmbH International | Surgical instrument with a hardware-only control circuit |
11751872, | Feb 19 2019 | Cilag GmbH International | Insertable deactivator element for surgical stapler lockouts |
11751953, | May 03 2019 | LENSAR, INC | Cloud based system cataract treatment database and algorithm system |
11751958, | Dec 28 2017 | Cilag GmbH International | Surgical hub coordination of control and communication of operating room devices |
11759224, | Oct 30 2017 | Cilag GmbH International | Surgical instrument systems comprising handle arrangements |
11771487, | Dec 28 2017 | Cilag GmbH International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
11775682, | Dec 28 2017 | Cilag GmbH International | Data stripping method to interrogate patient records and create anonymized record |
11779337, | Dec 28 2017 | Cilag GmbH International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
11786245, | Dec 28 2017 | Cilag GmbH International | Surgical systems with prioritized data transmission capabilities |
11786251, | Dec 28 2017 | Cilag GmbH International | Method for adaptive control schemes for surgical network control and interaction |
11793537, | Oct 30 2017 | Cilag GmbH International | Surgical instrument comprising an adaptive electrical system |
11801098, | Oct 30 2017 | Cilag GmbH International | Method of hub communication with surgical instrument systems |
11818052, | Dec 28 2017 | Cilag GmbH International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
11819231, | Oct 30 2017 | Cilag GmbH International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
11832840, | Dec 28 2017 | Cilag GmbH International | Surgical instrument having a flexible circuit |
11832899, | Dec 28 2017 | Cilag GmbH International | Surgical systems with autonomously adjustable control programs |
11839396, | Mar 08 2018 | Cilag GmbH International | Fine dissection mode for tissue classification |
11844545, | Mar 08 2018 | Cilag GmbH International | Calcified vessel identification |
11844579, | Dec 28 2017 | Cilag GmbH International | Adjustments based on airborne particle properties |
11857152, | Dec 28 2017 | Cilag GmbH International | Surgical hub spatial awareness to determine devices in operating theater |
11864728, | Dec 28 2017 | Cilag GmbH International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
11864845, | Dec 28 2017 | Cilag GmbH International | Sterile field interactive control displays |
11871901, | May 20 2012 | Cilag GmbH International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
11890065, | Dec 28 2017 | Cilag GmbH International | Surgical system to limit displacement |
11896322, | Dec 28 2017 | Cilag GmbH International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
11896443, | Dec 28 2017 | Cilag GmbH International | Control of a surgical system through a surgical barrier |
11903587, | Dec 28 2017 | Cilag GmbH International | Adjustment to the surgical stapling control based on situational awareness |
11903601, | Dec 28 2017 | Cilag GmbH International | Surgical instrument comprising a plurality of drive systems |
11911045, | Oct 30 2017 | Cilag GmbH International | Method for operating a powered articulating multi-clip applier |
11918302, | Dec 28 2017 | Cilag GmbH International | Sterile field interactive control displays |
11925350, | Feb 19 2019 | Cilag GmbH International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
11925373, | Oct 30 2017 | Cilag GmbH International | Surgical suturing instrument comprising a non-circular needle |
11931027, | Mar 28 2018 | CILAG GMBH INTERNTIONAL | Surgical instrument comprising an adaptive control system |
11931110, | Dec 28 2017 | Cilag GmbH International | Surgical instrument comprising a control system that uses input from a strain gage circuit |
11937769, | Dec 28 2017 | Cilag GmbH International | Method of hub communication, processing, storage and display |
11937817, | Mar 28 2018 | Cilag GmbH International | Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems |
11969142, | Dec 28 2017 | Cilag GmbH International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
11969216, | Dec 28 2017 | Cilag GmbH International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
11986185, | Mar 28 2018 | Cilag GmbH International | Methods for controlling a surgical stapler |
11986233, | Mar 08 2018 | Cilag GmbH International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
11998193, | Dec 28 2017 | Cilag GmbH International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
12053159, | Dec 28 2017 | Cilag GmbH International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
12059124, | Dec 28 2017 | Cilag GmbH International | Surgical hub spatial awareness to determine devices in operating theater |
12059169, | Dec 28 2017 | Cilag GmbH International | Controlling an ultrasonic surgical instrument according to tissue location |
12059218, | Oct 30 2017 | Cilag GmbH International | Method of hub communication with surgical instrument systems |
12062442, | Dec 28 2017 | Cilag GmbH International | Method for operating surgical instrument systems |
12076010, | Dec 28 2017 | Cilag GmbH International | Surgical instrument cartridge sensor assemblies |
12096916, | Dec 28 2017 | Cilag GmbH International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
12096985, | Dec 28 2017 | Cilag GmbH International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
12121255, | Oct 30 2017 | Cilag GmbH International | Electrical power output control based on mechanical forces |
12121256, | Mar 08 2018 | Cilag GmbH International | Methods for controlling temperature in ultrasonic device |
12127729, | Dec 28 2017 | Cilag GmbH International | Method for smoke evacuation for surgical hub |
12133660, | Dec 28 2017 | Cilag GmbH International | Controlling a temperature of an ultrasonic electromechanical blade according to frequency |
12133709, | Dec 28 2017 | Cilag GmbH International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
12133773, | Dec 28 2017 | Cilag GmbH International | Surgical hub and modular device response adjustment based on situational awareness |
12137991, | Dec 28 2017 | Cilag GmbH International | Display arrangements for robot-assisted surgical platforms |
12144518, | Dec 28 2017 | Cilag GmbH International | Surgical systems for detecting end effector tissue distribution irregularities |
8326651, | May 29 2009 | Medaxion, LLC | User interface for managing medical data |
8850533, | May 29 2009 | Medaxion, LLC | Multi-level authentication for medical data access |
9230420, | Feb 22 2013 | PRECISION BIOSENSOR INC | Method and system for implementing alarms for medical device through mobile device |
D950728, | Jun 25 2019 | Cilag GmbH International | Surgical staple cartridge |
D952144, | Jun 25 2019 | Cilag GmbH International | Surgical staple cartridge retainer with firing system authentication key |
D964564, | Jun 25 2019 | Cilag GmbH International | Surgical staple cartridge retainer with a closure system authentication key |
ER4905, | |||
ER5971, | |||
ER7067, | |||
ER7212, | |||
ER8736, | |||
ER9597, |
Patent | Priority | Assignee | Title |
6149643, | Sep 04 1998 | RJW ACQUISTIONS, L C , D B A 20 20 TECHNOLOGIES, INC | Method and apparatus for exposing a human eye to a controlled pattern of radiation |
6648223, | Mar 21 2002 | Alcon Inc | Surgical system |
7027233, | Oct 12 2001 | AMO Development, LLC | Closed-loop focal positioning system and method |
20020032470, | |||
20020082665, | |||
20030178489, | |||
20040073403, | |||
20050187838, | |||
20060025670, | |||
20060274794, | |||
20070124737, | |||
20070135866, | |||
20070255114, | |||
20080082661, | |||
20080109051, | |||
20080122407, | |||
20080197194, | |||
20080281254, | |||
20080315829, | |||
20090012374, | |||
20090227876, | |||
20090257024, | |||
20090300507, | |||
20090312052, | |||
WO148676, | |||
WO2068047, | |||
WO2008098299, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 18 2008 | MORRIS, WES | Advanced Medical Optics, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021644 | /0287 | |
Sep 18 2008 | LOSCHY, ROBERT V | Advanced Medical Optics, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021644 | /0287 | |
Sep 22 2008 | Abbott Medical Optics Inc. | (assignment on the face of the patent) | / | |||
Feb 26 2009 | Advanced Medical Optics, INC | Abbott Medical Optics Inc | MERGER SEE DOCUMENT FOR DETAILS | 023234 | /0277 | |
Feb 09 2018 | Abbott Medical Optics Inc | JOHNSON & JOHNSON SURGICAL VISION, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 047151 | /0070 |
Date | Maintenance Fee Events |
Dec 31 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 07 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 08 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 23 2014 | 4 years fee payment window open |
Feb 23 2015 | 6 months grace period start (w surcharge) |
Aug 23 2015 | patent expiry (for year 4) |
Aug 23 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2018 | 8 years fee payment window open |
Feb 23 2019 | 6 months grace period start (w surcharge) |
Aug 23 2019 | patent expiry (for year 8) |
Aug 23 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2022 | 12 years fee payment window open |
Feb 23 2023 | 6 months grace period start (w surcharge) |
Aug 23 2023 | patent expiry (for year 12) |
Aug 23 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |