A manufacturing method of a metal gate structure includes providing a substrate having at least a first metal oxide layer formed thereon, and transferring the surface of the first metal oxide layer into a second metal oxide layer. The first metal oxide layer includes a metal oxide (M1Ox) of a first metal (M1) and the second metal oxide layer includes a metal oxide ((M1M2Oy) of the first metal and a second metal (M2).
|
1. A manufacturing method of a metal gate structure comprising: providing a substrate having at least a first metal oxide layer formed thereon, the first metal oxide layer comprising a metal oxide (M1Ox) of a first metal (M1); and treating a surface of the first metal oxide layer to form a second metal oxide layer, the second metal oxide layer comprising a metal oxide (M1M2Oy) of the first metal and a second metal (M2); wherein the first metal and the second metal are in the same group.
2. The manufacturing method of a metal gate structure according to
3. The manufacturing method of a metal gate structure according to
4. The manufacturing method of a metal gate structure according to
5. The manufacturing method of a metal gate structure according to
6. The manufacturing method of a metal gate structure according to
7. The manufacturing method of a metal gate structure according to
forming at least a gate trench on the substrate; and
forming the first metal oxide layer on the substrate and in the gate trench.
8. The manufacturing method of a metal gate structure according to
9. The manufacturing method of a metal gate structure according to
10. The manufacturing method of a metal gate structure according to
|
1. Field of the Invention
The invention relates to a metal gate structure and a manufacturing method thereof, and more particularly, to high dielectric constant (high-K) gate dielectric layer of a metal gate structure and a manufacturing method thereof.
2. Description of the Prior Art
With a trend towards scaling down size of the semiconductor device, conventional methods, which are used to achieve optimization, such as reducing thickness of the gate dielectric layer, for example the thickness of silicon dioxide layer, have faced problems such as leakage current due to tunneling effect. In order to keep progression to next generation, high-K materials are used to replace the conventional silicon oxide to be the gate dielectric layer because it decreases physical limit thickness effectively, reduces leakage current, and obtains equivalent capacitor in an identical equivalent oxide thickness (EOT).
On the other hand, the conventional polysilicon gate also has faced problems such as inferior performance due to boron penetration and unavoidable depletion effect which increases equivalent thickness of the gate dielectric layer, reduces gate capacitance, and worsens a driving force of the devices. Thus work function metals are developed to replace the conventional polysilicon gate to be the control electrode that competent to the high-K gate dielectric layer.
However, there is always a continuing need in the semiconductor processing art to develop semiconductor device renders superior performance and reliability even though the conventional silicon dioxide or silicon oxynitride gate dielectric layer is replaced by the high-K gate dielectric layer and the conventional polysilicon gate is replaced by the metal gate.
According to an aspect of the present invention, there is provided a manufacturing method of a metal gate structure. The manufacturing method includes providing a substrate having at least a first metal oxide layer formed thereon, and transferring the surface of the first metal oxide layer to form a second metal oxide layer. The first metal oxide layer includes a metal oxide (M1Ox) of a first metal (M1) and the second metal oxide layer includes a metal oxide (M1M2Oy) of the first metal and a second metal (M2).
According to another aspect of the present invention, there is provided a metal gate structure. The metal gate structure includes a first metal oxide layer having a metal oxide (M1Ox) of a first metal (M1), a second metal oxide layer positioned on the first metal oxide layer, and a work function metal layer positioned on the second metal oxide layer. The second metal oxide layer has a metal oxide (M1M2Oy) of the first metal and a second metal (M2), and an atomic number of the second metal is smaller than an atomic number of the first metal.
