Apparatuses and methods for cooling and transferring wafers from low pressure environment to high pressure environment are provided. An apparatus may include a cooling pedestal and a set of supports for holding the wafer above the cooling pedestal. The average gap between the wafer and the cooling pedestal may be no greater than about 0.010 inches. venting gases may be used to increase the pressure inside the apparatus during the transfer. In certain embodiment, venting gases comprise nitrogen.

Patent
   8033771
Priority
Dec 11 2008
Filed
Dec 11 2008
Issued
Oct 11 2011
Expiry
Oct 26 2029
Extension
319 days
Assg.orig
Entity
Large
443
76
all paid
1. A load lock for cooling wafers after processing, the load lock comprising:
(a) an inlet transfer port for receiving the wafers after processing;
(b) an outlet transfer port for removing the wafers after cooling;
(c) a pedestal having a surface for absorbing heat from the wafers, said surface being structured to prevent a venting gas from passing through the pedestal while absorbing heat from the wafers;
(d) a venting non-process gas port for delivering a venting gas above the pedestal surface to increase pressure inside the load lock, the venting gas port shaped as a ring and comprising an opening facing a center of the ring, the opening configured to direct the venting non-process gas above and parallel to front surfaces of the wafers upon leaving the opening, wherein a diameter of the ring is smaller than a diameter of the wafers; and
(e) at least three supports provided on the pedestal surface, wherein said supports have heights which provide an average gap between one of the wafers and the pedestal surface of no greater than about 0.010 inches, when the one of the wafers is supported by the supports.
23. A method of cooling and transferring a wafer from a low pressure side to a high pressure side using a load lock, the method comprising:
(a) providing the wafer into the load lock;
(b) positioning the wafer on supports provided on a pedestal having a surface for absorbing heat from the wafers, said surface being structured to prevent a venting gas from passing through the pedestal while absorbing heat from the wafers;
(c) closing an inlet transfer port;
(d) increasing pressure inside the load lock by delivering a venting non-process gas through a venting gas port shaped as a ring and comprising an opening facing a center of the ring, wherein a diameter of the ring is smaller than a diameter of the wafer and wherein the venting non-process gas is delivered parallel above and parallel to a front side of the wafer and to keeps the wafer in contact with at least 70% of the supports by creating pressure differential at a center of the wafer such that pressure at the front side of the wafer is greater than pressure at a back side of the wafer forcing at least the center of the wafer towards the supports; and
(e) opening an outlet transfer port and removing the wafer.
2. The load lock of claim 1, wherein the average gap is no greater than about 0.005 inches.
3. The load lock of claim 1, wherein the average gap is no greater than about 0.002 inches.
4. The load lock of claim 1, wherein the venting gas port has a venting gas port opening having a diameter of between about 4 inches and 8 inches.
5. The load lock of claim 4, wherein the venting gas port opening has a diameter of between about 6 inches and 6.5 inches.
6. The load lock of claim 4, wherein the venting gas port opening has a width of between about 0.010 inches and 0.100 inches.
7. The load lock of claim 4, further comprising a load lock lid and a load lock body, and wherein the venting gas port opening is defined by the load lock lid and the load lock body.
8. The load lock of claim 1, further comprising a venting gas source coupled to the venting gas port, wherein the venting gas is substantially free of helium.
9. The load lock of claim 1, wherein the venting gas comprises nitrogen.
10. The load lock of claim 1, wherein the pedestal surface has a convex shape.
11. The load lock of claim 1, wherein a difference between an edge gap and a center gap is between about 0.001 inches and 0.010 inches.
12. The load lock of claim 1, wherein a difference between an edge gap and a center gap is between about 0.001 inches and 0.003 inches.
13. The load lock of claim 1, wherein at least ten supports are provided.
14. The load lock of claim 1, wherein the supports are arranged within at least a first ring and a second ring on the pedestal and wherein the first ring is positioned between about 4 inches and 6 inches from a center of the pedestal and wherein the second ring is positioned between about 1 inch and 3 inches from the center of the pedestal.
15. The load lock of claim 14, wherein at least six supports are provided within the first ring and at least three supports are provided within the second ring.
16. The load lock of claim 1, wherein tips of the supports provide a flat plane above the surface of the pedestal.
17. The load lock of claim 1, wherein the supports have rounded tips.
18. The load lock of claim 1, wherein the supports have diameter of between about 0.020 and 0.125 inches.
19. The load lock of claim 1, wherein the supports comprise a thermally insulating material.
20. The load lock of claim 1, wherein the supports comprise an electrically conductive ceramic material.
21. The load lock of claim 1, further comprising a controller comprising program instructions for:
(a) providing the wafer to the load lock;
(b) positioning the wafer on the supports;
(c) closing the inlet transfer port;
(d) controlling pressure inside the load lock to keep the wafer in contact with at least 70% of the supports; and
(e) opening the outlet transfer port and removing the wafer.
22. The load lock of claim 1, wherein the wafer comprises an outer edge and a center and wherein the pedestal surface forming a gap with the wafer during absorbing heat from the wafers, the gap being filed with the venting gas passing through the gap from the outer edge to the center.
24. The method of claim 23, wherein controlling the pressure comprises providing the venting gas, and wherein the venting gas is substantially free of helium.
25. The method of claim 23, wherein controlling the pressure comprises increasing the pressure inside the load lock at a rate of at least 30 Torr per seconds.
26. The method of claim 23, wherein controlling the pressure comprises providing the venting gas at a flow rate between about 10 and 50 standard liters per minute.
27. The method of claim 23, wherein controlling the pressure is performed in less than 15 seconds, and wherein a temperature of the wafer decreases by at least 200 degrees Centigrade during this time.
28. The method of claim 23, wherein controlling the pressure creates a pressure differential on opposite sides of the wafers creating a downward force directed towards the supports and forcing the wafer against the supports.

The present invention relates generally to methods and apparatus for transferring wafers using load locks and more particularly to methods and apparatus for cooling wafers while being transferred between lower pressure and higher pressure environments.

Many semiconductor manufacturing operations are performed at low pressures and high temperatures. Processing modules are often kept at low pressures while wafers are transferred between low and high pressure environments using load locks. Load locks effectively isolate two environments and eliminate the need for repeatedly cycling processing modules, which typically have large internal volumes, between different pressure levels. Instead, only small volume load locks are cycled during wafer transfers. Some configurations include several processing modules integrated with one or more internal wafer handling modules on the low pressure side of the processing system. Wafers may go through several processes without being transferred to a high pressure environment.

After processing, wafers must be removed from a low pressure processing module and placed into an atmospheric environment for, e.g., storage. Such wafers may need to be cooled to certain temperatures before being exposed to oxygen to prevent oxidation, out-gassing, and damage to storage modules. Rapid but uniform cooling is highly desired but is often difficult to achieve. To maintain high throughput, only a few seconds are afforded for the entire transfer process. Wafers often need to be cooled by more than 200° C. usually by positioning wafers close to a cold surface, e.g. a cooling pedestal. Often wafers are not flat and require relatively large set distances between the cold surface and a default wafer position to avoid direct contact. Since it is not practical to adjust the distances individually for each wafer, the separation distance must be set to non-optimum value (corresponding to the worst possible wafer deformation), resulting in generally poor heat transfer. Thus, load locks employ expensive venting gases such as helium, which has a high heat transfer coefficient, and even then prolonged cooling periods are required. A non-uniform gap between the cooling surface and the wafer also causes uneven cooling, leaving a hot spot in the areas bowing up (away) from the cooling surface, which could cause excessive stress possibly leading to wafer breakage.

Some solutions include electrostatic or vacuum clamping mechanisms to modify the shape of heat deformed wafers. Unfortunately, these solutions require large contact areas with wafer backsides, thereby increasing the risk of damaging the wafers and uneven cooling at contact points. Furthermore, the required clamping mechanisms are complex and expensive.

Therefore, there is a need for improved methods and apparatus that provide effective cooling during wafer transfer in load locks.

The present invention provides a load lock where a wafer is separated from a cooling pedestal by no more than about 0.010 inch on average (over the surface of the wafer supported by the pedestal). Such small gaps allow use of inexpensive venting gases and shorten the required cooling time. Bowed wafers are flattened against the contact pins of a pedestal by a designed pressure differential between the front side and back side of the wafer. The differential is created by controlling the flow of the venting gas inside the load lock. This condition can be maintained by an inventive combination of dynamically controlling pressure distribution inside the load lock, venting gas ports (particularly their shape, position, and orientation), venting gas flow rates, flow paths, and other parameters.

In one embodiment, a load lock includes an inlet and outlet transfer ports, a pedestal with a surface for absorbing heat from the wafers, a venting gas port located above pedestal surface and configured for delivering venting gases, and a set of supports provided on a pedestal surface. In certain embodiments, the set includes at least four supports having heights that provide an average gap between the wafer and the pedestal surface of no greater than about 0.010 inches, when the wafer is located on the supports. In more specific embodiments, the average gas is no greater than about 0.005 inches and in even more specific embodiments no greater than about 0.002 inches.

The venting gas port may be defined by a lid and a body of the load lock. In certain embodiments, the opening of the venting gas port has a diameter of between about 4 inches and 8 inches, or more specifically between about 6 inches and 6.5 inches. In the same or other embodiments, the width of the opening has width of between about 0.010 inches and 0.100 inches. A venting gas source may be coupled to the port and provide a venting gas that is substantially free of helium. In certain embodiments, the venting gas includes nitrogen.

The shape of the pedestal inside the load lock may be designed to provide uniform heat transfer. In certain embodiments, the pedestal surface has a convex shape. The difference between gaps around the edge and the center of the wafer may be between about 0.001 inches and 0.010 inches. In more specific embodiments, this difference is between about 0.001 inches and 0.003 inches.

Supports are distributed over the pedestal surface to control wafer's profile relative to the pedestal surface. At least ten supports are provided in certain embodiments. The supports may be arranged in at least two rings. The first ring is positioned between about 4 inches and 6 inches from the center of the pedestal, and the second ring is positioned between about 1 inches and 3 inches. At least six supports may be provided within the first ring and at least three supports within the second ring. The tips of the supports may provide a flat plane above the surface of the pedestal.

