An electronic device includes a silicon carbide layer including an n-type drift region therein, a contact forming a junction, such as a schottky junction, with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a p-N heterojunction with the drift region, and the p-type junction barrier region is electrically connected to the contact. Related methods are also disclosed.

Patent
   8928108
Priority
Mar 08 2010
Filed
Mar 08 2010
Issued
Jan 06 2015
Expiry
Sep 24 2031
Extension
565 days
Assg.orig
Entity
unknown
0
340
EXPIRED
20. An electronic device, comprising:
a silicon carbide layer including a drift region having a first conductivity type;
a contact on a surface of the drift region and forming a junction with the drift region;
a junction barrier region on the drift region, the junction barrier region having a second conductivity type opposite the first conductivity type and including a heterojunction barrier region on the drift region, wherein the heterojunction barrier region forms a p-N heterojunction with the drift region and is in electrical contact with the contact;
a p-type minority injector pad on the drift region beneath the contact and electrically connected to the contact, the p-type minority injector pad region being configured to begin to conduct minority carriers at a higher forward voltage than when the p-N heterojunction begins to conduct majority carriers; and
a beveled edge termination terminating the surface of the drift region proximate an edge of the contact.
1. An electronic device, comprising:
a silicon carbide layer including an n-type drift region therein;
a contact forming a schottky junction with the drift region;
a p-type junction barrier region on the silicon carbide layer, the p-type junction barrier region including a p-type polysilicon region forming a p-N heterojunction with the drift region and the p-type junction barrier region being electrically connected to the contact; and
a p-type minority injector pad in the drift region beneath the contact and electrically connected to the contact, wherein the p-type minority injector pad region is configured to begin to conduct minority carriers at a higher forward voltage than when the p-N heterojunction begins to conduct majority carriers, the p-type polysilicon region and the p-type minority injector pad in the drift region and protruding above an upper surface of the drift region into the contact, wherein the p-type minority injector pad protrudes above an upper surface of the drift region into the contact further than the p-type polysilicon region.
10. An electronic device, comprising:
a drift region having a first conductivity type;
a contact on the drift region and forming a junction with the drift region;
a junction barrier region on the drift region, the junction barrier region having a second conductivity type opposite the first conductivity type and including a heterojunction barrier region on the drift region, wherein the heterojunction barrier region forms a p-N heterojunction with the drift region and is in electrical contact with the contact; and
a p-type minority injector pad in the drift region beneath the contact and electrically connected to the contact, the p-type minority injector pad region being configured to begin to conduct minority carriers at a higher forward voltage than when the p-N heterojunction begins to conduct majority carriers, wherein the junction between the contact and the drift region comprises a schottky junction that is configured to conduct current at a lower forward voltage than the p-N heterojunction between the heterojunction barrier region and the drift region.
2. The electronic device of claim 1, wherein the schottky junction between the contact and the drift region is configured to conduct current at a lower forward voltage than the p-N heterojunction between the junction barrier region and the drift region.
3. The electronic device of claim 2, wherein the contact forms an ohmic contact to the p-type polysilicon region, and wherein the p-N heterojunction between the junction barrier region and the drift region is configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the schottky junction and at a lower voltage at which the p-N heterojunction between the junction barrier region and the drift region begins to inject minority carriers into the drift region.
4. The electronic device of claim 1, further comprising: a guard ring termination region at a surface of the silicon carbide layer laterally adjacent to the contact, wherein the guard ring termination region includes a second p-type polysilicon region on the drift region, the second p-type polysilicon region being electrically isolated from the contact under zero bias conditions.
5. The electronic device of claim 4, further comprising a junction termination region at the surface of the silicon carbide layer having a conductivity type opposite the conductivity type of the drift region, wherein the second p-type polysilicon region extends into the junction termination region.
6. The electronic device of claim 1, wherein the junction barrier region comprises a plurality of p-type polysilicon regions in the drift region.
7. The electronic device of claim 6, wherein the minority injector pad has a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is larger than a surface area in the horizontal plane of one of the plurality of p-type polysilicon regions in the junction barrier region.
8. The electronic device of claim 6, wherein the minority carrier injector pad has a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is at least about 10% of a surface area of the drift region in the horizontal plane below the contact.
9. The electronic device of claim 1, wherein the contact comprises a first contact, the device further comprising an n+ silicon carbide contact layer on the drift region opposite the contact, and a second contact on the contact layer.
11. The electronic device of claim 10, further comprising:
a guard ring termination region on the drift region and laterally adjacent to the junction, wherein the guard ring termination region includes a second heterojunction barrier region.
12. The electronic device of claim 10, wherein the heterojunction barrier region comprises a plurality of p-type polysilicon regions on the drift region.
13. The electronic device of claim 12, wherein the minority carrier injection pad has a width that is greater than a width of the junction barrier region.
14. The electronic device of claim 12, wherein the minority injector pad has a horizontal surface area that is larger than a horizontal surface area of one of the plurality of p-type polysilicon regions in the junction barrier region.
15. The electronic device of claim 10, wherein the drift region comprises n-type silicon carbide and the heterojunction barrier region comprises p-type polysilicon.
16. The electronic device of claim 10, wherein the drift region comprises n-type silicon carbide and the heterojunction barrier region comprises p-type gallium nitride.
17. The electronic device of claim 10, further comprising:
a termination region at a surface of the drift region and defining an active region of the device within the termination region;
wherein a ratio of a surface area of the active region occupied by the heterojunction barrier regions to a total surface area of the active region is about 2% to about 40%.
18. The electronic device of claim 17, wherein the ratio of the surface area of the active region occupied by the heterojunction barrier regions to the total surface area of the active region is about 10% to about 30%.
19. The electronic device of claim 17, wherein the ratio of the surface area of the active region occupied by the heterojunction barrier regions to the total surface area of the active region is about 20% to about 30%.
21. The electronic device of claim 1, wherein the p-type minority injector pad comprises polysilicon.
22. The electronic device of claim 1, wherein the p-N heterojunction between the junction barrier region and the drift region is configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the schottky junction.
23. The electronic device of claim 1, wherein the p-type polysilicon region has an upper portion that extends laterally onto the upper surface of the drift region at a greater width than a portion of the p-type polysilicon region in the drift region, and wherein the p-type minority injector pad has an upper portion that extends laterally onto the upper surface of the drift region at a greater width than a portion of the p-type minority injector pad in the drift region.
24. The electronic device of claim 10, wherein the p-N heterojunction between the junction barrier region and the drift region is configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the junction between the contact and the drift region.

The present invention relates to semiconductor devices and the fabrication of semiconductor devices and more particularly, to Junction Barrier Schottky (JBS) diodes, and the fabrication of such diodes.

High voltage silicon carbide (SiC) Schottky diodes, which may have voltage blocking ratings between, for example, about 600V and about 2.5 kV, are expected to compete with silicon PIN diodes having similar voltage ratings. Such diodes may handle as much as about 100 amps or more of forward current, depending on their active area design. High voltage Schottky diodes have a number of important applications, particularly in the field of power conditioning, distribution and control.

An important characteristic of a SiC Schottky diode in such applications is its switching speed. Silicon-based PIN devices typically exhibit relatively poor switching speeds. A silicon PIN diode may have a maximum switching speed of approximately 20 kHz, depending on its voltage rating. In contrast, silicon carbide-based Schottky devices are theoretically capable of much higher switching speeds, for example, in excess of about 100 times better than silicon. In addition, silicon carbide devices may be capable of handling a higher current density than silicon devices.

A conventional SiC Schottky diode structure has an n-type SiC substrate on which an n− epitaxial layer, which functions as a drift region, is formed. The device typically includes a Schottky contact formed directly on the n− layer. A junction termination region, such as a guard ring and/or p-type JTE (junction termination extension) region, is typically formed to surround the Schottky junction active region. The purpose of junction termination region is to reduce or prevent electric field crowding at the edges of the Schottky junction, and to reduce or prevent the depletion region from interacting with the surface of the device. Surface effects may cause the depletion region to spread unevenly, which may adversely affect the breakdown voltage of the device. Other termination techniques include field plates and floating field rings that may be more strongly influenced by surface effects. A channel stop region may also be formed by implantation of n-type dopants in order to prevent the depletion region from extending to the edge of the device.