According to the metal gate structure and the manufacturing method thereof provided by the present invention, the second metal oxide layer having the metal oxide M1M2Oy of the first metal M1 and the second metal M2 is formed on the surface of the first metal oxide layer, which has the metal oxide M1Ox of the first metal M1. Since the atomic number of the second metal M2 is smaller than the atomic number of the first metal M1, the second metal M2 is able to fill in the interstices of the metal oxide M1Ox of the first metal M1. Accordingly, leakage from the gate dielectric layer is prevented. Furthermore, since the first metal oxide layer includes the metal oxide M1Ox of the first metal M1 and the second metal oxide layer includes the metal oxide M1M2Oy of the first metal M1 and the second metal M2, the first metal oxide layer and the second metal oxide layer form a hybrid gate dielectric layer. Accordingly, the formed gate dielectric layer is prevented from crystallization, which undesirably reduces the dielectric constant.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
Next, a first metal oxide layer 110 is formed on the substrate 100. The first metal oxide layer 110 includes high-K materials, and a dielectric constant of the first metal oxide layer 110 is higher than 7. The high-K material includes a metal oxide M1Ox of a first metal M1. In the preferred embodiment, the first metal M1 preferably is hafnium (Hf) and thus the metal oxide M1Ox of the first metal oxide layer 110 is hafnium oxide (HfO2). However, the first metal M1 can include aluminum (Al), lanthanum (La), tantalum (Ta), yttrium (Y) or zirconium (Zr), and thus the first metal oxide layer 110 includes metal oxide M1Ox of the abovementioned metals such as aluminum oxide (Al2O3), lanthanum oxide (La2O3), tantalum oxide (Ta2O5), yttrium oxide (Y2O3) or zirconium oxide (ZrO2). It is noteworthy that an interfacial layer (not shown) including silicon oxide is formed on the substrate 100 prior to the first metal oxide layer 110.
Please refer to
##STR00001##
Because of the metal chelating agent, a chelation reaction between Zr and HfO2 of the first metal oxide layer 110 is caused. Therefore the surface of the first metal oxide layer 110 is transferred to form the second metal oxide layer 120 having the metal oxide M1M2Oy of the first metal M1 and the second metal M2. A thickness of the second metal oxide layer 120 is smaller than a thickness of the first metal oxide layer 110. In the preferred embodiment, the second metal oxide layer 120 includes hafnium zirconium oxide (HfZrO4).
It is noteworthy that since the atomic number of the second metal M2 (the second metal M2 is Zr in the preferred embodiment) is smaller than the atomic number of the first metal M1 (the first metal M1 is Hf in the preferred embodiment), the second metal Zr not only is reacted with the metal oxide HfO2 of the first metal oxide layer 110, the second metal Zr but also fill in the interstices of the metal oxide HfO2 of the first metal oxide layer 110. Accordingly, leakage from the first metal oxide layer 110 due to the interstices is prevented by forming the second metal oxide layer 120. Furthermore, since the first metal oxide layer 110 includes HfO2 and the second metal oxide layer 120 includes HfZrO4, the first metal oxide layer 110 and the second metal oxide layer 120 form a hybrid gate dielectric layer 140, accordingly the hybrid gate dielectric layer 140 is prevented from crystallization, which undesirably reduces the dielectric constant.
Pleas refer to
Please refer to
As shown in
Please refer to
Please refer to
According to the manufacturing method of metal gate structure provided by the first preferred embodiment and the second preferred embodiment, the atomic number of the second metal M2 (the second metal M2 is Zr in the preferred embodiments) is smaller than the atomic number of the first metal M1 (the first metal M1 is Hf in the preferred embodiments). And a chelating reaction between the second metal M2 and the first metal oxide layer 110 is caused by providing the solution 130 having the metal chelating agent. Accordingly the second metal oxide layer 120 having HfZrO4 is formed on the first metal oxide layer 110. Since the atomic number of second metal M2 is smaller than the atomic number of the first metal M1, the second metal M2 is able to fill in the interstices of the metal oxide M1Ox of the first metal M1. Accordingly, leakage from the gate dielectric layer is prevented. Furthermore, since the first metal oxide layer 110 and the second metal oxide layer 120 form the hybrid gate dielectric layer 140, the hybrid gate dielectric layer 140 is prevented from crystallization, which undesirably reduces the dielectric constant.
Please refer to
The semiconductor device 280 includes a gate structure (not shown) having a gate dielectric layer (not shown), a dummy gate such as a polysilicon layer (not shown) and a patterned hard mask (not shown). Those layers are sequentially and upwardly stacked on the substrate 200. Additionally, an interfacial layer (not shown) including silicon oxide can be formed on the substrate 200 prior to the gate dielectric layer. Because the preferred embodiment is applied with the high-K last process as mentioned above, the gate dielectric layer preferably is a conventional silicon oxide gate dielectric layer.
Please refer to
Please still refer to
Please refer to
##STR00002##
Because of the metal chelating agent, a chelation reaction between Zr and HfO2 of the first metal oxide layer 210 is caused. Therefore the surface of the first metal oxide layer 210 is transferred to form the second metal oxide layer 220 having the metal oxide M1M2Oy of the first metal M1 and the second metal M2. A thickness of the second metal oxide layer 220 is smaller than a thickness of the first metal oxide layer 210. In the preferred embodiment, the second metal oxide layer 220 includes HfZrO4.
It is noteworthy that since the atomic number of the second metal M2 (the second metal M2 is Zr in the preferred embodiment) is smaller than the atomic number of the first metal M1 (the first metal M1 is Hf in the preferred embodiment), the second metal Zr not only is reacted with the metal oxide HfO2 of the first metal oxide layer 210, the second metal Zr but also fill in the interstices of the metal oxide HfO2 of the first metal oxide layer 210. Accordingly, leakage from the first metal oxide layer 210 due to the interstices is prevented by forming the second metal oxide layer 220. Furthermore, since the first metal oxide layer 210 includes HfO2 and the second metal oxide layer 220 includes HfZrO4, the first metal oxide layer 210 and the second metal oxide layer 220 form a hybrid gate dielectric layer 240, accordingly the hybrid gate dielectric layer 240 is prevented from crystallization, which undesirably reduces the dielectric constant.
Please refer to
Please refer to
According to the manufacturing method of metal gate structure provided by the third preferred embodiment, the atomic number of the second metal M2 (the second metal M2 is Zr in the preferred embodiments) is smaller than the atomic number of the first metal M1 (the first metal M1 is Hf in the preferred embodiments). And a chelating reaction between the second metal M2 and the first metal oxide layer 210 is caused by providing the solution 230 having the metal chelating agent. Accordingly the second metal oxide layer 220 having HfZrO4 is formed on the first metal oxide layer 210. Since the atomic number of second metal M2 is smaller than the atomic number of the first metal M1, the second metal M2 is able to fill in the interstices of the metal oxide M1Ox of the first metal M1. Accordingly, leakage from the gate dielectric layer is prevented. Furthermore, since the first metal oxide layer 210 and the second metal oxide layer 220 form the hybrid gate dielectric layer 240, the hybrid gate dielectric layer 240 is prevented from crystallization, which undesirably reduces the dielectric constant.
According to the manufacturing method thereof provided by the present invention, the manufacturing method can be applied with the gate-first process, the gate-last process, the high-K first process, or the high-K process. In other words, the manufacturing method provided by the present invention can be integrated with all metal gate process used in the state-of-the-art without complicating the process or worsening process difficulty. More important, by forming the second metal oxide layer having the metal oxide M1M2Oy of the first metal M1 and the second metal M2 on the surface of the first metal oxide layer having the metal oxide M1Ox of the first metal M1, wherein the atomic number of the second metal M2 is smaller than the atomic number of the first metal M1, the present invention uses the second metal M2 to fill in the interstices of the metal oxide M1Ox of the first metal M1. Accordingly, leakage from the gate dielectric layer is prevented. Furthermore, since the first metal oxide layer includes the metal oxide M1Ox of the first metal M1 and the second metal oxide layer includes the metal oxide M1M2Oy of the first metal M1 and the second metal M2, the first metal oxide layer and the second metal oxide layer form a hybrid gate dielectric layer. Accordingly, the formed hybrid gate dielectric layer is prevented from crystallization, which undesirably reduces the dielectric constant and eventually deteriorates the performance of the semiconductor device. In other word, the manufacturing method of a metal gate structure is performed to provide a metal gate structure having superior reliability.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention.