Supports may have different designs and be made from materials chosen to ensure adequate support of the wafer without causing damage. For example, supports may have rounded tips. In certain embodiments, the supports have diameter of between about 0.020 inches and 0.125 inches. The supports may be made from a thermally insulating material. In the same or other embodiments, the supports include an electrically conductive ceramic material.

The load lock may also have an associated controller containing program instructions for providing a wafer into the load lock, positioning the wafer on the supports, closing the inlet transfer port, controlling pressure inside the load lock to keep the wafer in contact with at least 70% of the supports, and then opening the outlet transfer port and removing the wafer. Certain embodiments of this invention include a method of practicing the above listed instructions. The pressure may be controlled by providing a venting gas that is substantially free of helium. The pressure may be increased at a rate of at least 30 Torr per seconds during the controlling operation. In the same or other embodiments, the venting gas may be provided at a flow rate between about 10 and 50 standard liters per minute. The pressure controlling operation may last less than 15 seconds. The temperature of the wafer may decrease by at least 200 degrees Centigrade during this time.

These and other features and advantages of the invention will be set forth below in more detail below with reference to the associated drawings.

FIG. 1 illustrates a plot of effective heat transfer coefficients as a function of the gap between the wafer and the cooling pedestal for different venting gases.

FIG. 2 is a schematic illustration of the overall semiconductor processing system including the load locks, the processing modules, the internal and external wafer transfer modules, and the wafer storage modules.

FIG. 3A is a cross-sectional view of the load lock system with a cooling pedestal in a lowered position and a wafer being supported by intermediate support pins above the pedestal in accordance with one embodiment the present invention.

FIG. 3B is a cross-sectional view of the load lock system with a cooling pedestal in a raised position and a being wafer supported by pedestal wafer supports in accordance with one embodiment of the present invention.

FIG. 4A is a schematic top view of the pedestal inside the load lock showing the pedestal wafer supports under the wafer and the edge locating pins around the perimeter of the wafer in accordance with one embodiment of the present invention.

FIG. 4B is a schematic view side of the pedestal with the convex top surface and the wafer supported by the pedestal wafer supports having variable heights.

FIG. 5A is a cross-sectional view of an assembly including a lid with a venting port and a body of the load lock in accordance with one embodiment of the present invention.

FIG. 5B is an enlarged cross-sectional view of the venting port and the inlet path for supplying venting gases into the load lock in accordance with one embodiment of the present invention.

FIG. 6 illustrates a flowchart of a wafer transferring and cooling process in accordance to one embodiment of the present invention.

FIG. 7 illustrates a plot of the overall pressure inside the load lock as a function of time during a transferring and cooling process in accordance with certain embodiments the present invention.

In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. The present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail to not unnecessarily obscure the present invention. While the invention will be described in conjunction with the specific embodiments, it will be understood that it is not intended to limit the invention to the embodiments.

Load locks are used to transfer wafers between environments at two different pressure levels. Load locks are also often used to cool wafers when transferring them from a low pressure processing side to an atmospheric pressure storage side. For the purposes of this description, “low pressure” and “high pressure” are terms applying to many different pressure regimes. In general they represent two different pressures, usually in the context of a low pressure side of a load lock and a high pressure side of load lock. In certain embodiments, “low pressure” refers to a pressure between about 10−9 Torr (1 nanoTorr) and 100 Torr. In a more specific range, a low pressure is between about 5×10−4 Torr (0.5 mTorr) and 1 Torr. In another embodiment, the low pressure is between 20 Torr and 60 Torr. In many applications calling for load locks, a process producing hot wafers is performed at low pressure.

Any pressure level above the low pressure is referred to as “high pressure.” In certain embodiment, the high pressure is ambient pressure or thereabouts. In other embodiments, the low pressure is less than ambient pressure.

In the context of this description, “venting” is increasing the pressure inside the load lock by, e.g., supplying one or more of the venting gases. The load lock is typically equipped with a venting port to introduce the venting gas. A transfer and cooling process may have one or more venting cycles.

“Pumping” or “vacuuming” refers to reduction of the pressure inside the load lock by, e.g., opening a vacuum port and letting gases escape from the load lock. A vacuum pump or a vacuum facility line may be attached to the vacuum port. In certain embodiments, venting coincides with pumping. For example, both venting and vacuum ports are open and venting gases are introduced and removed from the load lock at the same time. This may be done, for example, to control pressure differential on opposite sides of the wafer irrespectively of the pressure changes inside the load lock.

Wafers may come from processing modules at temperatures substantially higher than acceptable for exposing wafers to ambient conditions and placing wafers into storage modules. For example, wafers are at about 350° C. after a typical CVD process. They must be cooled to below 70° C. before exposure to oxygen. It takes only two to three seconds for an internal transfer system to move a wafer from a processing module to a load lock and a few more seconds (typically 10-15 seconds) to bring the load lock to atmospheric pressure before the wafer is removed. Usually, no additional time is allowed for the wafer to cool in order to ensure high process throughput.

A wafer starts cooling immediately after it is exposed to colder surroundings. It may start with removal from the heated pedestal of the processing module. The temperature gradient is usually the greatest at this moment. However, the heat transfer rate may still be low if the surrounding gas is at low pressure, e.g. below 100 Torr and often as low 1 Torr and even lower. The combination of these two factors, high temperature gradient and low heat transfer coefficient, may result in gradual heat loss from the wafer during the transfer. In one example, a wafer loses between about 10 and 40° C. from its initial temperature in the processing module during the first 1 to 5 seconds of the transfer process.

While in the load lock, the wafer continues to lose heat. In certain embodiments, the wafer is positioned on top of a cooling pedestal that removes significant amounts of heat from the wafer. The amount of heat transferred depends on the distance between the wafer and the cooling pedestal in addition to other factors. Smaller distances provide for better heat transfer. However, the wafer should not touch the pedestal in order to avoid cold spots, particle contamination, and mechanical damage. FIG. 1 illustrates a plot of the effective heat transfer coefficients as a function of the average gap between the wafer and the cooling pedestal for different venting gases at about 100 Torr. The plot indicates that the effective heat transfer coefficients substantially increase as the average gap drops below 0.2-0.3 mm (or approximately 0.008 inches-0.012 inches). For example, inexpensive nitrogen (line 108) has proved to be as effective at 0.2 mm (0.008 inches) gap as much more expensive helium (line 104) at 1 mm (0.039 inches) gap. Other modeled venting gases, hydrogen (line 102) and neon (106), have shown similar behavior. It was also determined that these gases reach about 80% of their maximum heat transfer coefficient value upon at a pressure of about 20 Torr and then maintain substantially constant heat transfer coefficients for pressures above 100 Torr.

All wafers arrive from the processing modules having distorted shapes (i.e., they deviate from truly flat). However, the relative magnitude of the distortion can vary widely; the total variability of wafer shape can be ˜0.030 inches. With helium (which has a high heat transfer coefficient), an appropriate gap is ˜0.035 inches; with nitrogen (having a much lower heat transfer coefficient) the gap must be much smaller, e.g., ˜0.005 inches. A difficult problem to solve is consistently (from wafer-to-wafer) maintaining a 0.005 inch gap while confronting a 0.030 inch variability in wafer shape. A challenge facing the inventors was to find a way to reproducibly flatten heated wafers in a load lock and at the same time greatly reduce the average distance between the wafer surface and a heat transfer surface (e.g., a pedestal) to allow rapid cooling in the presence of a gas with a relatively poor heat transfer.

In certain embodiments further described below, a small gap is maintained by minimum contact area (MCA) supports extending slightly above the top surface of the pedestal. The MCA supports are positioned in such way as to define a plane with their tips. In some examples, the top surface of the pedestal has a curvature or some other non-planar shape. Such shapes result in some parts of the pedestal, usually the edges, being further away from the wafer than others, usually the center. In this example, a “center gap” is a gap corresponding to the center of the horizontally aligned wafer, and an “edge gap” is the one corresponding to the edge of such wafer. In specific embodiments, the edge gap is the same along the entire perimeter of the wafer. An “average gap” is a numerical average of the center gap and the edge gap.

A difference between the edge and center gaps is used to achieve uniform cooling. Without efforts to even out heat transfer over the radius of a wafer, the wafer will tend to cool faster from the edges. In certain embodiments, the pedestal profile is driven by the profile of the venting gas flow rates between the wafer and the pedestal. In certain embodiments, the venting gas is introduced into the load lock from outside the pedestal and flows into the gap between the pedestal and the wafer. The flow rate is highest around the edges of the wafer and lowest at the center. Heat transfer between a surface and fluid is greater if the fluid in contact with the surface has higher velocity. Therefore, in some embodiments, the edge gap may be greater than the center gap to compensate for higher flow rates of the venting gas around the edge of the wafer. In other words, a convex pedestal shape is employed to promote heat transfer from the center of the wafer.

Apparatus

FIG. 2 shows a semiconductor processing system 200 in accordance with certain embodiments of the present invention. Wafers may be provided to the system in wafer-storing modules 202. For example, Front Opening Unified Pods (FOUPs) may be used to provide and receive wafers from the system. An external wafer handling system 204 may include a robot arm and used to transfer wafers between the wafer-storing modules 202 and the load locks 206. The wafers are placed into and removed from the load locks 206 through the corresponding external ports. The wafer-storing modules 202 and the external wafer handling system 204 are the only illustrated components that operate at high pressure, such as ambient pressure of the production facility where the system 200 is present. In alternative embodiments, the load locks 206 may be used to transfer wafers between two internal sides of the processing system operating at different pressure levels that are both lower than ambient pressure.

The load locks 206 are cycled between the low pressure and the high pressure keeping the external side isolated from the processing side. This approach eliminates the need to vent and then pump the entire low pressure side, e.g. the internal wafer handling module 208 and the processing modules 211, after each processing of each wafer. In certain embodiments, the load locks 206 are designed to have minimal internal volumes sufficient to accommodate one or more wafers and provide access to robot arms of wafer handling systems. In certain embodiments, the volume of the load locks 206 may be between about 1 and 10 liters. In more specific embodiments, the load lock volume may be between about 2 and 5 liters.

The low pressure side may include one or more internal wafer handling modules 208 and one or more processing modules 211, such as one or more Physical Vapor Deposition (PVD) chambers, Chemical Vapor Deposition (CVD) chambers, Atomic Layer Deposition (ALD) chambers, degas modules, pre-clean modules, reactive pre-clean (RPC) modules, cooling modules, additional load-locks, a backbone and other types of modules. While an illustrative example of FIG. 2 only includes three processing modules 211 and one internal wafer handling module 208, the system 200 may have any number and combinations of modules. The internal wafer handling module 208 is used to transfer wafers among different processing modules 211 and the load locks 206

The invention is not limited to the semiconductor wafer processing system configurations described above. For example, one or more multi-station reactors may be coupled to a transfer module that is coupled to one or more load locks. Suitable semiconductor processing tools, for example, include the Novellus Sequel, Inova, Altus, Speed, and different Vector systems (e.g., Vector Extreme, Vector Express, Vector AHM), produced by Novellus Systems of San Jose, Calif. The reactors need not be multi-station reactors, but may be single station reactors. Similarly, the load locks may be multiple wafer load locks, for example dual wafer load locks.

The processing system 200 may include a system controller 210 that may receive feedback signals from various modules of the system and supply back control signals back to the same or other modules. The system controller 210 may control operation of the load locks 206, such as timing of the cycles, pressure levels, timing and flow rates of venting and purging gases, pumping, and many other process variables. In general aspects of the present invention, the control system 210 may synchronize the operation of the load locks 206 with respect to other modules, such as the external wafer handling module 204 and the internal wafer handling module 208. In more specific aspects of the present invention, the system controller 210 may control operation of valves and flow meters of the venting and purging gas lines and/or the vacuum lines of the load locks 206 and mechanisms opening and closing internal and external ports of the load locks 206. The system controller 210 may be part of an overall system-wide controller that is responsible for operations of the various processing modules, the backbone, etc.

In the depicted embodiment, the system controller 210 is employed to control process conditions when providing the substrate wafer to the load lock, closing the transfer port of the load lock, venting the load lock, pumping the load lock, opening the load lock's ports, and removing the wafer.

The system controller 210 may include one or more memory devices and one or more processors. The processor may include a CPU or computer, analog and/or digital input/output connections, stepper motor controller boards, etc. Instructions for implementing appropriate control operations are executed on the processor. These instructions may be stored on the memory devices associated with the controller or they may be provided over a network.

In certain embodiments, the system controller 210 controls all of the activities of the processing system. The system controller executes system control software including sets of instructions for controlling the timing of the processing operations, pressure levels, flow rates, and other parameters of a particular process. Other computer programs, scripts or routines stored on memory devices associated with the controller may be employed in some embodiments.

Typically, there is a user interface associated with the system controller 210. The user interface may include a display screen, graphical software to display process conditions, and user input devices such as pointing devices, keyboards, touch screens, microphones, etc.

The computer program code for controlling the above operations can be written in any conventional computer readable programming language: for example, assembly language, C, C++, Pascal, Fortran or others. Compiled object code or script is executed by the processor to perform the tasks identified in the program.

Signals for monitoring the process may be provided by analog and/or digital input connections of the system controller. The signals for controlling the process are output on the analog and digital output connections of the processing system.

FIG. 3A illustrates a cross-sectional view of the load lock during loading or unloading of a wafer 306 when a cooling pedestal 310 is in the lowered position. The load lock has a body 302 and a lid 304 that seal the load lock from the external environment. In certain embodiments, the lid 304 has a venting port. The lid may also form a venting path together with the body 302 for supplying venting gas from the port into the load lock further described in the context of FIGS. 4A and 4B.

The cooling pedestal 310 is typically made out of aluminum, stainless steel, or any other suitable thermally conductive materials. The cooling pedestal 310 may have a set of channels for circulating a cooling media through the pedestal. In certain embodiments, the cooling media may be primarily water or other suitable liquid maintained at between about, e.g., 15° C. and 35° C. In other embodiments, other circulating heat transfer media are used; e.g., super-cooled nitrogen or galden. The cooling pedestal 310 may have a drive 318 attached for moving the pedestal 310 in a vertical direction between its lowered (shown in FIG. 3A) and raised (shown in FIG. 3B) positions. In other embodiments, the pedestal is stationary, and the wafer lift provides initial support to the wafer and later brings the wafer towards the pedestal for heat transfer.

The cooling pedestal 310 may have a set of alignment cones 314 for horizontal alignment of the wafer 306 relative to the cooling pedestal 310. Other embodiments (not shown) employ moving parts such as an appropriately configured wafer lift that do not require alignment features. In certain embodiments, the pedestal 310 has a set of minimum contact area (MCA) supports 312 for a vertical alignment and for re-shaping or flattening the wafer 306 when it is warped. The depicted load lock is equipped with intermediate support pins 308 made out of stainless steel or any other suitable material. The load lock also has different adapters for connecting venting, purging, and vacuuming lines (not shown). The load lock has two transfer ports 315 and 316 for accessing load lock from low and high pressure sides and brining the wafer 306 in and out. One transfer port 315 may be designated as an external transfer port for accessing the high pressure side. Another transfer port 316 may be designated as an internal transfer port for accessing the low pressure side.

A few operations of the overall transferring process are presented to further illustrate the configuration and function of the load lock's elements in accordance with certain embodiments. When internal transfer port 316 is opened, the pedestal 310 may be placed in its lowered position (as shown in FIG. 3A). The drive 318 may be actuated to bring the pedestal into the lowered position. The robot arm of the internal wafer transfer system then places the wafer 306 on the intermediate support pins 308 and retracts from the load lock.

The cooling pedestal 310 is then raised by the drive 318. The wafer 306 is lifted from the intermediate support pins 308 and is supported by the MCA supports 312 as shown in FIG. 3B. During this operation, the wafer 306 may be aligned in horizontal direction by one or more of the alignment cones 314. Once the wafer 306 is supported on the pedestal and the internal transfer port is closed, the load lock is now ready for venting. Typically, a system controller for the entire processing system is used to synchronize operations described herein.

FIGS. 4A and 4B illustrate a top and a side cross-sectional views of the load lock 400 supporting the wafer 404 during the venting operation according to certain embodiments. The wafer 404 is positioned over the cooling pedestal 402 and aligned horizontally by the alignment cones 408. The wafer is supported by the MCA supports 406. FIG. 4A presents an embodiment in which the pedestal has twelve MCA supports. Any suitable number of the MCA supports 406 may be used. Generally, three or more MCA supports 406 are used. Additional MCA supports 406 may provide better support during flattening of the wafer 404, however each additional MCA support provides an extra contact point with a backside of the wafer 404 and increases risk of damaging the backside. In certain embodiments, the number of MCA supports may be between three and one hundred. In specific embodiments, the number of the MCA supports may be between nine and twenty. In one design, the pedestal has fifteen supports, twelve near the edge and three closer to the center. Some models have indicated that at least about nine are required to meet normal sag requirements; up to twenty may be used to avoid more stringent sag requirements. The spacing and number of supports typically depends on the pedestal's thermal property and the wafer's elastic and thermal properties. In certain embodiments, the MCA supports are provided with even radial and/or azimuthal (angular) spacing.

The MCA supports 406 extend from the cooling pedestal 402 and define (with their tips) a plane above the pedestal 402. In one embodiment, the tips deviate from the plane by less than about 0.001 inches. In a more specific embodiment, the deviation from that plane is about 0.0002 inches or less, and in an even more specific case about 0.0005 inches or less. The MCA supports 406 may be spaced relative to each other to provide the least sag of the wafer 404 during cooling.

In some embodiments, the MCA supports 406 and/or the alignment cones 408 are made of any conductive materials that provide not only adequate support and alignment of the wafer, but as well discharge of static electricity from the backside and edges of the wafer 404. In a specific embodiment, the MCA supports 406 and/or the alignment cones 408 are made from electrically conductive ceramics, such as Cerastat having volume resistivity between 103 to 1012 Ohm-cm. The cooling pedestal 402 provides electrical connection for the MCA supports 406 and/or the alignment cones 408 to the electrical ground.

The MCA support tips may have various shapes. In one embodiment, the MCA supports 406 have rounded tips that provide very little contact area with the wafer, thereby reducing the risk of damage and minimizing localized heat transfer spikes. A direct contact between the wafer and an MCA support results in much higher heat transfer at the point of contact than in other areas where heat transfer is dependent primarily on a venting gas and proximity of the cooling pedestal. Reducing a contact area of each MCA support and a number of supports will minimize the localized heat transfer spikes. In another embodiment, the MCA supports 406 are shaped as cylinders having flat tops.

In certain embodiments, the top surface of the wafer cooling pedestal 402 (i.e. the surface facing the backside) is curved. In one embodiment, the radius of curvature is between about 1,000 inches and 10,000 inches. These radius values may provide for a difference between the edge and center gaps of 0.0174 inches and 0.0017 inches respectively for 300 mm wafers. In a more specific embodiment, the radius of curvature may be between about 4,000 inches and 8,000 inches corresponding to 0.0044 inches and 0.0022 inches gap differences for the same wafer size. The center gap may be already preset to between about 0.001 inches and 0.020 inches or more specifically to between about 0.002 inches and 0.010 inches. The table below presents various examples of pedestal designs (characterized in terms of a center gap and a radius of curvature).

TABLE 1
Radius of Gap Center Gap [inches]
Curvature Delta 0.001 - 0.01 0.002 - 0.01
[inches] [inches] Average Gap [inches]
1,000 0.0174 0.0097 - 0.0187 0.0107 - 0.0187
10,000 0.0017 0.0019 - 0.0109 0.0029 - 0.0109
4,000 0.0044 0.0032 - 0.0122 0.0042 - 0.0122
8,000 0.0022 0.0021 - 0.0111 0.0031 - 0.0111

FIG. 5A illustrates a cross-sectional view of the lid 502 and the body 504 of the load lock. In certain embodiments, the lid 502 has a venting port 508 for allowing the venting gas to enter the load lock. The port may communicate with one or more channels that are collectively referred to as a venting path. An example of this path is further illustrated in FIG. 5B. The venting port 508 allows for the venting gas to flow into a first channel 512, which may be shaped as a rectangular annular space, a ring, or various other suitable shapes. The two sides of the ring are formed by the lid 502 and the other two sides are formed by the body 504 of the load lock as shown in FIG. 5B. In certain embodiments, the sides are between about 0.125 inches and 1.000 inches. In one embodiment, the first channel 512 is larger than other channels of the venting path. This may be needed for initial distribution of the venting gas within the first channel 512 after entering into the path from the inlet tube 508. For example, the dimensions of the first channel 512 may be approximately 0.5 inches by 0.5 inches. The opening of the third channel 512 may be approximately 0.30 inches. However, in many cases any design that effectively manifolds the gas flow or delivers diffused flow above the top center of the wafer will work.

The venting gas then passes into the second channel 514. The second channel 514 may also have a profile of a rectangular ring or any other suitable shape. The second channel 514 may have a width (H1) of between about 0.125 inches and 1.000 inches, more specifically between about 0.250 inches and 0.500 inches. The length of the second channel, i.e. the distance between the first channel and the third channel, may also be between about 0.010 inches and 0.125 inches, more specifically between about 0.015 inches and 0.045 inches.

The venting gas then proceeds from the second channel and into the third channel 516. The third channel 516 may also have a rectangular or other ring profile. It may have a width (H2) of between about 0.010 inches and 0.125 inches, more specifically between about 0.015 inches and 0.045 inches. The length of the third channel 512 may be between about 0.010 inches and 0.125 inches, more specifically between about 0.015 inches and 0.045 inches. These dimensions should be carefully chosen for a given load lock and wafer combination to ensure even flow and not create too large of a pressure differential. The third channel 516 directs the venting gas towards the center of the chamber, above the wafer. Introducing gas in this direction prevents a jet of gas from being oriented directly towards the wafer, which eliminates one mode of defects resulting from bonding to the wafer via direct impact. Preferably venting gas flow towards the wafer only as a result of load lock interior fluid dynamics. Upon leaving the third channel the venting gas is driven by the pressure differential to the different areas of the load lock.

Returning to FIG. 5A, in the depicted embodiment, the venting gas enters the load lock from the third channel. The opening of the third channel 516 may have a diameter (D) of between about 4 inches and 10 inches, more specifically between about 6 inches and 8 inches. These dimensions presented above are for load locks designed to transfer 300 mm wafers and are scalable for load locks for other wafer sizes, e.g. 200 mm wafers. The diameter (D) determines the path length of the venting gas inside the load lock's chamber between the front 506a and back 506b sides of the wafer 506. For example, a smaller diameter corresponds to the venting gas being introduced closer to the center of the wafer and, therefore, travelling through a longer path to the backside and resulting in a higher pressure differential. The pressure differential also depends on the cross-sectional profiles that the venting gas has to transfer through and that are defined by various internal elements of the load lock. Furthermore, the distance between the front side of the wafer and the load lock's surfaces (e.g., the lid and the body) may affect the pressure differential. In certain embodiments, the distance is between about 1 and 50 mm, more specifically between about 5 and 10 mm. Generally, this distance is larger than the gap between the backside of the wafer and the pedestal. In general, the load lock design will produce a pressure gradient from the center to edge of the wafer on the backside as well as a center to edge gradient on the top side. In addition, there will be a basic gradient from the wafer's front side to backside.

In certain embodiments, a small gap between the pedestal 510 and the backside 506b may cause excessive pressure differential because the venting gas passes more slowly through smaller gaps causing slower pressure increase between the wafer and the pedestal. Too much pressure on the front side of the wafer may damage the wafer by, for example, causing excessive distortion or high mechanical stresses in the wafer. Thus, certain embodiments provide mechanisms or procedures to limit the pressure on the wafer front side. In one example, the pedestal 510 may include small grooves on its top surface to facilitate distributing the venting gas between the pedestal and the backside 506b of the wafer. Alternatively (or additionally), some of the venting gas may be supplied through the cooling pedestal 510 towards the center and other parts of the wafer 506.

In certain embodiments, pressure gradients (between the front side and the backside of the wafer) are designed to be low enough to prevent wafer distortion greater than 0.0002 inches in between wafer supports. This will be a function of the elasticity of the substrate, the distance between supports, and the pressure gradient created. Only about 0.001 psi pressure differential is required to flatten most domed wafers distorted due to compressive film stress. In certain embodiments, the pressure differential is on the order of about 0.0015 psi or greater. In the same or other embodiments, the pressure differential is less than about 1 psi. Generally, the upper and the lower pressure limits are determined by MCA support spacing, MCA support design, elasticity of the wafer, and other parameters.

FIG. 6 is a flowchart depicting a process for cooling and transferring a wafer from the low to high pressure side of a load lock in accordance with certain embodiments. The depicted process starts as shown at block 602 by ensuring that the load lock has the same pressure as the side from which the transfer will be conducted, e.g. the low pressure side. The load lock may already be at this pressure, for example, if the last transfer was made to this side. The pressure may be equilibrated by opening a vacuum port and/or a port between the load lock and the low pressure side. Once the pressure is about the same on both sides of the internal transfer port, the port may be opened 604. Sometimes the port may remain open after transferring another wafer to the low pressure side. The control system then ensures that the cooling pedestal is in the lowered position. This may accomplish by, for example, sending a signal to the pedestal drive to move the cooling pedestal into the lowered position. The robot arm of the internal transfer system then carries the wafer into the load lock (block 606) and positions it on the intermediate support pins (block 608).

The robot arm is then retracted from the load lock (block 610), and the internal transfer port is closed (block 614) sealing the load lock from the low pressure side. Closing of the transfer port (block 614) may occur at any point between retracting of the robot arm and introducing the venting gases into the load lock. The pedestal is raised (block 612), and it lifts the wafer from the intermediate support pins with the MCA supports. The wafer may not be in contact with all MCA supports at this point. For example, the wafer may have distorted shape and only few of MCA supports contact with the low areas of the wafer. The pressure is uniform throughout the entire load lock at this point. Additionally, the wafer may be aligned relative to the cooling pedestal by the alignment cones. In one embodiment, loading of the wafer into the load lock takes between about 1 and 5 seconds, and the wafer may lose between about 10° C. and 50° C. during this time.

Once the wafer is positioned on the MCA supports, the venting cycle is initiated (block 616). One or more venting gases are introduced into the load lock through the venting port in the lid. The flow rate may be constant or variable. In certain embodiments, a variable flow rate is used to overcome variability of the temperature gradient during the venting cycle and thereby provide uniform heat transfer. The average flow rate depends on the internal volume of the load lock, which may be between about 1 L and 100 L and the duration of the venting cycle. In one embodiment employing a load lock having an internal volume of 2 and 10 liters, the flow rate is between about 10 and 50 standard liters per minute (SLM). In a more specific embodiment, the flow rate of the venting gas may be between about 20 and 40 SLM.

Various venting gases may be used. The choice depends primarily on cost and heat transfer coefficient. Of course, the gas should be inert to the wafer as well. Examples of suitable venting gases (depending on application) include hydrogen, helium, neon, methane, nitrogen, carbon oxide, ethane, ethylene, argon, butene, and combinations of thereof. In a specific embodiment, a venting gas is nitrogen or gas mixture that is primarily nitrogen. In another specific embodiment, a venting gas is primarily helium. Traditionally, helium has been used as a heat transfer gas because of its high heat transfer coefficient. Unfortunately, helium is relatively expensive. Because the present invention allows the wafer to sit very close to the pedestal, one may employ gases with lower heat transfer coefficients, which may be relatively inexpensive. Nitrogen is one such gas.

A combination of venting gases may be used. Such combination may have a constant or a variable composition. For example, the venting cycle may start with only helium flowing into the load lock, while nitrogen is introduced later. In this example, helium's flow rate may be gradually decreased, and the nitrogen's flow rate may be increased. In another embodiment, the flow of the first gas may be instantly shut, while another gas may be introduced at this point. A certain total flow rate of the venting gases may be needed to maintain sufficient pressure differential across the wafer in the load lock.

During the venting cycle (block 616) the load lock is brought from its initial low pressure to a final high pressure. Three examples of the pressure profiles within the load lock during the transfer process are discussed in the context of FIG. 7. In each example, the pressure increases continuously in the load lock during venting. The pressure profile is chosen to maintaining a pressure differential across the wafer. The pressure differential should be of sufficient magnitude to force the wafer to sit flat against all the MCA pins. In alternative embodiments, the load lock pressure remains constant (or even decreases) during venting. However, to keep the wafer pinned flat against the MCA pins, such embodiments generally require pumping some venting gas out of the load lock through a center portion of the pedestal in order to create a pressure differential across the wafer.

At least during part of the venting cycle, sufficient pressure differential is created for flattening of the wafer. In certain embodiments, the pressure differential around the center of the wafer is at least about 0.001 psi, more specifically at least about 0.002 psi, and in some cases at least about 0.010 psi. The backside of the wafer may come in the contact with all or most of the MCA support. In one embodiment, the sufficient pressure differential is maintained for at least about 70% of the entire venting operation (block 616) duration. In a more specific embodiment, it is maintained for at least about 90% of the entire venting operation duration.

Upon completion of the venting cycle (block 616), the pressure of the load lock is the same as on the high pressure side. The external transfer port of the load lock is opened and the purging cycle may be performed (block 618). The purging cycle involves providing one or more inert gases, such as argon, helium, nitrogen, or any other gases, to shield the wafer from oxidation at least during initial removal operations. The inert gases may be supplied through the venting port or a separate purging port. In one embodiment, no pressure differential across the wafer is maintained at this point.

The pedestal is then lowered and the wafer is kept on the intermediate support pins as indicated in block 620. Creating the increased gap between the wafer and the pedestal allows the robot arm of the external wafer handling system to reach under the wafer, lift the wafer from the pins, and remove it from the load lock (operation 622). It should be noted that flattening of the wafer in order to reduce the spacing to a pedestal surface and thereby improve the heat transfer between the wafer and the surface may be used for heating of the wafer. In other words, the concepts of this invention can be employed heat or cool wafers; it is possible to raise pressure during the heating or cooling cycle. In certain embodiments, the invention applies during a constant pressure operation with adequate pumping to exert force on the backside of the wafer.

FIG. 7 is a plot of the pressure inside the load lock as a function of time during, loading, venting and purging phases in accordance with one embodiment. During the loading phase 702, the wafer is introduced into the load lock through an open internal transfer port. As indicated above, the pressure within load lock during this phase must be the same as on the low pressure side. After the transfer is completed, the transfer port is closed, and the load lock begins the venting phase 704. One or more of venting gases are introduced during this phase. The overall flow rate of the supplied venting gases together with the pumping flow rate, if pumping is used, determines the pressure profile inside the load lock.

FIG. 7 illustrates three examples of the pressure profiles where the pressure inside the load lock is gradually increased. In one example, the pressure increase is constant as illustrated by line 708. Without being restricted to any particular theory, it is believed that a constant pressure increase (line 708) achieves more uniform heat transfer and a relatively constant pressure differential across the wafer.

Alternatively, the pressure may be more rapidly increased at the beginning of the venting phase as shown in the pressure profile 710. This may rapidly increase the heat transfer coefficient and at the same time provide a greater initial pressure differential for flattening the wafer. In another embodiment, the pressure is slowly increased at the beginning and then more rapidly increased towards the end of the venting phase as shown in the profile 712. The selection of a particular pressure profile may be based on a desired temperature change profile for wafer during the transfer, heat conductivities of venting gases, duration of the venting phase, pressure differential requirements, and other parameters.

Upon completion of the venting phase 704, the pressure inside the load lock is approximately the same as the external high pressure. At this point the purging/unloading phase 706 is initiated. The external transfer port may be opened and purging gases are introduced into the load lock. The duration of this phase may be between 1 and 20 seconds. In a specific embodiment, the purging/unloading phase may last for 3 to 10 seconds.

Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. It should be noted that there are many alternative ways of implementing the processes, systems and apparatus of the present invention. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein.

Cohen, David, Kalyanasundaram, Nagarajan, Pomeroy, Charles E., Gage, Christopher

Patent Priority Assignee Title
10023960, Sep 12 2012 ASM IP Holdings B.V. Process gas management for an inductively-coupled plasma deposition reactor
10083836, Jul 24 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Formation of boron-doped titanium metal films with high work function
10134757, Nov 07 2016 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by using the method
10229833, Nov 01 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10236177, Aug 22 2017 ASM IP HOLDING B V Methods for depositing a doped germanium tin semiconductor and related semiconductor device structures
10249524, Aug 09 2017 ASM IP Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
10249577, May 17 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming metal interconnection and method of fabricating semiconductor apparatus using the method
10262859, Mar 24 2016 ASM IP Holding B.V. Process for forming a film on a substrate using multi-port injection assemblies
10269558, Dec 22 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming a structure on a substrate
10276355, Mar 12 2015 ASM IP Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
10283353, Mar 29 2017 ASM IP HOLDING B V Method of reforming insulating film deposited on substrate with recess pattern
10290508, Dec 05 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming vertical spacers for spacer-defined patterning
10312055, Jul 26 2017 ASM IP Holding B.V. Method of depositing film by PEALD using negative bias
10312116, Apr 11 2014 Applied Materials, Inc. Methods and apparatus for rapidly cooling a substrate
10312129, Sep 29 2015 ASM IP Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
10319588, Oct 10 2017 ASM IP HOLDING B V Method for depositing a metal chalcogenide on a substrate by cyclical deposition
10322384, Nov 09 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Counter flow mixer for process chamber
10340125, Mar 08 2013 ASM IP Holding B.V. Pulsed remote plasma method and system
10340135, Nov 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
10343920, Mar 18 2016 ASM IP HOLDING B V Aligned carbon nanotubes
10347547, Aug 09 2016 Lam Research Corporation Suppressing interfacial reactions by varying the wafer temperature throughout deposition
10361201, Sep 27 2013 ASM IP Holding B.V. Semiconductor structure and device formed using selective epitaxial process
10364496, Jun 27 2011 ASM IP Holding B.V. Dual section module having shared and unshared mass flow controllers
10366864, Mar 18 2013 ASM IP Holding B.V. Method and system for in-situ formation of intermediate reactive species
10367080, May 02 2016 ASM IP HOLDING B V Method of forming a germanium oxynitride film
10378106, Nov 14 2008 ASM IP Holding B.V. Method of forming insulation film by modified PEALD
10381219, Oct 25 2018 ASM IP Holding B.V. Methods for forming a silicon nitride film
10381226, Jul 27 2016 ASM IP Holding B.V. Method of processing substrate
10388509, Jun 28 2016 ASM IP Holding B.V. Formation of epitaxial layers via dislocation filtering
10388513, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
10395919, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
10403504, Oct 05 2017 ASM IP HOLDING B V Method for selectively depositing a metallic film on a substrate
10410943, Oct 13 2016 ASM IP Holding B.V. Method for passivating a surface of a semiconductor and related systems
10435790, Nov 01 2016 ASM IP Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
10438965, Dec 22 2014 ASM IP Holding B.V. Semiconductor device and manufacturing method thereof
10443146, Mar 30 2017 Lam Research Corporation Monitoring surface oxide on seed layers during electroplating
10446393, May 08 2017 ASM IP Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
10458018, Jun 26 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Structures including metal carbide material, devices including the structures, and methods of forming same
10468251, Feb 19 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
10468261, Feb 15 2017 ASM IP HOLDING B V Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
10468262, Feb 15 2017 ASM IP Holding B.V. Methods for forming a metallic film on a substrate by a cyclical deposition and related semiconductor device structures
10480072, Apr 06 2009 ASM IP HOLDING B V Semiconductor processing reactor and components thereof
10483099, Jul 26 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming thermally stable organosilicon polymer film
10501866, Mar 09 2016 ASM IP Holding B.V. Gas distribution apparatus for improved film uniformity in an epitaxial system
10504742, May 31 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Method of atomic layer etching using hydrogen plasma
10510536, Mar 29 2018 ASM IP Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
10529542, Mar 11 2015 ASM IP Holdings B.V. Cross-flow reactor and method
10529554, Feb 19 2016 ASM IP Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
10529563, Mar 29 2017 ASM IP Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
10535516, Feb 01 2018 ASM IP Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
10541173, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
10541333, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
10559458, Nov 26 2018 ASM IP Holding B.V. Method of forming oxynitride film
10561975, Oct 07 2014 ASM IP Holdings B.V. Variable conductance gas distribution apparatus and method
10566223, Aug 28 2012 ASM IP Holdings B.V.; ASM IP HOLDING B V Systems and methods for dynamic semiconductor process scheduling
10590535, Jul 26 2017 ASM IP HOLDING B V Chemical treatment, deposition and/or infiltration apparatus and method for using the same
10600673, Jul 07 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Magnetic susceptor to baseplate seal
10604847, Mar 18 2014 ASM IP Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
10605530, Jul 26 2017 ASM IP Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
10607895, Sep 18 2017 ASM IP HOLDING B V Method for forming a semiconductor device structure comprising a gate fill metal
10612136, Jun 29 2018 ASM IP HOLDING B V ; ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
10612137, Jul 08 2016 ASM IP HOLDING B V Organic reactants for atomic layer deposition
10622375, Nov 07 2016 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by using the method
10643826, Oct 26 2016 ASM IP HOLDING B V Methods for thermally calibrating reaction chambers
10643904, Nov 01 2016 ASM IP HOLDING B V Methods for forming a semiconductor device and related semiconductor device structures
10644025, Nov 07 2016 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by using the method
10655221, Feb 09 2017 ASM IP Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
10658181, Feb 20 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of spacer-defined direct patterning in semiconductor fabrication
10658205, Sep 28 2017 ASM IP HOLDING B V Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
10665452, May 02 2016 ASM IP Holdings B.V. Source/drain performance through conformal solid state doping
10672636, Aug 09 2017 ASM IP Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
10683571, Feb 25 2014 ASM IP Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
10685834, Jul 05 2017 ASM IP Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
10692741, Aug 08 2017 ASM IP Holdings B.V.; ASM IP HOLDING B V Radiation shield
10707106, Jun 06 2011 ASM IP Holding B.V.; ASM IP HOLDING B V High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
10714315, Oct 12 2012 ASM IP Holdings B.V.; ASM IP HOLDING B V Semiconductor reaction chamber showerhead
10714335, Apr 25 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Method of depositing thin film and method of manufacturing semiconductor device
10714350, Nov 01 2016 ASM IP Holdings, B.V.; ASM IP HOLDING B V Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10714385, Jul 19 2016 ASM IP Holding B.V. Selective deposition of tungsten
10720322, Feb 19 2016 ASM IP Holding B.V. Method for forming silicon nitride film selectively on top surface
10720331, Nov 01 2016 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10731249, Feb 15 2018 ASM IP HOLDING B V Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
10734223, Oct 10 2017 ASM IP Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
10734244, Nov 16 2017 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by the same
10734497, Jul 18 2017 ASM IP HOLDING B V Methods for forming a semiconductor device structure and related semiconductor device structures
10741385, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
10755922, Jul 03 2018 ASM IP HOLDING B V Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
10755923, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
10767789, Jul 16 2018 ASM IP Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
10770286, May 08 2017 ASM IP Holdings B.V.; ASM IP HOLDING B V Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
10770336, Aug 08 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate lift mechanism and reactor including same
10784102, Dec 22 2016 ASM IP Holding B.V. Method of forming a structure on a substrate
10787741, Aug 21 2014 ASM IP Holding B.V. Method and system for in situ formation of gas-phase compounds
10797133, Jun 21 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
10804098, Aug 14 2009 ASM IP HOLDING B V Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
10811256, Oct 16 2018 ASM IP Holding B.V. Method for etching a carbon-containing feature
10818758, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
10829852, Aug 16 2018 ASM IP Holding B.V. Gas distribution device for a wafer processing apparatus
10832903, Oct 28 2011 ASM IP Holding B.V. Process feed management for semiconductor substrate processing
10844484, Sep 22 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
10844486, Apr 06 2009 ASM IP HOLDING B V Semiconductor processing reactor and components thereof
10847365, Oct 11 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming conformal silicon carbide film by cyclic CVD
10847366, Nov 16 2018 ASM IP Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
10847371, Mar 27 2018 ASM IP Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
10851456, Apr 21 2016 ASM IP Holding B.V. Deposition of metal borides
10854498, Jul 15 2011 ASM IP Holding B.V.; ASM JAPAN K K Wafer-supporting device and method for producing same
10858737, Jul 28 2014 ASM IP Holding B.V.; ASM IP HOLDING B V Showerhead assembly and components thereof
10865475, Apr 21 2016 ASM IP HOLDING B V Deposition of metal borides and silicides
10867786, Mar 30 2018 ASM IP Holding B.V. Substrate processing method
10867788, Dec 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming a structure on a substrate
10872771, Jan 16 2018 ASM IP Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
10883175, Aug 09 2018 ASM IP HOLDING B V Vertical furnace for processing substrates and a liner for use therein
10886123, Jun 02 2017 ASM IP Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
10892156, May 08 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
10896820, Feb 14 2018 ASM IP HOLDING B V Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
10910262, Nov 16 2017 ASM IP HOLDING B V Method of selectively depositing a capping layer structure on a semiconductor device structure
10914004, Jun 29 2018 ASM IP Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
10916451, Jun 23 2017 Applied Materials, Inc. Systems and methods of gap calibration via direct component contact in electronic device manufacturing systems
10923344, Oct 30 2017 ASM IP HOLDING B V Methods for forming a semiconductor structure and related semiconductor structures
10928731, Sep 21 2017 ASM IP Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
10934619, Nov 15 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Gas supply unit and substrate processing apparatus including the gas supply unit
10941490, Oct 07 2014 ASM IP Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
10943771, Oct 26 2016 ASM IP Holding B.V. Methods for thermally calibrating reaction chambers
10950432, Apr 25 2017 ASM IP Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
10975470, Feb 23 2018 ASM IP Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
11001925, Dec 19 2016 ASM IP Holding B.V. Substrate processing apparatus
11004977, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
11015245, Mar 19 2014 ASM IP Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
11018002, Jul 19 2017 ASM IP Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
11018047, Jan 25 2018 ASM IP Holding B.V. Hybrid lift pin
11022879, Nov 24 2017 ASM IP Holding B.V. Method of forming an enhanced unexposed photoresist layer
11024523, Sep 11 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus and method
11031242, Nov 07 2018 ASM IP Holding B.V. Methods for depositing a boron doped silicon germanium film
11049751, Sep 14 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
11053591, Aug 06 2018 ASM IP Holding B.V. Multi-port gas injection system and reactor system including same
11056344, Aug 30 2017 ASM IP HOLDING B V Layer forming method
11056567, May 11 2018 ASM IP Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
11069510, Aug 30 2017 ASM IP Holding B.V. Substrate processing apparatus
11075127, Aug 09 2016 Lam Research Corporation Suppressing interfacial reactions by varying the wafer temperature throughout deposition
11081345, Feb 06 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of post-deposition treatment for silicon oxide film
11087997, Oct 31 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus for processing substrates
11088002, Mar 29 2018 ASM IP HOLDING B V Substrate rack and a substrate processing system and method
11094546, Oct 05 2017 ASM IP Holding B.V. Method for selectively depositing a metallic film on a substrate
11094582, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
11098404, Sep 29 2018 Applied Materials, Inc Multi-station chamber lid with precise temperature and flow control
11101370, May 02 2016 ASM IP Holding B.V. Method of forming a germanium oxynitride film
11107676, Jul 28 2016 ASM IP Holding B.V. Method and apparatus for filling a gap
11114283, Mar 16 2018 ASM IP Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
11114294, Mar 08 2019 ASM IP Holding B.V. Structure including SiOC layer and method of forming same
11127589, Feb 01 2019 ASM IP Holding B.V. Method of topology-selective film formation of silicon oxide
11127617, Nov 27 2017 ASM IP HOLDING B V Storage device for storing wafer cassettes for use with a batch furnace
11139191, Aug 09 2017 ASM IP HOLDING B V Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
11139308, Dec 29 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Atomic layer deposition of III-V compounds to form V-NAND devices
11158513, Dec 13 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
11164955, Jul 18 2017 ASM IP Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
11168395, Jun 29 2018 ASM IP Holding B.V. Temperature-controlled flange and reactor system including same
11171025, Jan 22 2019 ASM IP Holding B.V. Substrate processing device
11177048, Nov 20 2019 Applied Materials Israel Ltd Method and system for evaluating objects
11205585, Jul 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus and method of operating the same
11208732, Mar 30 2017 Lam Research Corporation Monitoring surface oxide on seed layers during electroplating
11217444, Nov 30 2018 ASM IP HOLDING B V Method for forming an ultraviolet radiation responsive metal oxide-containing film
11222772, Dec 14 2016 ASM IP Holding B.V. Substrate processing apparatus
11227782, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11227789, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
11230766, Mar 29 2018 ASM IP HOLDING B V Substrate processing apparatus and method
11232963, Oct 03 2018 ASM IP Holding B.V. Substrate processing apparatus and method
11233133, Oct 21 2015 ASM IP Holding B.V. NbMC layers
11242598, Jun 26 2015 ASM IP Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
11244825, Nov 16 2018 ASM IP Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
11251035, Dec 22 2016 ASM IP Holding B.V. Method of forming a structure on a substrate
11251040, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method including treatment step and apparatus for same
11251068, Oct 19 2018 ASM IP Holding B.V. Substrate processing apparatus and substrate processing method
11270899, Jun 04 2018 ASM IP Holding B.V. Wafer handling chamber with moisture reduction
11274369, Sep 11 2018 ASM IP Holding B.V. Thin film deposition method
11282698, Jul 19 2019 ASM IP Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
11286558, Aug 23 2019 ASM IP Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
11286562, Jun 08 2018 ASM IP Holding B.V. Gas-phase chemical reactor and method of using same
11289326, May 07 2019 ASM IP Holding B.V. Method for reforming amorphous carbon polymer film
11295980, Aug 30 2017 ASM IP HOLDING B V Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
11296189, Jun 21 2018 ASM IP Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
11306395, Jun 28 2017 ASM IP HOLDING B V Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
11315794, Oct 21 2019 ASM IP Holding B.V. Apparatus and methods for selectively etching films
11339476, Oct 08 2019 ASM IP Holding B.V. Substrate processing device having connection plates, substrate processing method
11342216, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
11345999, Jun 06 2019 ASM IP Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
11355338, May 10 2019 ASM IP Holding B.V. Method of depositing material onto a surface and structure formed according to the method
11361990, May 28 2018 ASM IP Holding B.V. Substrate processing method and device manufactured by using the same
11374112, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
11378337, Mar 28 2019 ASM IP Holding B.V. Door opener and substrate processing apparatus provided therewith
11387106, Feb 14 2018 ASM IP Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
11387120, Sep 28 2017 ASM IP Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
11390945, Jul 03 2019 ASM IP Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
11390946, Jan 17 2019 ASM IP Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
11393690, Jan 19 2018 ASM IP HOLDING B V Deposition method
11396702, Nov 15 2016 ASM IP Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
11398382, Mar 27 2018 ASM IP Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
11401605, Nov 26 2019 ASM IP Holding B.V. Substrate processing apparatus
11410851, Feb 15 2017 ASM IP Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
11411088, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
11414760, Oct 08 2018 ASM IP Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
11417545, Aug 08 2017 ASM IP Holding B.V. Radiation shield
11424119, Mar 08 2019 ASM IP HOLDING B V Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
11430640, Jul 30 2019 ASM IP Holding B.V. Substrate processing apparatus
11430674, Aug 22 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
11437241, Apr 08 2020 ASM IP Holding B.V. Apparatus and methods for selectively etching silicon oxide films
11443926, Jul 30 2019 ASM IP Holding B.V. Substrate processing apparatus
11447861, Dec 15 2016 ASM IP HOLDING B V Sequential infiltration synthesis apparatus and a method of forming a patterned structure
11447864, Apr 19 2019 ASM IP Holding B.V. Layer forming method and apparatus
11453943, May 25 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
11453946, Jun 06 2019 ASM IP Holding B.V. Gas-phase reactor system including a gas detector
11469098, May 08 2018 ASM IP Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
11473195, Mar 01 2018 ASM IP Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
11476109, Jun 11 2019 ASM IP Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
11482412, Jan 19 2018 ASM IP HOLDING B V Method for depositing a gap-fill layer by plasma-assisted deposition
11482418, Feb 20 2018 ASM IP Holding B.V. Substrate processing method and apparatus
11482533, Feb 20 2019 ASM IP Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
11488819, Dec 04 2018 ASM IP Holding B.V. Method of cleaning substrate processing apparatus
11488854, Mar 11 2020 ASM IP Holding B.V. Substrate handling device with adjustable joints
11492703, Jun 27 2018 ASM IP HOLDING B V Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11495459, Sep 04 2019 ASM IP Holding B.V. Methods for selective deposition using a sacrificial capping layer
11499222, Jun 27 2018 ASM IP HOLDING B V Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11499226, Nov 02 2018 ASM IP Holding B.V. Substrate supporting unit and a substrate processing device including the same
11501956, Oct 12 2012 ASM IP Holding B.V. Semiconductor reaction chamber showerhead
11501968, Nov 15 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Method for providing a semiconductor device with silicon filled gaps
11501973, Jan 16 2018 ASM IP Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
11515187, May 01 2020 ASM IP Holding B.V.; ASM IP HOLDING B V Fast FOUP swapping with a FOUP handler
11515188, May 16 2019 ASM IP Holding B.V. Wafer boat handling device, vertical batch furnace and method
11521851, Feb 03 2020 ASM IP HOLDING B V Method of forming structures including a vanadium or indium layer
11527400, Aug 23 2019 ASM IP Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
11527403, Dec 19 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
11530483, Jun 21 2018 ASM IP Holding B.V. Substrate processing system
11530876, Apr 24 2020 ASM IP Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
11532757, Oct 27 2016 ASM IP Holding B.V. Deposition of charge trapping layers
11551912, Jan 20 2020 ASM IP Holding B.V. Method of forming thin film and method of modifying surface of thin film
11551925, Apr 01 2019 ASM IP Holding B.V. Method for manufacturing a semiconductor device
11557474, Jul 29 2019 ASM IP Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
11562901, Sep 25 2019 ASM IP Holding B.V. Substrate processing method
11572620, Nov 06 2018 ASM IP Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
11581186, Dec 15 2016 ASM IP HOLDING B V Sequential infiltration synthesis apparatus
11581220, Aug 30 2017 ASM IP Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
11587814, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11587815, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11587821, Aug 08 2017 ASM IP Holding B.V. Substrate lift mechanism and reactor including same
11594450, Aug 22 2019 ASM IP HOLDING B V Method for forming a structure with a hole
11594600, Nov 05 2019 ASM IP Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
11605528, Jul 09 2019 ASM IP Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
11610774, Oct 02 2019 ASM IP Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
11610775, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
11615970, Jul 17 2019 ASM IP HOLDING B V Radical assist ignition plasma system and method
11615980, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
11626308, May 13 2020 ASM IP Holding B.V. Laser alignment fixture for a reactor system
11626316, Nov 20 2019 ASM IP Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
11629406, Mar 09 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
11629407, Feb 22 2019 ASM IP Holding B.V. Substrate processing apparatus and method for processing substrates
11637011, Oct 16 2019 ASM IP Holding B.V. Method of topology-selective film formation of silicon oxide
11637014, Oct 17 2019 ASM IP Holding B.V. Methods for selective deposition of doped semiconductor material
11639548, Aug 21 2019 ASM IP Holding B.V. Film-forming material mixed-gas forming device and film forming device
11639811, Nov 27 2017 ASM IP HOLDING B V Apparatus including a clean mini environment
11643724, Jul 18 2019 ASM IP Holding B.V. Method of forming structures using a neutral beam
11644758, Jul 17 2020 ASM IP Holding B.V. Structures and methods for use in photolithography
11646184, Nov 29 2019 ASM IP Holding B.V. Substrate processing apparatus
11646197, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
11646204, Jun 24 2020 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming a layer provided with silicon
11646205, Oct 29 2019 ASM IP Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
11649546, Jul 08 2016 ASM IP Holding B.V. Organic reactants for atomic layer deposition
11658029, Dec 14 2018 ASM IP HOLDING B V Method of forming a device structure using selective deposition of gallium nitride and system for same
11658030, Mar 29 2017 ASM IP Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
11658035, Jun 30 2020 ASM IP HOLDING B V Substrate processing method
11664199, Oct 19 2018 ASM IP Holding B.V. Substrate processing apparatus and substrate processing method
11664245, Jul 16 2019 ASM IP Holding B.V. Substrate processing device
11664267, Jul 10 2019 ASM IP Holding B.V. Substrate support assembly and substrate processing device including the same
11674220, Jul 20 2020 ASM IP Holding B.V. Method for depositing molybdenum layers using an underlayer
11676812, Feb 19 2016 ASM IP Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
11680839, Aug 05 2019 ASM IP Holding B.V. Liquid level sensor for a chemical source vessel
11682572, Nov 27 2017 ASM IP Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
11685991, Feb 14 2018 ASM IP HOLDING B V ; Universiteit Gent Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
11688603, Jul 17 2019 ASM IP Holding B.V. Methods of forming silicon germanium structures
11694892, Jul 28 2016 ASM IP Holding B.V. Method and apparatus for filling a gap
11695054, Jul 18 2017 ASM IP Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
11705333, May 21 2020 ASM IP Holding B.V. Structures including multiple carbon layers and methods of forming and using same
11718913, Jun 04 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Gas distribution system and reactor system including same
11725277, Jul 20 2011 ASM IP HOLDING B V Pressure transmitter for a semiconductor processing environment
11725280, Aug 26 2020 ASM IP Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
11735414, Feb 06 2018 ASM IP Holding B.V. Method of post-deposition treatment for silicon oxide film
11735422, Oct 10 2019 ASM IP HOLDING B V Method of forming a photoresist underlayer and structure including same
11735445, Oct 31 2018 ASM IP Holding B.V. Substrate processing apparatus for processing substrates
11742189, Mar 12 2015 ASM IP Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
11742198, Mar 08 2019 ASM IP Holding B.V. Structure including SiOCN layer and method of forming same
11746414, Jul 03 2019 ASM IP Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
11749562, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
11767589, May 29 2020 ASM IP Holding B.V. Substrate processing device
11769670, Dec 13 2018 ASM IP Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
11769682, Aug 09 2017 ASM IP Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
11776846, Feb 07 2020 ASM IP Holding B.V. Methods for depositing gap filling fluids and related systems and devices
11781221, May 07 2019 ASM IP Holding B.V. Chemical source vessel with dip tube
11781243, Feb 17 2020 ASM IP Holding B.V. Method for depositing low temperature phosphorous-doped silicon
11795545, Oct 07 2014 ASM IP Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
11798830, May 01 2020 ASM IP Holding B.V. Fast FOUP swapping with a FOUP handler
11798834, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
11798999, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
11802338, Jul 26 2017 ASM IP Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
11804364, May 19 2020 ASM IP Holding B.V. Substrate processing apparatus
11804388, Sep 11 2018 ASM IP Holding B.V. Substrate processing apparatus and method
11810788, Nov 01 2016 ASM IP Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
11814715, Jun 27 2018 ASM IP Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11814747, Apr 24 2019 ASM IP Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
11821078, Apr 15 2020 ASM IP HOLDING B V Method for forming precoat film and method for forming silicon-containing film
11823866, Apr 02 2020 ASM IP Holding B.V. Thin film forming method
11823876, Sep 05 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus
11827978, Aug 23 2019 ASM IP Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
11827981, Oct 14 2020 ASM IP HOLDING B V Method of depositing material on stepped structure
11828707, Feb 04 2020 ASM IP Holding B.V. Method and apparatus for transmittance measurements of large articles
11830730, Aug 29 2017 ASM IP HOLDING B V Layer forming method and apparatus
11830738, Apr 03 2020 ASM IP Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
11837483, Jun 04 2018 ASM IP Holding B.V. Wafer handling chamber with moisture reduction
11837494, Mar 11 2020 ASM IP Holding B.V. Substrate handling device with adjustable joints
11840761, Dec 04 2019 ASM IP Holding B.V. Substrate processing apparatus
11848200, May 08 2017 ASM IP Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
11851755, Dec 15 2016 ASM IP Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
11866823, Nov 02 2018 ASM IP Holding B.V. Substrate supporting unit and a substrate processing device including the same
11873557, Oct 22 2020 ASM IP HOLDING B V Method of depositing vanadium metal
11876008, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11876356, Mar 11 2020 ASM IP Holding B.V. Lockout tagout assembly and system and method of using same
11885013, Dec 17 2019 ASM IP Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
11885020, Dec 22 2020 ASM IP Holding B.V. Transition metal deposition method
11885023, Oct 01 2018 ASM IP Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
11887857, Apr 24 2020 ASM IP Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
11891696, Nov 30 2020 ASM IP Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
11898242, Aug 23 2019 ASM IP Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
11898243, Apr 24 2020 ASM IP Holding B.V. Method of forming vanadium nitride-containing layer
11901175, Mar 08 2019 ASM IP Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
11901179, Oct 28 2020 ASM IP HOLDING B V Method and device for depositing silicon onto substrates
11908684, Jun 11 2019 ASM IP Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
11908733, May 28 2018 ASM IP Holding B.V. Substrate processing method and device manufactured by using the same
11915929, Nov 26 2019 ASM IP Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
11923181, Nov 29 2019 ASM IP Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
11923190, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
11929251, Dec 02 2019 ASM IP Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
11939673, Feb 23 2018 ASM IP Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
11946137, Dec 16 2020 ASM IP HOLDING B V Runout and wobble measurement fixtures
11952658, Jun 27 2018 ASM IP Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11956977, Dec 29 2015 ASM IP Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
11959168, Apr 29 2020 ASM IP HOLDING B V ; ASM IP Holding B.V. Solid source precursor vessel
11959171, Jan 17 2019 ASM IP Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
11961741, Mar 12 2020 ASM IP Holding B.V. Method for fabricating layer structure having target topological profile
11967488, Feb 01 2013 ASM IP Holding B.V. Method for treatment of deposition reactor
11970766, Dec 15 2016 ASM IP Holding B.V. Sequential infiltration synthesis apparatus
11972944, Jan 19 2018 ASM IP Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
11976359, Jan 06 2020 ASM IP Holding B.V. Gas supply assembly, components thereof, and reactor system including same
11976361, Jun 28 2017 ASM IP Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
11986868, Feb 28 2020 ASM IP Holding B.V. System dedicated for parts cleaning
11987881, May 22 2020 ASM IP Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
11993843, Aug 31 2017 ASM IP Holding B.V. Substrate processing apparatus
11993847, Jan 08 2020 ASM IP HOLDING B V Injector
11996289, Apr 16 2020 ASM IP HOLDING B V Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
11996292, Oct 25 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
11996304, Jul 16 2019 ASM IP Holding B.V. Substrate processing device
11996309, May 16 2019 ASM IP HOLDING B V ; ASM IP Holding B.V. Wafer boat handling device, vertical batch furnace and method
12055863, Jul 17 2020 ASM IP Holding B.V. Structures and methods for use in photolithography
12057314, May 15 2020 ASM IP Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
12074022, Aug 27 2020 ASM IP Holding B.V. Method and system for forming patterned structures using multiple patterning process
12087586, Apr 15 2020 ASM IP HOLDING B V Method of forming chromium nitride layer and structure including the chromium nitride layer
12106944, Jun 02 2020 ASM IP Holding B.V. Rotating substrate support
12106965, Feb 15 2017 ASM IP Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
12107000, Jul 10 2019 ASM IP Holding B.V. Substrate support assembly and substrate processing device including the same
12107005, Oct 06 2020 ASM IP Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
12112940, Jul 19 2019 ASM IP Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
12119220, Dec 19 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
12119228, Jan 19 2018 ASM IP Holding B.V. Deposition method
12125700, Jan 16 2020 ASM IP Holding B.V. Method of forming high aspect ratio features
12129545, Dec 22 2020 ASM IP Holding B.V. Precursor capsule, a vessel and a method
12129548, Jul 18 2019 ASM IP Holding B.V. Method of forming structures using a neutral beam
12130084, Apr 24 2020 ASM IP Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
12131885, Dec 22 2020 ASM IP Holding B.V. Plasma treatment device having matching box
12148609, Sep 16 2020 ASM IP HOLDING B V Silicon oxide deposition method
12154824, Aug 14 2020 ASM IP Holding B.V. Substrate processing method
12159788, Dec 14 2020 ASM IP Holding B.V. Method of forming structures for threshold voltage control
12169361, Jul 30 2019 ASM IP HOLDING B V Substrate processing apparatus and method
12173402, Feb 15 2018 ASM IP Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
12173404, Mar 17 2020 ASM IP Holding B.V. Method of depositing epitaxial material, structure formed using the method, and system for performing the method
12176243, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
8273670, Dec 07 2006 Novellus Systems, Inc. Load lock design for rapid wafer heating
8288288, Jun 16 2008 Novellus Systems, Inc. Transferring heat in loadlocks
8371567, Apr 13 2011 Novellus Systems, Inc. Pedestal covers
8454294, Dec 11 2008 Novellus Systems, Inc. Minimum contact area wafer clamping with gas flow for rapid wafer cooling
8491248, Nov 30 2007 Novellus Systems, Inc. Loadlock designs and methods for using same
8851463, Apr 13 2011 Novellus Systems, Inc. Pedestal covers
8920162, Nov 08 2007 Novellus Systems, Inc. Closed loop temperature heat up and control utilizing wafer-to-heater pedestal gap modulation
8955406, Sep 06 2011 DAIHEN CORPORATION Workpiece transfer apparatus
9070750, Mar 06 2013 Novellus Systems, Inc Methods for reducing metal oxide surfaces to modified metal surfaces using a gaseous reducing environment
9469912, Apr 21 2014 Lam Research Corporation Pretreatment method for photoresist wafer processing
9472377, Oct 17 2014 Lam Research Corporation Method and apparatus for characterizing metal oxide reduction
9607822, Apr 21 2014 Lam Research Corporation Pretreatment method for photoresist wafer processing
9698042, Jul 22 2016 Lam Research Corporation Wafer centering in pocket to improve azimuthal thickness uniformity at wafer edge
9779971, Apr 11 2014 Applied Materials, Inc Methods and apparatus for rapidly cooling a substrate
9835388, Jan 06 2012 Novellus Systems, Inc Systems for uniform heat transfer including adaptive portions
9865501, Mar 06 2013 Lam Research Corporation Method and apparatus for remote plasma treatment for reducing metal oxides on a metal seed layer
D671901, Apr 13 2011 Novellus Systems, Inc. Pedestal cover
D880437, Feb 01 2018 ASM IP Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
D900036, Aug 24 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Heater electrical connector and adapter
D903477, Jan 24 2018 ASM IP HOLDING B V Metal clamp
D913980, Feb 01 2018 ASM IP Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
D922229, Jun 05 2019 ASM IP Holding B.V. Device for controlling a temperature of a gas supply unit
D930782, Aug 22 2019 ASM IP Holding B.V. Gas distributor
D931978, Jun 27 2019 ASM IP Holding B.V. Showerhead vacuum transport
D935572, May 24 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Gas channel plate
D940837, Aug 22 2019 ASM IP Holding B.V. Electrode
D944946, Jun 14 2019 ASM IP Holding B.V. Shower plate
D947913, May 17 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Susceptor shaft
D948463, Oct 24 2018 ASM IP Holding B.V. Susceptor for semiconductor substrate supporting apparatus
D949319, Aug 22 2019 ASM IP Holding B.V. Exhaust duct
D965044, Aug 19 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Susceptor shaft
D965524, Aug 19 2019 ASM IP Holding B.V. Susceptor support
D975665, May 17 2019 ASM IP Holding B.V. Susceptor shaft
D979506, Aug 22 2019 ASM IP Holding B.V. Insulator
D980813, May 11 2021 ASM IP HOLDING B V Gas flow control plate for substrate processing apparatus
D980814, May 11 2021 ASM IP HOLDING B V Gas distributor for substrate processing apparatus
D981973, May 11 2021 ASM IP HOLDING B V Reactor wall for substrate processing apparatus
ER1077,
ER1413,
ER1726,
ER195,
ER2810,
ER315,
ER3883,
ER3967,
ER4264,
ER4403,
ER4489,
ER4496,
ER4646,
ER4732,
ER6015,
ER6261,
ER6328,
ER6881,
ER7009,
ER7365,
ER7895,
ER8714,
ER8750,
ER9386,
ER9931,
Patent Priority Assignee Title
3612825,
4457359, May 25 1982 Varian Semiconductor Equipment Associates, Inc Apparatus for gas-assisted, solid-to-solid thermal transfer with a semiconductor wafer
4535835, May 25 1982 Varian Semiconductor Equipment Associates, Inc Optimum surface contour for conductive heat transfer with a thin flexible workpiece
4563589, Jan 09 1984 Ultraviolet curing lamp device
4960488, Dec 19 1986 Applied Materials, Inc. Reactor chamber self-cleaning process
5113929, Apr 09 1990 Anelva Corporation Temperature control system for semiconductor wafer or substrate
5178682, Mar 01 1989 Mitsubishi Denki Kabushiki Kaisha Method for forming a thin layer on a semiconductor substrate and apparatus therefor
5228208, Jun 17 1991 Applied Materials, Inc. Method of and apparatus for controlling thermal gradient in a load lock chamber
5282121, Apr 30 1991 Vari-Lite, Inc. High intensity lighting projectors
5308989, Dec 22 1992 Axcelis Technologies, Inc Fluid flow control method and apparatus for an ion implanter
5447431, Oct 29 1993 Brooks Automation, Inc Low-gas temperature stabilization system
5558717, Nov 30 1994 Applied Materials, Inc CVD Processing chamber
5588827, Dec 17 1993 Brooks Automation Inc. Passive gas substrate thermal conditioning apparatus and method
5811762, Sep 25 1996 Taiwan Semiconductor Manufacturing Company, Ltd. Heater assembly with dual temperature control for use in PVD/CVD system
5909994, Nov 18 1996 Applied Materials, Inc. Vertical dual loadlock chamber
6072163, Mar 05 1998 FSI International, Inc Combination bake/chill apparatus incorporating low thermal mass, thermally conductive bakeplate
6087632, Jan 11 1999 Tokyo Electron Limited Heat processing device with hot plate and associated reflector
6106625, Dec 02 1997 Applied Materials, Inc. Reactor useful for chemical vapor deposition of titanium nitride
6200634, May 26 1995 Mattson Technology, Inc. Thermal processing system with supplemental resistive heater and shielded optical pyrometry
6214184, May 14 1997 Taiwan Semiconductor Manufacturing Company, Ltd Insulated wafer pedestal
6228438, Aug 10 1999 Tel Solar AG Plasma reactor for the treatment of large size substrates
6307184, Jul 12 1999 FSI International, Inc Thermal processing chamber for heating and cooling wafer-like objects
6394797, Apr 02 1997 Hitachi, Ltd. Substrate temperature control system and method for controlling temperature of substrate
6413321, Dec 07 2000 Applied Materials, Inc. Method and apparatus for reducing particle contamination on wafer backside during CVD process
6467491, May 04 1999 Toyko Electron Limited Processing apparatus and processing method
6518195, Jun 27 1991 Applied Materials, Inc Plasma reactor using inductive RF coupling, and processes
6559424, Jan 02 2001 MATTSON TECHNOLOGY, INC; BEIJING E-TOWN SEMICONDUCTOR TECHNOLOGY, CO , LTD Windows used in thermal processing chambers
6563092, Nov 28 2001 Novellus Systems, Inc. Measurement of substrate temperature in a process chamber using non-contact filtered infrared pyrometry
6639189, Jun 06 2001 FSI International, Inc. Heating member for combination heating and chilling apparatus, and methods
6860965, Jun 23 2000 Novellus Systems, Inc. High throughput architecture for semiconductor processing
6895179, Mar 05 2002 Hitachi High-Technologies Corporation Wafer stage for wafer processing apparatus
6899765, Mar 29 2002 Applied Materials Israel, Ltd. Chamber elements defining a movable internal chamber
7105463, Sep 15 2000 Applied Materials, Inc. Load lock chamber having two dual slot regions
7138606, Mar 05 2002 Hitachi High-Technologies Corporation Wafer processing method
7253125, Apr 16 2004 Novellus Systems, Inc. Method to improve mechanical strength of low-k dielectric film using modulated UV exposure
7265061, Sep 26 2003 Novellus Systems, Inc. Method and apparatus for UV exposure of low dielectric constant materials for porogen removal and improved mechanical properties
7327948, Apr 26 2005 Novellus Systems, Inc. Cast pedestal with heating element and coaxial heat exchanger
7410355, Oct 31 2003 ASM International N.V. Method for the heat treatment of substrates
7422406, Nov 10 2003 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Stacked process modules for a semiconductor handling system
7576303, Feb 21 2006 SUMITOMO ELECTRIC INDUSTRIES, LTD Wafer holder, and wafer prober provided therewith
7665951, Jun 02 2006 Applied Materials, Inc Multiple slot load lock chamber and method of operation
7845891, Jan 13 2006 Applied Materials, Inc Decoupled chamber body
7941039, Jul 18 2005 Novellus Systems, Inc. Pedestal heat transfer and temperature control
7960297, Dec 07 2006 Novellus Systems, Inc. Load lock design for rapid wafer heating
20020005168,
20020033136,
20020117109,
20020162630,
20030013280,
20030113187,
20040023513,
20040060917,
20040183226,
20040187790,
20040194268,
20050045616,
20050258164,
20060018639,
20060081186,
20060245852,
20070107845,
20070205788,
20070243057,
20090060480,
20090142167,
20090277472,
20100270004,
JP1107519,
JP2005116655,
JP6037054,
JP62229833,
JP7147274,
JP9092615,
KR1020030096732,
WO60414,
WO211911,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 05 2008GAGE, CHRISTOPHERNovellus Systems, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0219670867 pdf
Dec 05 2008POMEROY, CHARLES E Novellus Systems, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0219670867 pdf
Dec 05 2008COHEN, DAVIDNovellus Systems, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0219670867 pdf
Dec 05 2008KALYANASUNDARAM, NAGARAJANNovellus Systems, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0219670867 pdf
Dec 11 2008Novellus Systems, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 13 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 11 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 11 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 11 20144 years fee payment window open
Apr 11 20156 months grace period start (w surcharge)
Oct 11 2015patent expiry (for year 4)
Oct 11 20172 years to revive unintentionally abandoned end. (for year 4)
Oct 11 20188 years fee payment window open
Apr 11 20196 months grace period start (w surcharge)
Oct 11 2019patent expiry (for year 8)
Oct 11 20212 years to revive unintentionally abandoned end. (for year 8)
Oct 11 202212 years fee payment window open
Apr 11 20236 months grace period start (w surcharge)
Oct 11 2023patent expiry (for year 12)
Oct 11 20252 years to revive unintentionally abandoned end. (for year 12)