Regardless of the type of termination used, the Schottky diode will fail if a large enough reverse voltage is applied to the junction. Such failures are generally catastrophic, and may damage or destroy the device. Furthermore, even before the junction has failed, a Schottky diode may experience large reverse leakage currents. In order to reduce such leakage currents, the junction barrier Schottky (JBS) diode was developed. JBS diodes are sometimes referred to as Merged PIN-Schottky (MPS) diodes. A conventional JBS diode 10 is illustrated in FIG. 1. As shown therein, a conventional JBS diode includes an n-type substrate 12 on which an n− drift layer 14 is formed. A plurality of p+ regions 16 are formed, typically by ion implantation, in the surface of the n− drift layer 14. A metal anode contact 18 is formed on the surface of the n− drift layer 14 in contact with both the n− drift layer 14 and the p+ regions 16. The anode contact 18 forms a Schottky junction with the exposed portions of the drift layer 14, and may form an ohmic contact with the p+ regions 16. A cathode contact 20 is formed on the substrate 12. Silicon carbide-based JBS diodes are described, for example, in U.S. Pat. Nos. 6,104,043 and 6,524,900.

In forward operation, the junction J1 between the anode contact 18 and the drift layer 14 turns on before the junction J2 between the p+ regions 16 and the drift layer 14. Thus, at low forward voltages, the device exhibits Schottky diode behavior. That is, current transport in the device is dominated by majority carriers (electrons) injected across the Schottky junction J1 at low forward voltages. As there may be no minority carrier injection (and thus no minority charge storage) in the device at normal operating voltages, JBS diodes have fast switching speeds characteristic of Schottky diodes.

Under reverse bias conditions, however, the depletion regions formed by the PN junctions J2 between the p+ regions 16 and the drift layer 14 expand to block reverse current through the device 10, protecting the Schottky junction J1 and limiting reverse leakage current in the device 10. Thus, in reverse bias, the JBS diode 10 behaves like a PIN diode. The voltage blocking ability of the device 10 is typically determined by the thickness and doping of the drift layer 14 and the design of the edge termination.

An electronic device according to some embodiments includes a silicon carbide layer including an n-type drift region therein, a contact forming a Schottky junction with the drift region, and a p-type junction barrier region on the silicon carbide layer. The p-type junction barrier region includes a p-type polysilicon region forming a P-N heterojunction with the drift region and the p-type junction barrier region is electrically connected to the contact.

The Schottky junction between the contact and the drift region may be configured to turn on at a lower forward voltage than the P-N heterojunction between the junction barrier region and the drift region.

The contact may form an ohmic contact to the p-type polysilicon region, and the P-N heterojunction between the heterojunction barrier region and the drift region may be configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the Schottky junction and at a lower voltage at which the P-N heterojunction between the heterojunction barrier region and the drift region begins to inject minority carriers into the drift region.

The electronic device may further include a guard ring termination region at a surface of the silicon carbide layer laterally adjacent to the contact. The guard ring termination region may include a second p-type polysilicon region on the drift region, the second p-type polysilicon region being electrically isolated from the contact under zero bias conditions.

The electronic device may further include a junction termination region at the surface of the silicon carbide layer having a conductivity type opposite the conductivity type of the drift region, the second p-type polysilicon region extends into the junction termination region.

The junction barrier region may include a plurality of p-type polysilicon regions in the drift region and at least one p-type polysilicon minority injector pad in the drift region beneath the contact and electrically connected to the contact.

The minority injector pad may have a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is larger than a surface area in the horizontal plane of one of the plurality of p-type polysilicon regions in the junction barrier region.

The minority carrier injector pad may have a surface area in a horizontal plane parallel to a major surface of the silicon carbide layer that is at least about 10% of a surface area of the drift region in the horizontal plane below the contact.

The electronic device may further include an n+ silicon carbide contact layer on the drift region opposite the contact, and a second contact on the contact layer.

An electronic device according to further embodiments includes a drift region having a first conductivity type, a contact forming a junction with the drift region, and a junction barrier region on the drift region, the junction barrier region having a second conductivity type opposite the first conductivity type and including a heterojunction barrier region on the drift region. The heterojunction barrier region forms a P-N heterojunction with the drift region and is in electrical contact with the contact.

The Schottky junction between the contact and the drift region may be configured to turn on at a lower forward voltage than the P-N heterojunction between the heterojunction barrier region and the drift region.

The contact may form an ohmic contact to the heterojunction barrier region, and the P-N heterojunction between the heterojunction barrier region and the drift region may be configured to begin to conduct majority carriers at a higher forward voltage than a turn on voltage of the Schottky junction and at a lower voltage at which the P-N heterojunction between the heterojunction barrier region and the drift region begins to inject minority carriers into the drift region.

The electronic device may further include a guard ring termination region on the drift region and laterally adjacent to the Schottky junction. The guard ring termination region may include a second heterojunction barrier region.

The heterojunction barrier region may include a plurality of p-type polysilicon regions on the drift region and at least one p-type polysilicon minority injector pad on the drift region beneath the contact and electrically connected to the contact.

The minority carrier injection pad may have a width that is greater than a width of the junction barrier region.

The minority injector pad may have a horizontal surface area that is larger than a horizontal surface area of one of the plurality of p-type polysilicon regions in the junction barrier region.

The drift region may include n-type silicon carbide and the heterojunction barrier region may include p-type polysilicon. In some embodiments, the drift region may include n-type silicon carbide and the heterojunction barrier region may include p-type gallium nitride.

Some embodiments include a termination region at a surface of the drift region and defining an active region of the device within the termination region, wherein a ratio of a surface area of the active region occupied by the heterojunction barrier regions to a total surface area of the active region is about 2% to about 40%. In some embodiments, the ratio is about 4% to about 30%. In some other embodiments, the ratio is about 10% to about 30%, and in further embodiments the ratio is about 20% to about 30%.

Methods of forming an electronic device according to some embodiments include providing a drift region having a first conductivity type, providing a heterojunction barrier region on the drift region, the heterojunction barrier region including a material different from the drift region and having a conductivity type opposite the conductivity type of the drift region and providing a P-N heterojunction with the drift region, and forming a contact on the drift region and on the heterojunction barrier region, the contact forming a Schottky junction with the drift region and forming an ohmic junction with the heterojunction barrier region.

The drift region may include n-type silicon carbide and the heterojunction barrier region may include p-type polysilicon.

The methods may further include providing a guard ring termination region on the drift region laterally adjacent to the Schottky junction, the guard ring termination region may include a second heterojunction barrier region on the drift region.

Providing the heterojunction barrier region may include etching a recess in the drift region, depositing a polysilicon layer in the recess, doping the polysilicon layer to have a conductivity type opposite the conductivity type of the drift region, and patterning the polysilicon layer.

An electronic device according to further embodiments includes a silicon carbide layer including a drift region having a first conductivity type, a contact on a surface of the drift region and forming a Schottky junction with the drift region, and a guard ring in contact with the surface of the silicon carbide layer adjacent to the Schottky junction. The guard ring has a conductivity type opposite the conductivity type of the drift region and includes a material that forms a heterojunction with the silicon carbide layer. The guard ring may include polysilicon and/or gallium nitride.

The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate certain embodiment(s) of the invention. In the drawings:

FIG. 1 is a cross-sectional view of a conventional JBS diode.

FIG. 2 is a top view of a JBS diode according to some embodiments of the present invention.

FIGS. 3, 4 and 5 are cross-sectional views of JBS diodes according to some embodiments of the present invention.

FIG. 6 is a cross-sectional detail of portions of a JBS diode according to some embodiments of the invention.

FIG. 7 is a graph that schematically illustrates various regions in a current-voltage characteristic of a JBS diode according to some embodiments of the invention.

FIG. 8 is a graph illustrating simulated forward current-voltage curves at operating temperatures ranging from 25° C. to 200° C. for a device according to some embodiments.

FIGS. 9-12 are cross-sectional views illustrating the formation of JBS diodes according to some embodiments of the present invention.

FIGS. 13A and 13B are cross-sectional views of JBS diodes according to some embodiments of the present invention.

FIG. 14 is a graph illustrating simulated horizontal electric field distributions for a device according to some embodiments.

Embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.

It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.

The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” “comprising,” “includes” and/or “including” when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.

Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.

It will be understood that when an element such as a layer, region or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.

Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “lateral” or “vertical” may be used herein to describe a relationship of one element, layer or region to another element, layer or region as illustrated in the figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the figures.

Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the invention. The thickness of layers and regions in the drawings may be exaggerated for clarity. Additionally, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments of the invention should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, an implanted region illustrated as a rectangle will, typically, have rounded or curved features and/or a gradient of implant concentration at its edges rather than a discrete change from implanted to non-implanted region. Likewise, a buried region formed by implantation may result in some implantation in the region between the buried region and the surface through which the implantation takes place. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of the invention.

Some embodiments of the invention are described with reference to semiconductor layers and/or regions which are characterized as having a conductivity type such as n-type or p-type, which refers to the majority carrier concentration in the layer and/or region. Thus, n-type material has a majority equilibrium concentration of negatively charged electrons, while p-type material has a majority equilibrium concentration of positively charged holes. Some material may be designated with a “+” or “−” (as in n+, n−, p+, p−, n++, n−−, p++, p−−, or the like), to indicate a relatively larger (“+”) or smaller (“−”) concentration of majority carriers compared to another layer or region. However, such notation does not imply the existence of a particular concentration of majority or minority carriers in a layer or region.

According to some embodiments, a junction barrier Schottky diode includes features, such as junction barrier regions and/or edge termination features, on or in a drift layer, wherein the junction barrier regions and/or edge termination features are provided by regions of a different material type than the drift layer, and form respective heterojunctions with the drift layer. In some embodiments, the features, such as junction barrier regions and/or edge termination features, may include doped polysilicon, which can be formed, for example, using conventional processes that may not require ion implantation.

FIG. 2 is a top view of a diode 100 according to some embodiments of the invention, and FIG. 3 is a partial cross-sectional view of the diode 100 taken along line A-A of FIG. 2. FIGS. 4 and 5 are similar cross sectional illustrations of diodes 100′ and 100″, respectively, according to other embodiments. The dimensions of some features of the diodes 100, 100′, 100″ are exaggerated for clarity.

Referring to FIGS. 2 and 3, the diode 100 includes an optional substrate 112 on which a layer 113 including a drift region 114 is formed. The layer 113 has an upper surface, opposite the substrate, in which a plurality of heterojunction barrier regions 130 are formed. A Schottky contact 118 is on the drift region 114. The Schottky contact 118 contacts the surface of the drift region 114 and forms a Schottky junction with the drift region 114. The Schottky contact 118 also contacts the plurality of heterojunction barrier regions 130.

The layer 113 may be formed, for example, from n-type silicon carbide of the 2H, 4H, 6H, 3C and/or 15R polytype. The drift region 114 may have a dopant concentration of about 2×1014 to about 1×1017 cm−3, depending on design requirements for voltage blocking and on-resistance for the diode 100. Other types of semiconductor materials, such as GaN, GaAs, silicon or germanium may be used. In particular embodiments, the drift region 114 includes 4H-SiC doped with n-type dopants at a concentration of about 5×1015 cm−3.

The heterojunction barrier regions 130 are formed from a semiconducting material that is different from the material of the drift region 114. The heterojunction barrier regions 130 have a conductivity type that is opposite the conductivity type of the drift region 114. Accordingly, the heterojunction barrier regions 130 form P-N heterojunctions with the drift region 114. Furthermore, the Schottky contact 118 may form an ohmic junction with the heterojunction barrier regions 130.

In some embodiments, the barrier height of the P-N heterojunction J3 between the heterojunction barrier regions 130 and the drift layer may be higher than a barrier height of a Schottky junction J4 between a Schottky contact 118 and the drift region 114, so that the P-N heterojunction will turn on at a higher forward voltage than the Schottky junction J4 between the drift region 114 and the Schottky contact 118, as will be discussed in more detail below.

In the embodiments of FIGS. 2 and 3, the heterojunction barrier regions 130 are formed as stripe-shaped regions in the drift region 114. However, the heterojunction barrier regions 130 may be formed in other shapes, such as islands, squares, dots, hexagons, or any other desired shape.

In some embodiments, the heterojunction barrier regions 130 may be provided as regions of doped polysilicon. For example, the heterojunction barrier regions 130 may include polysilicon regions doped to have a conductivity that is opposite the conductivity type of the drift region 114, so that the heterojunction barrier regions 130 form P-N heterojunctions J3 with the drift region 114.

The heterojunction barrier regions 130 may be doped with p-type dopants, such as boron and/or aluminum, at a concentration of about 1×1017 to about 1×1020 cm−3, and may extend to a depth of about 0.3 to about 0.5 μm into the drift region 114 from the surface of the drift region 114. In particular embodiments, the heterojunction barrier regions 130 may be doped at a dopant concentration of about 5×1018 cm−3, and may extend to a depth of about 0.3 μm into the drift region 114 from the surface of the drift region 114.

One or more current surge pads 116 may also be provided in the drift region 114. The current surge pads 116 may be formed of the same material as the heterojunction barrier regions 130. For example, the current surge pads 116 may be provided as polysilicon regions doped with p-type dopants, such as boron and/or aluminum, at a concentration of about 1×1018 to about 1×1020 cm−3, and may extend to a depth of about 0.3 to about 0.5 μm into the drift region 114. In particular embodiments, the current surge pads 116 may be doped at a dopant concentration of about 5×1018 cm−3, and may extend to a depth of about 0.3 μm into the drift region 114. The current surge pads 116 have a larger width than the heterojunction barrier regions 130 to encourage the flow of surge current through the current surge pads at high forward voltages, as will be discussed in more detail below. For example, the current surge pads 116 may have a width of about 10 μm to about 250 μm. In particular embodiments, the current surge pads 116 may have a width of about 20 μm.

In some embodiments, the current surge pads 116 and/or heterojunction barrier regions 130 may be formed of other types of materials that can be doped to have a conductivity that is opposite the conductivity of the drift region 114 and can form a heterojunction with the drift region 114. For example, when the drift region comprises n-type silicon carbide, a material such as p-type gallium nitride can be used to form the current surge pads 116 and/or heterojunction barrier regions 130.

The heterojunction barrier regions 130 shown in the embodiments of FIGS. 2 and 3 are provided as spaced apart striped regions that expose portions 114A of the surface of the drift region 114 and that extend across an active region 110 of the drift region 114 (except for the exposed portions 114A of the drift layer and the current surge pads 116). A metal Schottky contact 118 covers the drift region 114 and forms Schottky rectifying junctions with the exposed portions 114A of the drift region 114 as well as the heterojunction barrier regions 130 and the current surge pads 116.

As used herein, the term “active region” refers to the two dimensional area of the device in which the Schottky metal contacts the drift layer, and includes the exposed portions 114A of the drift region 114, the heterojunction barrier 130 and the current surge pads 116. Accordingly, the active region includes the Schottky junction area but does not include, for example, the edge termination region described below.

The diode 100 may include an edge termination region 115 surrounding the active region 110 of the diode 100. The edge termination region 115 may include a junction termination extension (JTE) region, field rings, field plates, guard rings, and/or a combination of the foregoing or other terminations. In particular, the device 100 may include a plurality of guard rings 125, which may be formed of the same material as the heterojunction barrier regions 130 and the current surge pad 116 and may also be doped to have a conductivity opposite the conductivity type of the drift region 114. A passivation layer, such as a field oxide layer 127, may be formed on the drift layer and may cover the guard rings 125. The guard rings 125 may be floating guard rings that are electrically isolated from the anode contact 118 under zero bias conditions.

In some embodiments, the edge termination region 115 includes a robust guard ring (RGR) termination as described in U.S. Pat. No. 7,026,650, which is assigned to the assignee of the present invention, the disclosure of which is incorporated herein by reference as if set forth fully. In particular, the RGR termination may include an implanted region 160 of dopants having a conductivity opposite the conductivity of the drift layer. The implanted region 160 may extend to a depth in the drift region 114 that is greater or less than the depth of the guard rings 125. The implanted region 160 may have a net concentration of dopants having a conductivity opposite the conductivity type of the drift region 114 of about 1×1017 cm−3.

Additional conventional terminations of SiC Schottky diodes are described in “Planar Terminations in 4H-SiC Schottky Diodes With Low Leakage And High Yields” by Singh et al., ISPSD '97, pp. 157 160. A p-type epitaxy guard ring termination for a SiC Schottky Barrier Diode is described in “The Guard-Ring Termination for High-Voltage SiC Schottky Barrier Diodes” by Ueno et al., IEEE Electron Device Letters, Vol. 16, No. 7, July, 1995, pp. 331 332. Additionally, other termination techniques are described in published PCT Application No. WO 97/08754 entitled “SiC Semiconductor Device Comprising A PN Junction With A Voltage Absorbing Edge.”

The current surge pads 116 and the heterojunction barrier regions 130 may be formed within recesses in the drift region 114, and may protrude above an upper surface of the drift region 114. As the current surge pads 116 and the heterojunction barrier regions 130 have an opposite conductivity type from the drift region 114, the heterojunction barrier regions 130 form P-N junctions J3 with the drift region 114, while the current surge pads 116 form P-N junctions J5 with the drift region 114.

In the diode 100′ illustrated in FIG. 4, the current surge pads 116′, the heterojunction barrier regions 130′ and the guard rings 125′ are formed within recesses in the drift region 114, and are flush with the upper surface of the drift region 114. For example, polysilicon may be deposited into the recesses in the drift region 114 and planarized using a chemical-mechanical polish (CMP) or etch back technique to form the current surge pads 116′, the heterojunction barrier regions 130′, and/or the guard rings 125′, as shown in FIG. 4.

In the diode 100″ illustrated in FIG. 5, the current surge pads 116″, the heterojunction barrier regions 130″ and the guard rings 125″ are formed as discrete regions on the upper surface of the drift region 114, and do not extend into the drift region 114. For example, For example, polysilicon may be deposited onto the drift region 114 and patterned using photolithography to form the current surge pads 116″, the heterojunction barrier regions 130″, and/or the guard rings 125″, as shown in FIG. 5.

Referring again to FIG. 3, the ratio of the surface area of the active region 110 of the device 100 occupied by the heterojunction barrier regions 130 and the current surge pads 116 to the total surface area of the active region 110 may affect both the reverse leakage current of the device 100 and the forward voltage drop of the device 100. For example, if the area occupied by the heterojunction barrier regions 130 and the current surge pads 116 is increased relative to the total area of the active region 110, the reverse leakage current may be reduced, but the forward voltage drop of the device 100 may increase. Thus, the selection of the ratio of the surface area of the active region 110 of the device 100 occupied by the heterojunction barrier regions 130 and the current surge pads 116 to the total surface area of the active region 110 may entail a trade-off between reverse leakage current and forward voltage drop. In some embodiments, the ratio of the surface area of the active region 110 of the device 100 occupied by the heterojunction barrier regions 130 and the current surge pads 116 to the total surface area of the active region 110 may be between about 2% and 40%. In some other embodiments, the ratio of the surface area of the active region 110 of the device 100 occupied by the heterojunction barrier regions 130 and the current surge pads 116 to the total surface area of the active region 110 may be between about 4% and 30%. In further embodiments, the ratio may be about 10% to about 30%, and in still further embodiments, the ratio may be about 20% to about 30%.

The Schottky contact 118 on the surface of the drift region 114 forms a Schottky junction J4 with the exposed portions 114A of the drift region 114 between adjacent heterojunction barrier regions 130. The anode contact 118 may include a metal, such as aluminum, titanium and/or nickel. In some embodiments, the anode contact 118 may form an ohmic contact with the current surge pad 116. A metal overlayer 119 may be formed on the Schottky contact 118. The metal overlayer 119 may comprise TiW/Al, for example, and may be provided as a contact layer on the Schottky contact 118.

A cathode contact 120 is formed on a side of the substrate 112 opposite the drift region 114 and/or directly on the drift region 114. The cathode contact 120 may include a metal, such as nickel, that is capable of forming an ohmic contact to n-type silicon carbide.

Under reverse bias conditions, the depletion regions formed by the p-n junctions J3 between the heterojunction barrier regions 130 and the drift region 114, as well as the depletion region of the p-n junction J5, may expand to block reverse current through the device 100, protecting the Schottky junction J4 and limiting reverse leakage current in the device 100. Thus, in reverse bias, the diode 100 may function substantially like a PIN diode.

In forward operation, the Schottky junction J4 between the anode contact 118 and the exposed portions 114A of the drift region 114 turns on before the heterojunction J3 and the junction J5 between the current surge pad 116 and the drift region 114. Thus, at low forward voltages, the device exhibits Schottky diode behavior, and the operation of the diode 100 will be dominated by the injection of majority carriers across the Schottky junctions J3 and J4. Due to the absence of minority carrier injection under normal operating conditions, the diode 100 may have a very fast switching capability, which is characteristic of Schottky diodes in general.

The current surge pad 116 may be designed to begin to conduct at a forward voltage that is higher than the turn-on voltage of the Schottky junction J3. Thus, in the event of a current surge that causes the forward voltage of the diode 100 to increase, the p-n junction J5 will begin to conduct. Once the p-n junction J5 begins to conduct, the operation of the diode 100 is dominated by the injection and recombination of minority carriers across the p-n junction J5. In that case, the forward voltage drop of the diode 100 may be clamped, which may decrease the amount of power dissipated by the diode 100 for a given level of current. Thus, turn-on of the p-n junction J5 when the forward voltage of the diode 100 increases may reduce and/or prevent forward current runaway in the diode 100.

Furthermore, in a device according to some embodiments, the turn-on of the p-n junctions J3 and J5 may occur in stages. In a first stage, the Schottky junction J4 between the drift region 114 and the Schottky contact 118 may turn on, resulting in majority carrier conduction. In a second stage, as the bias on the P-N heterojunction J3 increases, majority carriers may be injected across the P-N heterojunction J3, allowing for further reduction in on-resistance. Furthermore, in a device according to some embodiments, the turn on of junction J5 may occur in stages, resulting in minority carrier injection allowing for surge current capability.

Forward current operation of a device according to some embodiments is illustrated in FIGS. 6 and 7. In particular, FIG. 6 is a magnified illustration of a portion of a drift region 114 include a current surge pad 116 and two heterojunction barrier regions 130. Forward current components 40, 41 and 42 are illustrated in FIG. 6. FIG. 7 is a schematic graph of current density (J) versus forward voltage (V) for a Schottky diode according to some embodiments. As shown in FIG. 7, the current-voltage characteristic of a Schottky diode according to some embodiments may have three distinct regions of operation, shown in FIG. 7 as Region 1, Region 2 and Region 3.

Referring to FIG. 6, when a forward voltage is applied to the Schottky contact 118 relative to the drift region 114 that is sufficient to turn on the Schottky junction J4 between the Schottky contact 118 and the drift region 114, majority carriers (e.g., electrons in the case of an n-type drift layer) are injected into the drift layer, resulting in a Schottky current component 40. Before the P-N heterojunction J5 between the current surge pad 116 and the drift region 114 and the ohmic junction J6 between the anode contact 118 and the current surge pad 116 have turned on, the Schottky current component 40 is the only component of the device current. This is illustrated as Region 1 in the graph of FIG. 7, where the forward voltage of the device is between V1 and V2. V1 represents the turn-on voltage of the Schottky junction J4, while V2 represents the turn-on voltage of the heterojunction J3 between the heterojunction barrier region 130 and the drift region 114.

In particular embodiments, the turn-on voltage of the Schottky junction J4 may be about 0.8 V when the Schottky contact 118 is titanium and the drift region 114 is n-type silicon carbide, while the turn-on voltage of the junction J3 between the heterojunction barrier region 130 and the drift region 114 may be about 1.5 V.

As shown in FIG. 6, the Schottky current 40 spreads laterally beneath the current surge pad 116 and the heterojunction barrier regions 130, resulting in spreading resistance in the device. Thus, the current-voltage curve shown in FIG. 7 may have a relatively low slope in Region 1.

When the forward voltage of the device reaches V2, the heterojunction J3 between the heterojunction barrier region 130 and the drift region 114 and the heterojunction J5 between the current surge pad 116 and the drift region 114 may turn on, resulting in unipolar injection of electrons 41 into the drift region. The device may still exhibit some spreading resistance. However, the overall resistance of the device may decrease, resulting in a increased slope in Region 2 of the current-voltage curve shown in FIG. 7 relative to Region 1.

As the voltage on the device increases, the Schottky current through junction J4 increases. The voltage drop ΔV across the current surge pad 116 also increases to the point where the P-N heterojunction J5 between the current surge pad 116 and the drift region 114 begins to inject minority carriers 42 (e.g., holes in the case of an n-type drift layer) into the drift region 114. This condition is illustrated as Region 3 of FIG. 7. The resistance of the device is further reduced, increasing the slope of the current-voltage curve in Region 3.

It will be appreciated that the voltage drop ΔV across the half-width of the current surge pad 116, which is greater than the half-width of the heterojunction barrier regions 130, where “half-width” refers to the minimum lateral distance from an edge of the feature to a center of the feature, i.e., the minimum distance that laterally spreading current must travel to reach the center point of the feature. As the width of the current surge pad 116 is greater than the widths of the heterojunction barrier regions 130, the junction J5 between the current surge pad 116 and the drift layer will tend to turn on before the junctions between the heterojunction barrier regions 130 and the drift region 114.

Empirical forward current-voltage curves at operating temperatures ranging from 25° C. to 200° C. for a device according to some embodiments with p+ polysilicon as the Schottky contact are illustrated in FIG. 8. For example, a current-voltage curve according to some embodiments at 25° C. is illustrated as curve 191, while to a current-voltage curve according to some embodiments at 200° C. is illustrated as curve 192. These curves indicate that surge capability of diodes according to some embodiments is enhanced at high temperature, as the slope of the curves increases with temperature and forward voltage. The device illustrated in FIG. 8 starts conducting at about 1.8 V instead of the Ti—SiC Schottky turn-on voltage of 0.8V because polysilicon was used as the anode contact 118.

FIGS. 9-12 illustrate methods of forming devices according to some embodiments. Referring to FIG. 9, a drift region 114 is provided. The drift region 114 may be provided on a substrate 112. However, it will be appreciated that the substrate 112 is optional and may be removed or omitted in some embodiments.

The drift region 114 may be formed, for example, from n-type silicon carbide of the 2H, 4H, 6H, 3C and/or 15R polytype having a dopant concentration of about 2×1014 to about 1×1017 cm−3, depending on design requirements for voltage blocking and on-resistance for the diode 100. Other types of semiconductor materials, such as GaN, GaAs, silicon or germanium may be used. In particular embodiments, the drift region 114 includes 4H-SiC doped with n-type dopants at a concentration of about 5×1015 cm−3.

Optional implanted regions 160 may be formed at the device periphery to provide a robust guard ring termination.

A plurality of recesses 170, 171 and 172 are formed in a surface of a drift region 114, for example by masking and etching techniques which are well known in the art. The recesses 170, 171 and 172 may extend to a depth of about 0.3 to about 0.5 μm into the drift region 114 from the surface of the drift region 114. A layer of a material 180, such as polysilicon, which forms a heterojunction with the drift layer, is deposited on the surface of the drift layer and into the recesses 170, 171, 172. The layer 180 of polysilicon may be doped with p-type dopants, such as boron and/or aluminum, at a concentration of about 1×1018 to about 1×1019 cm−3, and in particular embodiments at a dopant concentration of about 5×1018 cm−3. The layer 180 of polysilicon may be doped using any conventional doping technique, such as in-situ doping, spinning-on, diffusion and drive-in annealing, etc.

The layer 180 may be patterned using photolithographic techniques to form respective current surge pads 116, heterojunction barrier regions 130 and/or guard rings 125 that protrude above the surface of the drift region 114 (FIG. 10). In some embodiments, the layer 180 may be planarized using chemical-mechanical polish and/or etchback techniques to form respective current surge pads 116, heterojunction barrier regions 130 and guard rings 125 that are flush with the surface of the drift region 114 (FIG. 11).

Referring to FIG. 12, a Schottky contact 118 may be formed on the drive region 114 and may include a metal, such as aluminum, titanium and/or nickel. In some embodiments, the contact 118 may form an ohmic contact with the current surge pad 116 and a Schottky contact with the drift region 114. A metal overlayer 119 may be formed on the Schottky contact 118. The metal overlayer 119 may comprise TiW/Al, for example, and may be provided as a contact layer on the Schottky contact 118.

A cathode contact 120 is formed on a side of the substrate 112 opposite the drift region 114. The cathode contact 120 may include a metal, such as nickel, that is capable of forming an ohmic contact to n-type silicon carbide.

An implanted region 160 of dopants having a conductivity opposite the conductivity of the drift layer may be formed beneath the guard rings 125 to probed a robust guard ring (RGR) termination. The implanted region 160 may extend to a depth in the drift layer that is greater or less than the depth of the guard rings, and may have a net concentration of dopants having a conductivity opposite the conductivity type of the drift region 114 of about 1×1017 cm−3. Finally, a field oxide layer 127 may be formed on the drift layer and may cover the guard rings 125.

Further embodiments are illustrated in FIGS. 13A and 13B, which are a cross-sectional views of devices 300 and 300′, respectively, that have a mesa termination (FIG. 13A) and a beveled edge termination (FIG. 13B), as opposed to guard ring termination.

FIG. 14 is a graph illustrating simulated horizontal electric field distributions for a device according to some embodiments including heterojunction barrier regions and a heterojunction guard ring termination (curve 201) and a device according to some embodiments including heterojunction barrier regions and a heterojunction guard ring termination with a robust guard ring termination including implanted regions 160 (curve 202). As can be seen in FIG. 14, a peak electric field 201P for the device represented by curve 201 may be substantially higher than a peak electric field 202P for the device represented by curve 202.

Embodiments of the present invention provide junction barrier Schottky semiconductor devices that may require no, or fewer, implantation steps compared to conventional JBS devices. Thus, cost and/or complexity of fabrication of such devices can be reduced. Furthermore, some embodiments use doped polysilicon features in a JBS diode. Polysilicon can be doped in many conventional techniques, and polysilicon processing techniques are compatible with high throughput processing. Furthermore, p-type polysilicon can act as a minority injector in surge current conditions in some embodiments, and the surge capability may be further enhanced at high temperature operation.

While embodiments of the present invention have been described with reference to particular sequences of operations, as will be appreciated by those of skill in the art, certain operations within the sequence may be reordered while still benefiting from the teachings of the present invention. Accordingly, the present invention should not be construed as limited to the exact sequence of operations described herein.

In the drawings and specification, there have been disclosed typical embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Zhang, Qingchun

Patent Priority Assignee Title
Patent Priority Assignee Title
3439189,
3629011,
3924024,
4160920, Jul 21 1976 Bicosa Societe de Recherches Bistable element and a switch circuit comprising such a bistable element
4242690, Jun 06 1978 General Electric Company High breakdown voltage semiconductor device
4466172, Jan 08 1979 AMI Semiconductor, Inc Method for fabricating MOS device with self-aligned contacts
4581542, Nov 14 1983 General Electric Company Driver circuits for emitter switch gate turn-off SCR devices
4641174, Aug 08 1983 Fairchild Semiconductor Corporation Pinch rectifier
4644637, Dec 30 1983 Fairchild Semiconductor Corporation Method of making an insulated-gate semiconductor device with improved shorting region
4811065, Jun 11 1987 Siliconix Incorporated; SILICONIX INCORPORATED, A DE CORP Power DMOS transistor with high speed body diode
4875083, Oct 26 1987 North Carolina State University at Raleigh Metal-insulator-semiconductor capacitor formed on silicon carbide
4927772, May 30 1989 Fairchild Semiconductor Corporation Method of making high breakdown voltage semiconductor device
4945394, Oct 26 1987 North Carolina State University at Raleigh Bipolar junction transistor on silicon carbide
4946547, Oct 13 1989 Cree, Inc Method of preparing silicon carbide surfaces for crystal growth
5011549, Oct 26 1987 North Carolina State University Homoepitaxial growth of Alpha-SiC thin films and semiconductor devices fabricated thereon
5017976, Dec 02 1988 Kabushiki Kaisha Toshiba Semiconductor device having intermediate layer for pinching off conductive path during reverse bias application
5028977, Jun 16 1989 Massachusetts Institute of Technology Merged bipolar and insulated gate transistors
5032888, Aug 25 1989 FUJI ELECTRIC SYSTEMS CO , LTD Conductivity modulation buried gate trench type MOSFET
5041881, May 18 1987 The United States of America as represented by the Administrator of the Whiskerless Schottky diode
5111253, May 09 1989 Lockheed Martin Corporation Multicellular FET having a Schottky diode merged therewith
5155289, Jul 01 1991 General Atomics; GENERAL ATOMICS A CA CORPORATION High-voltage solid-state switching devices
5166760, Feb 28 1990 Hitachi, Ltd.; Hitachi Haramachi Semiconductor Ltd. Semiconductor Schottky barrier device with pn junctions
5170231, May 24 1990 Sharp Kabushiki Kaisha Silicon carbide field-effect transistor with improved breakdown voltage and low leakage current
5170455, Oct 30 1991 AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEPHONE COMPANY, A CORP OF NY Optical connective device
5184199, Jun 07 1989 SHARP KABUSHIKI KAISHA, Silicon carbide semiconductor device
5192987, May 17 1991 International Rectifier Corporation High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
5200022, Oct 03 1990 Cree, Inc Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product
5210051, Mar 27 1990 Cree, Inc High efficiency light emitting diodes from bipolar gallium nitride
5262669, Apr 19 1991 Shindengen Electric Manufacturing Co., Ltd. Semiconductor rectifier having high breakdown voltage and high speed operation
5270554, Jun 14 1991 Cree, Inc High power high frequency metal-semiconductor field-effect transistor formed in silicon carbide
5292501, Jun 25 1990 Use of a carboxy-substituted polymer to inhibit plaque formation without tooth staining
5296395, May 17 1991 International Rectifier Corporation Method of making a high electron mobility transistor
5345100, Mar 29 1991 Shindengen Electric Manufacturing Co., Ltd. Semiconductor rectifier having high breakdown voltage and high speed operation
5348895, Mar 25 1992 Texas Instruments Incorporated LDMOS transistor with self-aligned source/backgate and photo-aligned gate
5371383, May 14 1993 KOBE STEEL USA INC Highly oriented diamond film field-effect transistor
5384270, Nov 12 1992 FUJI ELECTRIC CO , LTD Method of producing silicon carbide MOSFET
5385855, Feb 24 1994 General Electric Company Fabrication of silicon carbide integrated circuits
5393993, Dec 13 1993 Cree, Inc Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
5393999, Feb 22 1993 Texas Instruments Incorporated SiC power MOSFET device structure
5396085, Dec 28 1993 INTELLECTUAL VENTURES HOLDING 78 LLC Silicon carbide switching device with rectifying-gate
5399887, May 03 1994 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Modulation doped field effect transistor
5459107, Jun 05 1992 WOLFSPEED, INC Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
5468654, Aug 19 1987 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing an insulated gate bipolar transistor
5473176, Sep 01 1993 Kabushiki Kaisha Toshiba Vertical insulated gate transistor and method of manufacture
5479316, Aug 24 1993 Analog Devices, Inc. Integrated circuit metal-oxide-metal capacitor and method of making same
5488236, May 26 1994 INTELLECTUAL VENTURES HOLDING 78 LLC Latch-up resistant bipolar transistor with trench IGFET and buried collector
5506421, Nov 24 1992 Cree, Inc Power MOSFET in silicon carbide
5510281, Mar 20 1995 General Electric Company Method of fabricating a self-aligned DMOS transistor device using SiC and spacers
5510630,
5523589, Sep 20 1994 Cree, Inc Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
5539217, Aug 09 1993 WOLFSPEED, INC Silicon carbide thyristor
5545905, Apr 19 1993 NGK Insulators, Ltd Static induction semiconductor device with a static induction schottky shorted structure
5587870, Sep 17 1992 Research Foundation of State University of New York; Research Foundation of State University of New York, The Nanocrystalline layer thin film capacitors
5629531, Jun 05 1992 WOLFSPEED, INC Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
5710059, Apr 24 1996 Cree, Inc Method for producing a semiconductor device having a semiconductor layer of SiC by implanting
5726463, Aug 07 1992 WOLFSPEED, INC Silicon carbide MOSFET having self-aligned gate structure
5726469, Jul 20 1994 UNIVERSITY OF ELEC SCI & TECH OF CHINA Surface voltage sustaining structure for semiconductor devices
5734180, Jun 02 1995 Texas Instruments Incorporated High-performance high-voltage device structures
5739564, Dec 11 1992 Freescale Semiconductor, Inc Semiconductor device having a static-random-access memory cell
5753960, Aug 19 1995 Daimler Benz AG; Temic Telefunken Microelectronic GmbH Circuit with monolitically integrated p-i-n/Schottky diode arrangement
5763905, Jul 09 1996 ABB Research Ltd. Semiconductor device having a passivation layer
5776837, Jun 05 1992 WOLFSPEED, INC Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures
5804483, Aug 06 1996 Cree, Inc Method for producing a channel region layer in a sic-layer for a voltage controlled semiconductor device
5814859, Mar 20 1995 General Electric Company Self-aligned transistor device including a patterned refracting dielectric layer
5831288, Jun 06 1996 WOLFSPEED, INC Silicon carbide metal-insulator semiconductor field effect transistor
5837572, Jan 10 1997 GLOBALFOUNDRIES Inc CMOS integrated circuit formed by using removable spacers to produce asymmetrical NMOS junctions before asymmetrical PMOS junctions for optimizing thermal diffusivity of dopants implanted therein
5851908, Apr 10 1995 Cree, Inc Method for introduction of an impurity dopant in SiC, a semiconductor device formed by the method and a use of highly doped amorphous layer as a source for dopant diffusion into SiC
5877041, Jun 30 1997 Fairchild Semiconductor Corporation Self-aligned power field effect transistor in silicon carbide
5877045, Apr 10 1996 Bell Semiconductor, LLC Method of forming a planar surface during multi-layer interconnect formation by a laser-assisted dielectric deposition
5885870, Nov 03 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for forming a semiconductor device having a nitrided oxide dielectric layer
5914500, Jan 21 1997 Cree, Inc Junction termination for SiC Schottky diode
5917203, Jul 29 1996 Freescale Semiconductor, Inc Lateral gate vertical drift region transistor
5939763, Sep 05 1996 MONTEREY RESEARCH, LLC Ultrathin oxynitride structure and process for VLSI applications
5960289, Jun 22 1998 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for making a dual-thickness gate oxide layer using a nitride/oxide composite region
5969378, Jun 12 1997 Cree, Inc Latch-up free power UMOS-bipolar transistor
5972801, Nov 08 1995 WOLFSPEED, INC Process for reducing defects in oxide layers on silicon carbide
5976936, Sep 06 1995 Denso Corporation Silicon carbide semiconductor device
5977605, Aug 30 1995 Cree, Inc SiC Semiconductor device comprising a pn Junction with a voltage absorbing edge
6020600, Sep 06 1995 Denso Corporation Silicon carbide semiconductor device with trench
6025233, Feb 08 1995 NGK Insulators, Ltd. Method of manufacturing a semiconductor device
6025608, Nov 18 1997 ABB Research Ltd. Semiconductor device of SiC with insulating layer and a refractory metal nitride layer
6028012, Dec 04 1996 Yale University Process for forming a gate-quality insulating layer on a silicon carbide substrate
6040237, Jul 16 1996 Cree, Inc Fabrication of a SiC semiconductor device comprising a pn junction with a voltage absorbing edge
6048766, Oct 14 1998 MONTEREY RESEARCH, LLC Flash memory device having high permittivity stacked dielectric and fabrication thereof
6054352, Feb 20 1997 FUJI ELECTRIC CO , LTD Method of manufacturing a silicon carbide vertical MOSFET
6054728, Apr 08 1997 FUJI ELECTRIC CO , LTD Insulated gate thyristor
6063698, Jun 30 1997 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for manufacturing a high dielectric constant gate oxide for use in semiconductor integrated circuits
6083814, Sep 03 1998 Cree, Inc Method for producing a pn-junction for a semiconductor device of SiC
6096607, Aug 18 1997 FUJI ELECTRIC CO , LTD Method for manufacturing silicon carbide semiconductor device
6097046, Apr 30 1993 Texas Instruments Incorporated Vertical field effect transistor and diode
6100169, Jun 08 1998 Cree, Inc Methods of fabricating silicon carbide power devices by controlled annealing
6104043, Feb 20 1997 Cree, Inc Schottky diode of SiC and a method for production thereof
6107142, Jun 08 1998 Cree, Inc Self-aligned methods of fabricating silicon carbide power devices by implantation and lateral diffusion
6117735, Jan 06 1998 FUJI ELECTRIC CO , LTD Silicon carbide vertical FET and method for manufacturing the same
6121633, Jun 12 1997 Cree, Inc Latch-up free power MOS-bipolar transistor
6133587, Jan 23 1996 Denso Corporation Silicon carbide semiconductor device and process for manufacturing same
6136727, Dec 19 1997 Fuji Eletric Co., Ltd. Method for forming thermal oxide film of silicon carbide semiconductor device
6136728, Jan 05 1996 Yale University Water vapor annealing process
6165822, Jan 05 1998 Denso Corporation Silicon carbide semiconductor device and method of manufacturing the same
6180958, Feb 07 1997 Purdue Research Foundation Structure for increasing the maximum voltage of silicon carbide power transistors
6190973, Dec 18 1998 IXYS Intl Limited Method of fabricating a high quality thin oxide
6204135, Jul 31 1997 Infineon Technologies AG Method for patterning semiconductors with high precision, good homogeneity and reproducibility
6204203, Oct 14 1998 Applied Materials, Inc Post deposition treatment of dielectric films for interface control
6211035, Sep 09 1998 Texas Instruments Incorporated Integrated circuit and method
6218254, Sep 22 1999 Cree, Inc Method of fabricating a self-aligned bipolar junction transistor in silicon carbide and resulting devices
6218680, May 18 1999 Cree, Inc Semi-insulating silicon carbide without vanadium domination
6221688, Jun 02 1997 FUJI ELECTRIC CO , LTD Diode and method for manufacturing the same
6221700, Jul 31 1998 Denso Corporation Method of manufacturing silicon carbide semiconductor device with high activation rate of impurities
6228720, Feb 23 1999 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Method for making insulated-gate semiconductor element
6238967, Apr 12 1999 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method of forming embedded DRAM structure
6239463, Aug 28 1997 Siliconix Incorporated Low resistance power MOSFET or other device containing silicon-germanium layer
6239466, Dec 04 1998 General Electric Company Insulated gate bipolar transistor for zero-voltage switching
6246076, Aug 28 1998 WOLFSPEED, INC Layered dielectric on silicon carbide semiconductor structures
6297100, Sep 30 1998 Denso Corporation Method of manufacturing silicon carbide semiconductor device using active and inactive ion species
6297172, Jun 07 1999 Sony Corporation Method of forming oxide film
6303508, Dec 16 1999 Philips Electronics North America Corporation Superior silicon carbide integrated circuits and method of fabricating
6316791, Aug 20 1997 SICED ELECTRONICS DEVELOPMENT GMBH & CO KG Semiconductor structure having a predetermined alpha-silicon carbide region, and use of this semiconductor structure
6316793, Jun 12 1998 WOLFSPEED, INC Nitride based transistors on semi-insulating silicon carbide substrates
6329675, Sep 22 1999 Cree, Inc. Self-aligned bipolar junction silicon carbide transistors
6344663, Jun 05 1992 Cree, Inc Silicon carbide CMOS devices
6365932, Aug 20 1999 Denso Corporation Power MOS transistor
6388271, Sep 10 1997 Siemens Aktiengesellschaft Semiconductor component
6399996, Apr 01 1999 DIODES, INC Schottky diode having increased active surface area and method of fabrication
6420225, Apr 01 1999 DIODES, INC Method of fabricating power rectifier device
6429041, Jul 13 2000 Cree, Inc. Methods of fabricating silicon carbide inversion channel devices without the need to utilize P-type implantation
6448160, Apr 01 1999 DIODES, INC Method of fabricating power rectifier device to vary operating parameters and resulting device
6455892, Sep 21 1999 Denso Corporation Silicon carbide semiconductor device and method for manufacturing the same
6475889, Apr 11 2000 WOLFSPEED, INC Method of forming vias in silicon carbide and resulting devices and circuits
6501145, Jun 03 1997 Cree, Inc Semiconductor component and method for producing the same
6515303, Apr 11 2000 WOLFSPEED, INC Method of forming vias in silicon carbide and resulting devices and circuits
6524900, Jul 25 2001 Cree, Inc Method concerning a junction barrier Schottky diode, such a diode and use thereof
6548333, Dec 01 2000 Cree, Inc. Aluminum gallium nitride/gallium nitride high electron mobility transistors having a gate contact on a gallium nitride based cap segment
6551865, Mar 30 2001 Denso Corporation Silicon carbide semiconductor device and method of fabricating the same
6573534, Sep 06 1995 Denso Corporation Silicon carbide semiconductor device
6593620, Oct 06 2000 General Semiconductor, Inc. Trench DMOS transistor with embedded trench schottky rectifier
6610366, Oct 03 2000 Cree, Inc. Method of N2O annealing an oxide layer on a silicon carbide layer
6627539, May 29 1998 Newport Fab, LLC Method of forming dual-damascene interconnect structures employing low-k dielectric materials
6649497, Apr 11 2000 WOLFSPEED, INC Method of forming vias in silicon carbide and resulting devices and circuits
6649995, Oct 18 2001 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
6653659, Jul 13 2000 Cree, Inc. Silicon carbide inversion channel mosfets
6696705, Jan 12 2000 INFINEON TECHNOLOGIES BIPOLAR GMBH & CO KG Power semiconductor component having a mesa edge termination
6703642, Feb 08 2000 The United States of America as represented by the Secretary of the Army Silicon carbide (SiC) gate turn-off (GTO) thyristor structure for higher turn-off gain and larger voltage blocking when in the off-state
6743703, Apr 06 2000 DIODES, INC Power diode having improved on resistance and breakdown voltage
6767843, Oct 03 2000 Cree, Inc. Method of N2O growth of an oxide layer on a silicon carbide layer
6861723, Dec 19 2003 Infineon Technologies AG Schottky diode having overcurrent protection and low reverse current
6936850, Sep 22 1999 Infineon Technologies AG Semiconductor device made from silicon carbide with a Schottky contact and an ohmic contact made from a nickel-aluminum material
6946739, Apr 11 2000 WOLFSPEED, INC Layered semiconductor devices with conductive vias
6949401, Jun 03 1997 Cree, Inc Semiconductor component and method for producing the same
6956238, Oct 03 2000 Cree, Inc. SILICON CARBIDE POWER METAL-OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTORS HAVING A SHORTING CHANNEL AND METHODS OF FABRICATING SILICON CARBIDE METAL-OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTORS HAVING A SHORTING CHANNEL
6979863, Apr 24 2003 Cree, Inc. Silicon carbide MOSFETs with integrated antiparallel junction barrier Schottky free wheeling diodes and methods of fabricating the same
7026650, Jan 15 2003 Cree, Inc. Multiple floating guard ring edge termination for silicon carbide devices
7074643, Apr 24 2003 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions and methods of fabricating same
7118970, Jun 22 2004 Cree, Inc Methods of fabricating silicon carbide devices with hybrid well regions
7125786, Apr 11 2000 WOLFSPEED, INC Method of forming vias in silicon carbide and resulting devices and circuits
7183575, Feb 19 2002 NISSAN MOTOR CO , LTD High reverse voltage silicon carbide diode and method of manufacturing the same high reverse voltage silicon carbide diode
7186609, Dec 30 1999 Siliconix Incorporated Method of fabricating trench junction barrier rectifier
7221010, Dec 20 2002 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
7247550, Feb 08 2005 CALLAHAN CELLULAR L L C Silicon carbide-based device contact and contact fabrication method
7253031, Jul 19 1995 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
7279115, Sep 22 2003 Cree, Inc. Method to reduce stacking fault nucleation sites and reduce Vf drift in bipolar devices
7304363, Nov 26 2004 United States of America as represented by the Secretary of the Army Interacting current spreader and junction extender to increase the voltage blocked in the off state of a high power semiconductor device
7365363, Apr 19 2004 Denso Corporation Silicon carbide semiconductor device and method for manufacturing the same
7381992, Apr 24 2003 Cree, Inc. Silicon carbide power devices with self-aligned source and well regions
7528040, May 24 2005 Cree, Inc. Methods of fabricating silicon carbide devices having smooth channels
7544963, Apr 29 2005 Cree, Inc. Binary group III-nitride based high electron mobility transistors
7547578, Sep 16 2005 Cree, Inc Methods of processing semiconductor wafers having silicon carbide power devices thereon
7548112, Jul 21 2005 Macom Technology Solutions Holdings, Inc Switch mode power amplifier using MIS-HEMT with field plate extension
7649213, Sep 29 2004 Kabushiki Kaisha Toshiba Semiconductor device
7687825, Sep 18 2007 Cree, Inc. Insulated gate bipolar conduction transistors (IBCTS) and related methods of fabrication
7728402, Aug 01 2006 Cree, Inc Semiconductor devices including schottky diodes with controlled breakdown
7781786, Apr 11 2006 Nissan Motor Co., Ltd. Semiconductor device having a heterojunction diode and manufacturing method thereof
7851881, Mar 21 2008 Microsemi Corporation Schottky barrier diode (SBD) and its off-shoot merged PN/Schottky diode or junction barrier Schottky (JBS) diode
7893467, May 30 2007 Denso Corporation Silicon carbide semiconductor device having junction barrier Schottky diode
7902054, Feb 16 2006 Central Research Institute of Electric Power Industry Schottky barrier semiconductor device and method for manufacturing the same
7994033, Dec 05 2007 PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD Semiconductor apparatus and manufacturing method thereof
8168582, Jun 14 2005 HENKEL AG & CO KGAA Fabric softening composition comprising a polymeric viscosity modifier
8664665, Sep 11 2011 WOLFSPEED, INC Schottky diode employing recesses for elements of junction barrier array
20010055852,
20020030191,
20020038891,
20020047125,
20020072247,
20020102358,
20020121641,
20020125482,
20020125541,
20030025175,
20030057482,
20030107041,
20030137010,
20030178672,
20030201455,
20040016929,
20040031971,
20040079989,
20040082116,
20040173801,
20040183079,
20040211980,
20040212011,
20040256659,
20040259339,
20050001268,
20050012143,
20050062124,
20050104072,
20050139936,
20050151138,
20050181536,
20050224838,
20050245034,
20050275055,
20060011128,
20060060884,
20060086997,
20060211210,
20060244010,
20060255423,
20060261347,
20060261876,
20060267021,
20070066039,
20070120148,
20070164321,
20070205122,
20070228505,
20070241427,
20080001158,
20080006848,
20080029838,
20080105949,
20080121993,
20080191304,
20080197439,
20080230787,
20080246085,
20080251793,
20080277669,
20080296587,
20080296771,
20090008651,
20090085064,
20090121319,
20090146154,
20090212301,
20090267141,
20090267200,
20090272983,
20090289262,
20100032685,
20100133549,
20100133550,
20100140628,
20100244047,
20100277839,
20110095301,
20110204435,
20110207321,
CN1259228,
DE10036208,
DE19633183,
DE19633184,
DE19723176,
DE19809554,
DE19832329,
DE19900171,
DE29504629,
DE3942640,
DE4210402,
EP176778,
EP372412,
EP380340,
EP389863,
EP615292,
EP637069,
EP735591,
EP837508,
EP865085,
EP992070,
EP1058317,
EP1361614,
EP1460681,
EP1503425,
EP1693896,
EP1806787,
EP1845561,
EP1885000,
EP2015364,
EP2259326,
JP11008399,
JP1117363,
JP11191559,
JP11238742,
JP11261061,
JP11266017,
JP11274487,
JP2000049167,
JP2000082812,
JP2000106371,
JP2000252461,
JP2000252478,
JP200077682,
JP2001085704,
JP2002314099,
JP2006324585,
JP2007235768,
JP2008042198,
JP2008112774,
JP2137368,
JP3034466,
JP3105975,
JP3157974,
JP3225870,
JP60240158,
JP62136072,
JP7066433,
JP8097441,
JP8264766,
JP8316164,
JP9009522,
JP9205202,
RE34861, Oct 09 1990 North Carolina State University Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide
WO2012128934,
WO13236,
WO178134,
WO2004020706,
WO2004079789,
WO2005020308,
WO2006135031,
WO2007040710,
WO9603774,
WO9708754,
WO9717730,
WO9739485,
WO9802916,
WO9802924,
WO9808259,
WO9832178,
WO9946809,
WO9963591,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 08 2010Cree, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Jan 06 20184 years fee payment window open
Jul 06 20186 months grace period start (w surcharge)
Jan 06 2019patent expiry (for year 4)
Jan 06 20212 years to revive unintentionally abandoned end. (for year 4)
Jan 06 20228 years fee payment window open
Jul 06 20226 months grace period start (w surcharge)
Jan 06 2023patent expiry (for year 8)
Jan 06 20252 years to revive unintentionally abandoned end. (for year 8)
Jan 06 202612 years fee payment window open
Jul 06 20266 months grace period start (w surcharge)
Jan 06 2027patent expiry (for year 12)
Jan 06 20292 years to revive unintentionally abandoned end. (for year 12)