Chien, Chin-Cheng, Wu, Chun-Yuan, Lin, Chin-Fu, Liu, Chih-Chien, Tsai, Teng-Chun
Patent | Priority | Assignee | Title |
10199277, | May 18 2012 | United Microelectronics Corp. | Semiconductor process |
11735662, | Jul 24 2015 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and manufacturing method thereof |
8586436, | Mar 20 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a variety of replacement gate types including replacement gate types on a hybrid semiconductor device |
8669618, | Dec 15 2011 | United Microelectronics Corp. | Manufacturing method for semiconductor device having metal gate |
9024393, | Dec 15 2011 | United Microelectronics Corp. | Manufacturing method for semiconductor device having metal gate |
9245743, | Aug 02 2013 | Intermolecular, Inc.; Intermolecular, Inc | Methods for forming high-k dielectrics containing hafnium and zirconium using atomic layer deposition |
9478627, | May 18 2012 | United Microelectronics Corp. | Semiconductor structure and process thereof |
Patent | Priority | Assignee | Title |
5498768, | Jul 27 1988 | Hitachi, Ltd. | Process for forming multilayer wiring |
6063698, | Jun 30 1997 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for manufacturing a high dielectric constant gate oxide for use in semiconductor integrated circuits |
6251761, | Nov 24 1998 | Texas Instruments Incorporated | Process for polycrystalline silicon gates and high-K dielectric compatibility |
6380104, | Aug 10 2000 | Taiwan Semiconductor Manufacturing Company | Method for forming composite gate dielectric layer equivalent to silicon oxide gate dielectric layer |
6696345, | Jan 07 2002 | Intel Corporation | Metal-gate electrode for CMOS transistor applications |
6818517, | Aug 29 2003 | ASM INTERNATIONAL N V | Methods of depositing two or more layers on a substrate in situ |
6818553, | May 15 2002 | Taiwan Semiconductor Manufacturing Company, Ltd. | Etching process for high-k gate dielectrics |
6841484, | Apr 17 2003 | Applied Materials, Inc | Method of fabricating a magneto-resistive random access memory (MRAM) device |
6921711, | Sep 09 2003 | GLOBALFOUNDRIES U S INC | Method for forming metal replacement gate of high performance |
7012027, | Jan 27 2004 | Taiwan Semiconductor Manufacturing Company, Ltd. | Zirconium oxide and hafnium oxide etching using halogen containing chemicals |
7030430, | Aug 15 2003 | TAHOE RESEARCH, LTD | Transition metal alloys for use as a gate electrode and devices incorporating these alloys |
7126199, | Sep 27 2004 | Intel Corporation | Multilayer metal gate electrode |
7157378, | Jul 06 2004 | TAHOE RESEARCH, LTD | Method for making a semiconductor device having a high-k gate dielectric layer and a metal gate electrode |
7160767, | Dec 18 2003 | Intel Corporation | Method for making a semiconductor device that includes a metal gate electrode |
7208366, | Apr 28 2003 | Intel Corporation | Bonding gate oxide with high-k additives |
7381608, | Dec 07 2004 | Daedalus Prime LLC | Method for making a semiconductor device with a high-k gate dielectric and a metal gate electrode |
7384880, | Oct 12 2004 | Intel Corporation | Method for making a semiconductor device having a high-k gate dielectric |
7488656, | Apr 29 2005 | International Business Machines Corporation | Removal of charged defects from metal oxide-gate stacks |
20020130340, | |||
20040007561, | |||
20050275035, | |||
20060091482, | |||
20060197227, | |||
20080070395, | |||
20080233762, | |||
20090057787, | |||
20100062592, | |||
20100068877, | |||
20100081262, | |||
20110003482, | |||
20110024875, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 25 2011 | LIU, CHIH-CHIEN | United Microelectronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026028 | /0032 | |
Mar 25 2011 | WU, CHUN-YUAN | United Microelectronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026028 | /0032 | |
Mar 25 2011 | LIN, CHIN-FU | United Microelectronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026028 | /0032 | |
Mar 25 2011 | TSAI, TENG-CHUN | United Microelectronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026028 | /0032 | |
Mar 25 2011 | CHIEN, CHIN-CHENG | United Microelectronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026028 | /0032 | |
Mar 28 2011 | United Microelectronics Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 15 2016 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 05 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 03 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 04 2015 | 4 years fee payment window open |
Jun 04 2016 | 6 months grace period start (w surcharge) |
Dec 04 2016 | patent expiry (for year 4) |
Dec 04 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 04 2019 | 8 years fee payment window open |
Jun 04 2020 | 6 months grace period start (w surcharge) |
Dec 04 2020 | patent expiry (for year 8) |
Dec 04 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 04 2023 | 12 years fee payment window open |
Jun 04 2024 | 6 months grace period start (w surcharge) |
Dec 04 2024 | patent expiry (for year 12) |
Dec 04 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |