Embodiments provide a switching device including one or more field-effect transistors (fets). In embodiments, a negative bias circuit is configured to generate a negative voltage signal based on a radio frequency (RF) signal applied to the circuit. When the fet is in an off state, the negative voltage signal is provided to a gate terminal of the fet.
|
19. A method comprising:
generating, with a negative bias circuit, a negative voltage signal at an output terminal of the negative bias circuit based on a radio frequency (RF) signal applied to a switching device including a field-effect transistor (fet);
receiving, at a decoder circuit, a control signal indicating that the fet is to be in an off state; and
coupling, by the decoder circuit, the output terminal of the negative bias circuit with a gate terminal of the fet to provide the negative voltage signal to the gate terminal.
1. A switching device comprising:
a field-effect transistor (fet) including a gate terminal;
a negative bias circuit configured to generate a negative voltage signal at an output terminal of the negative bias circuit based on a radio frequency (RF) signal applied to the switching device; and
a decoder circuit coupled with the output terminal of the negative bias circuit and the gate terminal, the decoder circuit configured to couple the output terminal of the negative bias circuit with the gate terminal when the fet is in an off state.
14. A wireless communication device comprising:
a transceiver;
an antenna; and
a radio frequency (RF) front-end coupled with the transceiver and the antenna and configured to communicate signals between the transceiver and the antenna, the RF front-end including a silicon-on-insulator (SOI) switching device that has:
a field-effect transistor (fet) including a gate terminal;
a negative bias circuit configured to generate a negative voltage signal at an output terminal based on a radio frequency (RF) signal applied to the switching device; and
a decoder circuit coupled with the output terminal of the negative bias circuit and the gate terminal, the decoder circuit configured to couple the output terminal of the negative bias circuit with the gate terminal when the fet is in an off state.
3. The switching device of
4. The switching device of
5. The switching device of
6. The switching device of
7. The switching device of
8. The switching device of
9. The switching device of
10. The switching device of
a second fet including a gate terminal and a drain terminal, the drain terminal of the second fet coupled with the source terminal of the first fet;
wherein the output terminal of the negative bias circuit is coupled with the gate terminal of the second fet when the first fet is in an off state.
11. The switching device of
a second fet including a source terminal, a gate terminal, and a drain terminal, wherein the drain terminal of the second fet is coupled with the source terminal of the first fet, the source terminal of the second fet is coupled with ground, and the output terminal of the negative bias circuit is not coupled with the gate terminal of the second fet when the first fet is in an off state.
12. The switching device of
a second fet including a gate terminal and a drain terminal, the drain terminal of the second fet is coupled with the drain terminal of the first fet;
wherein the output terminal of the negative bias circuit is not coupled with the gate terminal of the second fet when the first fet is in an off state.
13. The switching device of
15. The wireless communication device of
16. The wireless communication device of
17. The wireless communication device of
18. The wireless communication device of
20. The method of
providing the negative voltage signal to a body terminal of the fet when the fet is to be in the off state.
21. The method of
receiving, at the decoder circuit, a control signal indicating that the fet is to be in an on state; and
in response to receiving the control signal indicating that the fet is to be in the on state, decoupling, with the decoder circuit, the output terminal of the negative bias circuit from the gate terminal of the fet.
22. The method of
in response to receiving the control signal indicating that the fet is to be in the on state, coupling, by the decoder circuit, the output terminal of the negative bias circuit with a gate terminal of a shunt fet to provide the negative voltage signal to the gate terminal of the shunt fet;
wherein a drain terminal of the shunt fet is coupled with a source terminal of the fet, and a source terminal of the shunt fet is coupled with ground.
|
Embodiments of the present disclosure relate generally to the field of circuits, and more particularly to switching devices utilizing a field-effect transistor (FET).
For some field-effect transistor (FET)-based switching devices, a negative gate bias connection is used to facilitate off-mode operation. Present designs require the use of a charge pump and an oscillator to supply the negative voltage directly to the gate. The circuit elements used to implement such a design may be associated with spurious signals entering a radio frequency (“RF”) switch core and larger die size.
Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Various aspects of the illustrative embodiments will be described using terms commonly employed by those skilled in the art to convey the substance of their work to others skilled in the art. However, it will be apparent to those skilled in the art that alternate embodiments may be practiced with only some of the described aspects. For purposes of explanation, specific devices and configurations are set forth in order to provide a thorough understanding of the illustrative embodiments. However, it will be apparent to one skilled in the art that alternate embodiments may be practiced without the specific details. In other instances, well-known features are omitted or simplified in order not to obscure the illustrative embodiments.
Further, various operations will be described as multiple discrete operations, in turn, in a manner that is most helpful in understanding the present disclosure; however, the order of description should not be construed as to imply that these operations are necessarily order dependent. In particular, these operations need not be performed in the order of presentation.
The phrase “in some embodiments” is used repeatedly. The phrase generally does not refer to the same embodiment; however, it may. The terms “comprising,” “having,” and “including” are synonymous, unless the context dictates otherwise.
In providing some clarifying context to language that may be used in connection with various embodiments, the phrases “A/B” and “A and/or B” mean (A), (B), or (A and B); and the phrase “A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C) or (A, B and C).
The term “coupled with,” along with its derivatives, is used herein. “Coupled” may mean one or more of the following. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements indirectly contact each other, but yet still cooperate or interact with each other, and may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other.
Embodiments may include a switching device including a FET, a negative bias circuit, and a decoder circuit. The negative bias circuit may be configured to generate a negative voltage signal at an output terminal of the negative bias circuit based on a radio frequency (RF) signal applied to the switching device. The decoder circuit may be coupled with the output terminal of the negative bias circuit, and may be configured to couple the output terminal of the negative bias circuit with a gate terminal of the FET when the FET is in an off state.
Various embodiments provide a biasing scheme to be used in biasing the voltage of the gate of the FET 104. The biasing scheme is discussed herein with reference to an n-type FET. However, in other embodiments, the biasing scheme may be used and/or modified for use with another type of FET, such as a p-type FET.
In various embodiments, the FET 104 may selectively transition between an “off” state and an “on” state to facilitate switching of a transmission signal applied to the device 100, referred to herein as the RF signal. For example, when the RF signal is applied to the device 100, the FET 104 may receive the RF signal at the source terminal 116 or the drain terminal 112, and pass the RF signal through the FET 104 and to the drain terminal 112 or the source terminal 116, respectively, if the FET 104 is in the “on” state. The FET 104 may prevent the passage of the RF signal between the drain terminal 112 and the source terminal 116 if the FET 104 is in the “off” state. As used herein, “the RF signal applied to the device” may include an RF signal received at the source terminal 116 and selectively passed through to the drain terminal 112, or an RF signal received at the drain terminal 112 (e.g., from an RF antenna coupled to the drain terminal 112, or from another FET whose drain terminal is coupled to the drain terminal 112) and selectively passed through to the source terminal 116.
The FET 104 may receive a control signal at the gate terminal 120 to transition the FET 104 between the “off” state and the “on” state. For example, a positive DC voltage (e.g., +2.5V) with respect to the DC voltage of the drain terminal 112 and the source terminal 116 may be applied to the gate terminal 120. In some embodiments, the positive voltage may be applied by a decoder circuit 114, which may receive the positive voltage from a positive voltage source (not shown) and provide an electrical connection between the positive voltage source and the gate terminal 120. The decoder circuit 114 may include level shifting circuitry to adjust the positive voltage to a desired level; level shifting circuitry may alternatively be included in the switching device 100 separate from the decoder circuit 114. The positive voltage may have the effect of turning the FET 104 “on” by causing the resistance between the drain terminal 112 and the source terminal 116 to become very low so that an RF signal can pass between the drain terminal 112 and the source terminal 116.
The application of a positive voltage to the gate terminal 120 may allow the RF signal to flow through the FET 104 because the FET 104 may generally include four parts as shown in the n-type metal-oxide-semiconductor (NMOS) FET 104 in
The FET 104 may further include a body 212 which is connected to the body terminal 124. The FET 104 may further include an n-type drain portion 220 positioned between the drain 200 and the body 212, and an n-type source portion 228 positioned between the source 204 and the body 212, as described in further detail below.
As used herein, “terminal” will generally be used to refer to the element of the FET 104 where the FET 104 connects to another element in a circuit. In some embodiments the drain 200 and the drain terminal 112 may be considered to be the same element, for example the FET 104 may connect to another element in a circuit via a direct connection between the drain 200 and the element in the circuit. In other embodiments the drain terminal 112 may be a terminal, for example a conductive lead, which is electrically coupled with the drain 200. For example, in these other embodiments, the FET 104 may connect with another element in the circuit via the drain terminal 112 which may be a metallic lead such as a copper or other conductive lead, which in turn may be coupled with the drain 200. Similarly, the source 204 and source terminal 116 may be the same as one another, or electrically coupled with one another, as described above with respect to the drain 200 and drain terminal 112. Similarly the gate 208 and the gate terminal 120 may be the same as one another, or electrically coupled with one another. Finally, the body 212 and the body terminal 124 may be the same as one another or coupled with one another. As used herein, the names given to the elements are for the purpose of distinguishing one element of the FET 104 from another, and different embodiments may use different names, for example calling the n-type drain portion 220 the “drain” or the n-type source portion 228 the “source” of the FET 104.
As an example of use of the FET 104, a DC voltage will be discussed as being applied to the gate terminal 120, which in turn may cause the gate 208 to gain the specified voltage. However, in some embodiments the DC voltage may be applied directly to the gate 208. As another example, the RF signal may be received at either the source 204 or the source terminal 116, and passed through the FET 104 when the FET 104 is “on,” to the drain 200 or drain terminal 112. As another example, the RF signal may be received at either the drain 200 or the drain terminal 112, and passed through the FET 104 when the FET 104 is “on,” to the source 204 or the source terminal 116.
The body 212 may be made up of a p-type material, for example a Group IV element such as silicon or germanium doped with Group III elements such as boron or aluminum. The n-type drain and source portions 220, 228, may include a Group IV element such as silicon or germanium doped with a Group V element such as arsenic or phosphorous. The n-type drain and source portions 220, 228 may be separated from one another by the body 212. In general, a p-type material is lacking electrons and is said to have “electron holes.” An n-type material has extra electrons which may be able to move as an electric current within or out of the n-type material, and may therefore be said to have “mobile electrons.”
As noted above, the gate 208 of the FET 104 may include a conductive metal such as copper or aluminum. In other embodiments, the gate 208 may include of tantalum, tungsten or tantalum nitride. In other embodiments, the gate 208 of the FET 104 may include a polysilicon material. The drain 200, source 204, gate 208, and body 212 may all be separated from one another by a dielectric 224, for example silicon dioxide, silicon oxynitride, or some other high-k dielectric that prevents the flow of electrons between the drain 200 and the source 204.
An electrostatic field may be created between the gate 208 and the rest of the FET 104 when the gate 208 gains a positive voltage due to a positive voltage applied to the gate terminal 120. The positive gate voltage may repel the electron holes in the p-type material of the body 212 while attracting the free electrons in the p-type material of the body 212. At the same time, the positive gate voltage may attract the mobile electrons in the n-type drain and source portions 220, 228. When the positive voltage of the gate 208 becomes high enough compared to the DC voltage of the drain 200 and the source 204, a voltage known as a “threshold voltage,” the repulsion in the p-type material of the body 212, and the attraction of the free electrons in the body 212 and the mobile electrons in the n-type drain and source portions 220, 228, may create an electrical channel. The electrical channel is sometimes called an “inversion layer,” and may be between the n-type drain and source portions 220, 228 and directly under the dielectric 224. In other words, the electrical channel between the n-type drain and source portions 220, 228 may be directly between the body 212 and the dielectric 224. In some embodiments, increasing the voltage applied to the gate terminal 120 may increase the voltage of the gate 208, which increases the size of the electrostatic field. The increase in the electrostatic field may increase the size of the electrical channel, and thus the amount of current that can be passed between the drain 200 and the source 204.
Similarly, a negative voltage of (e.g., −2.5V) may be applied to the gate terminal 120. In some embodiments, the negative voltage may be applied by the decoder circuit 114, which may receive a negative voltage signal from an output terminal 122 of a negative bias circuit 118 and provide an electrical connection between the output terminal 122 and the gate terminal 120. As discussed above, the decoder circuit 114 may include level shifting circuitry to adjust the positive voltage to a desired level; level shifting circuitry may alternatively be included in the switching device 100 separate from the decoder circuit 114. The negative bias circuit 118 may be configured to generate the negative voltage signal at the output terminal 122 based on the RF signal applied to the device 100 (e.g., by coupling with the drain terminal 112 as shown in
In some embodiments, it may be desirable for the voltage of the body 212 to “follow,” or have a similar voltage to, the voltage of the gate 208. This may be desirable because, for example, if the body 212 gains a positive voltage when a positive voltage is applied to the gate 208 or the gate terminal 120, then the electric channel between the drain 200 and the source 204 may be enhanced, thereby increasing the efficiency of the FET 104. Similarly, if the body 212 gains a negative voltage when a negative voltage is applied to the gate 208 or the gate terminal 120, then the repulsion of the n-type drain and source portions 220, 228 may be increased which will increase the resistance of the FET 104 and reduce any signal leakage. In some embodiments it may be desirable for the voltage of the body 212 to stay close to the voltage of the gate terminal 120, and in other embodiments it may be desirable for the voltage of the body 212 to only vary a small amount, for example a few tenths of a volt, when a voltage of +2.5V or −2.5V is applied to the gate terminal 120. Accordingly, in some embodiments, an active element such as a PMOS FET has been used as a diode, and coupled with the FET 104 between the body terminal 124 and the gate terminal 120 (not shown). When the voltage at the gate terminal 120 becomes negative, for example −2.5V, the diode may cause the voltage of the body 212 to become negative, and in many embodiments the voltage of the body 212 may be very close to the voltage at the gate terminal 120. For example, if the voltage at the gate terminal 120 is −2.5V, the voltage of the body 212 may be −2.3V. Other configurations in which the voltage of the body 212 follows the voltage of the gate 208 may also or alternatively be used. In some embodiments of the device 100, the output terminal 122 of the negative bias circuit 118 may be coupled to the body terminal 124 (e.g., via the decoder circuit 114) when the FET 104 is in an off state.
The negative bias circuit 118 may include a rectifier circuit 302 coupled between the input terminal 126 and the output terminal 122. The rectifier circuit 302 may include two half-wave rectifier branches having opposite polarities; as shown in
In some embodiments, the negative bias circuit 118 includes a capacitor 304 coupled between the input terminal 126 of the negative bias circuit 118 and the input terminal 334 of the positive branch 306, which may reduce the magnitude of low frequency components (e.g., DC components) of the RF signal that reach the diode-connected FETs 312 in the positive branch 306. Additionally, the capacitor 304, the resistor 310 and the resistor 316 (discussed below) may act to limit the amount of current drawn into the negative bias circuit 118 from the drain terminal 112 (and, in some configurations, from an antenna coupled to the drain terminal 112), which may reduce the insertion loss and detrimental harmonics that may be introduced by the negative bias circuit 118.
The negative branch 308 may have an input terminal 336 and an output terminal 332, and may include one or more diode-connected FETs 314 arranged in series. The negative branch 308 may also include a resistor 316 coupled between the input terminal 126 and the one or more diode-connected FETs 314. Although four diode-connected FETs 314 are illustrated in
The rectifier circuit 302 may include a probe 318 for measuring one or more voltages, one or more currents, or any one or more electrical or operational characteristics of the negative bias circuit 118. As shown in
The rectifier circuit 302 may also include a filter circuit 324 with a first terminal 326 and a second terminal 328. The first terminal 326 of the filter circuit 324 may be coupled with the output terminal 318 of the positive branch 306 (which may include an indirect coupling via the probe 318, as shown in
Various embodiments of negative bias circuits that generate a negative voltage signal based on an RF signal, such as the negative bias circuit 118, do not require a charge pump or oscillator and therefore may take up less die space than traditional negative voltage generators, which may allow the size of equipment that includes switching devices to be reduced. Additionally, by not requiring an oscillator for the generation of a negative voltage, various embodiments of the negative bias circuits disclosed herein may reduce the spurious noise introduced by oscillators.
Some switching devices may include a plurality of FETs such as FET 104. In some embodiments, the plurality of FETs may be in series with one another. It may be desirable to couple a plurality of FETs in series because, as noted above, when the FET 104 is turned “off,” a large resistance is created between the source terminal 116 and the drain terminal 112. If the current of the RF signal is very large, then the FET 104 may be damaged. By coupling a plurality of FETs in series, the load created by the large RF signal may be distributed so that each FET is only bearing a portion of the load. In this manner, the lifetime of the FETs may be extended. In addition to one or more FETs arranged in a transmission line for transmitting the RF signal when the one or more FETs are in an on state, a switching device with multiple FETs may also include one or more FETs arranged as shunts between the source terminal of the first FET in the series line and ground.
The switching device 400 may further include one or more shunt FETs 412 coupled in series with one another on a shunt line 416. As discussed above with reference to multiple series FETs distributed along a transmission line, it may be desirable to couple a plurality of FETs in series along a shunt line as shown in
The switching device 400 may further include a decoder circuit 414. The decoder 414 may be coupled with the FETs through decoder lines. In particular, a decoder line 424 may be provided to a gate terminal of each FET (and may additionally be provide to a body terminal of each FET). When the switching device 400 is in an on state, to pass the RF signal from an input terminal 426 to an output terminal 428, the decoder circuit 414 may set each of the transmission FETs 404 to an on state and may set each of the shunt FETs 412 to an off state. When the switching device 400 is in an off state, to prevent passage of the RF signal from the input terminal 426 to the output terminal 428, the decoder circuit 414 may set each of the transmission FETs 404 to an off state and may set each of the shunt FETs 412 to an on state. The decoder circuit 414 of the switching device 400 may be similar to the decoder circuit 114 of the switching device 100.
To provide a negative voltage to a FET of the switching device 400 to set the FET to an off state, the decoder circuit 414 may route the negative voltage signal generated by the negative bias circuit 418 to the FET (e.g., to the gate terminal of the FET). In particular, when the output of the negative bias circuit 418 is coupled with the gate terminal of the FET 404c (when the FET 404c is in an off state), the output of the negative bias circuit 418 may also be coupled with the gate terminal of the FET 404b (and all other FETs in the transmission line 408). When the FET 404a is in the off state, the output terminal of the negative bias circuit 418 is not coupled with the gate terminal of the shunt FETs 412 and the source terminal of the FET 412a is coupled with ground via the other FETs 412. The negative bias circuit 418 of the switching device 400 may be similar to the negative bias circuit 118 of the switching device 100.
At 504, a decoder circuit (e.g., the decoder circuit 114) receives a control signal indicating that the FET (e.g., the FET 104) is to be in an off state. At 506, the decoder circuit couples the output terminal of the negative bias circuit with a gate terminal of the FET (e.g., the gate terminal 120 the FET 104) of to provide the negative voltage signal to the gate terminal.
At 508, the decoder circuit or another component provides the negative voltage signal to a body terminal of the FET (e.g., the body terminal 124 of the FET 104) when the FET is in the off state. In some embodiments, 506 is optional.
At 510, the decoder circuit receives a control signal indicating that the FET is to be in an on state. At 512, in response to receiving the control signal at 510, the decoder circuit decouples the output terminal of the negative bias circuit from the gate terminal of the FET. In some embodiments, 510 and 512 are optional.
At 514, in response to receiving the control signal at 510, the decoder circuit couples the output terminal of the negative bias circuit with a gate terminal of a shunt FET (e.g., one of FETs 412 along shunt line 416 of
In some embodiments, a switching device includes multiple throws, each of which may be implemented using a FET-based switching device such as the switching device 100 or the switching device 400.
The switching device 600 may further include a decoder circuit and a negative bias circuit (not shown for clarity of illustration). The decoder circuit may be similar to the decoder circuits 114 and 414, and the negative bias circuit may be similar to the negative bias circuits 118 and 418. The decoder 414 may be coupled with the FETs 604 and 608 through decoder lines (not shown). In particular, as discussed above with reference to
To provide a negative voltage to a FET of the switching device 600 to set the FET to an off state, the decoder circuit may route the negative voltage signal generated by the negative bias circuit to the FET (e.g., to the gate terminal of the FET). For example, the drain terminal of the FET 604a of the throw 610a may be coupled with the drain terminal of the FET 604b of the throw 610b. When the throw 610b is selected, the decoder circuit may couple the output terminal of the negative bias circuit (e.g., the output terminal 122 of the negative bias circuit 118) to the gate of the FET 604a of the (non-selected) throw 610a and may not couple the output terminal of the negative bias circuit to the gate terminal of the FET 604b. The decoder circuit may instead couple a positive voltage to the gate terminal of the FET 604b, allowing the FET 604b to turn on and pass the RF signal at the input 602a to the antenna 606.
The switching devices 708 may be deployed in various elements of the RF front-end 704 such as, but not limited to, an antenna switch module, a transmitter, a receiver, etc. The switching devices described herein may be particularly advantageously deployed in distribution switches included in the RF front-end 704. The RF front-end 704 may also include other elements not specifically shown or discussed such as, but not limited to, amplifiers, converters, filters, etc. While the wireless communication device 700 is shown with transmitting and receiving capabilities, other embodiments may include devices with only transmitting or only receiving capabilities. While the switching devices 708 are shown as included in the RF front-end 704, in some embodiments, the switching devices 708 may be included in other components of the wireless communication device 700, such as transceiver 720.
In addition to the RF front-end 704, the wireless communication device 700 may have an antenna 716, a transceiver 720, a processor 724, and a memory 728 coupled with each other at least as shown. The antenna 716 may be similar to the antenna 606.
The processor 724 may execute a basic operating system program, stored in the memory 728, in order to control the overall operation of the wireless communication device 700. For example, the processor 724 may control the reception of signals and the transmission of signals by the transceiver 720. The processor 724 may be capable of executing other processes and programs resident in the memory 728 and may move data into or out of the memory 728 as desired by an executing process.
The transceiver 720 may receive outgoing data (e.g., voice data, web data, e-mail data, signaling data, etc.) from the processor 724, may generate RF signal(s) to represent the outgoing data, and provide the RF signal(s) to the RF front-end 704. Conversely, the transceiver 720 may receive RF signals from the RF front-end 704 that represent incoming data. The transceiver 720 may process the RF signals and send incoming signals to the processor 724 for further processing.
The RF front-end 704 may provide various front-end functionality. The front-end functionality may include, but is not limited to, switching provided by the switching devices 708. In particular, the switching devices 708 may selectively pass RF signal(s) to, from, or within components of the wireless communication device 700.
In various embodiments, the antenna 716 may include one or more directional and/or omnidirectional antennas, including a dipole antenna, a monopole antenna, a patch antenna, a loop antenna, a microstrip antenna, or any other type of antenna suitable for transmission and/or reception of RF signals.
In various embodiments, the wireless communication device 700 may be, but is not limited to, a mobile telephone, a paging device, a personal digital assistant, a text-messaging device, a portable computer, a desktop computer, a base station, a subscriber station, an access point, a radar, a satellite communication device, or any other device capable of wirelessly transmitting/receiving RF signals.
Those skilled in the art will recognize that the wireless communication device 700 is given by way of example and that, for simplicity and clarity, only so much of the construction and operation of the wireless communication device 700 as is necessary for an understanding of the embodiments is shown and described. Various embodiments contemplate any suitable component or combination of components performing any suitable tasks in association with the wireless communication device 700, according to particular needs. Moreover, it is understood that the wireless communication device 700 should not be construed to limit the types of devices in which embodiments may be implemented.
The following paragraphs describe examples of various embodiments. Various embodiments provide a switching device. The switching device may include a FET including a gate terminal; a negative bias circuit configured to generate a negative voltage signal at an output terminal of the negative bias circuit based on an RF signal applied to the switching device; and a decoder circuit coupled with the output terminal of the negative bias circuit and the gate terminal, the decoder circuit configured to couple the output terminal of the negative bias circuit with the gate terminal when the FET is in an off state.
In some embodiments of a switching device, the FET may be an n-type FET. The negative bias circuit may include an input terminal configured to receive the RF signal applied to the switching device and a rectifier circuit coupled between the input terminal and the output terminal. The rectifier circuit may include a first half-wave rectifier branch and a second half-wave rectifier branch, the first and second half-wave rectifier branches having opposite polarities. The first half-wave rectifier branch may include a diode-connected FET. The second half-wave rectifier branch may include a plurality of diode-connected FETs. The first half-wave rectifier branch may include a resistor coupled between the input terminal and the diode-connected FET.
In some embodiments of a switching device, the negative bias circuit may include a capacitor coupled between the input terminal and the first half-wave rectifier branch. In some embodiments, the switching device may include a silicon-on-insulator (SOI) circuit.
In some embodiments of a switching device, the FET may include a body terminal, and the output terminal of the negative bias circuit may be coupled to the body terminal when the FET is in an off state. The FET may be a first FET including a source terminal and the switching device may further include: a second FET including a gate terminal and a drain terminal, the drain terminal of the second FET coupled with the source terminal of the first FET. The output terminal of the negative bias circuit may be coupled with the gate terminal of the second FET when the first FET is in an off state.
In some embodiments of a switching device, the FET may be a first FET including a source terminal, and the switching device may further include a second FET including a source terminal, a gate terminal, and a drain terminal. The drain terminal of the second FET may be coupled with the source terminal of the first FET, the source terminal of the second FET may be coupled with ground, and the output terminal of the negative bias circuit may not be coupled with the gate terminal of the second FET when the first FET is in an off state.
In some embodiments of a switching device, the FET may be a first FET including a drain terminal, and the switching device may further include a second FET including a gate terminal and a drain terminal. The drain terminal of the second FET may be coupled with the drain terminal of the first FET, and the output terminal of the negative bias circuit may not be coupled with the gate terminal of the second FET when the first FET is in an off state.
Various embodiments provide a wireless communication device. The wireless communication device may include a transceiver, an antenna, and an RF front-end coupled with the transceiver and the antenna and configured to communicate signals between the transceiver and the antenna. The RF front-end may include an SOI switching device that has: a FET including a gate terminal, a negative bias circuit configured to generate a negative voltage signal at an output terminal based on an RF signal applied to the switching device, and a decoder circuit coupled with the output terminal of the negative bias circuit and the gate terminal. The decoder circuit may be configured to couple the output terminal of the negative bias circuit with the gate terminal when the FET is in an off state.
In some embodiments of a wireless communication device, the negative bias circuit may include an input terminal configured to receive the RF signal applied to the switching device and a rectifier circuit coupled between the input terminal and the output terminal. The rectifier circuit may include a first half-wave rectifier branch and a second half-wave rectifier branch, the first and second half-wave rectifier branches having opposite polarities. The first half-wave rectifier branch may include a plurality of diode-connected FETs. In some embodiments of a wireless communication device, the FET may include a body terminal, and the output terminal of the negative bias circuit may be coupled to the body terminal when the FET is in an off state.
Various embodiments provide a method that may include: generating, with a negative bias circuit, a negative voltage signal at an output terminal of the negative bias circuit based on an RF signal applied to a switching device including a FET; receiving, at a decoder circuit, a control signal indicating that the FET is to be in an off state; and coupling, by the decoder circuit, the output terminal of the negative bias circuit with a gate terminal of the FET to provide the negative voltage signal to the gate terminal. The method may further include providing the negative voltage signal to a body terminal of the FET when the FET is to be in the off state. The method may further include receiving, at the decoder circuit, a control signal indicating that the FET is to be in an on state; and in response to receiving the control signal indicating that the FET is to be in the on state, decoupling, with the decoder circuit, the output terminal of the negative bias circuit from the gate terminal of the FET. The method may further include, in response to receiving the control signal indicating that the FET is to be in the on state, coupling, by the decoder circuit, the output terminal of the negative bias circuit with a gate terminal of a shunt FET to provide the negative voltage signal to the gate terminal of the shunt FET. In such embodiments, a drain terminal of the shunt FET may be coupled with a source terminal of the FET, and a source terminal of the shunt FET may be coupled with ground.
Although the present disclosure has been described in terms of the above-illustrated embodiments, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations calculated to achieve the same purposes may be substituted for the specific embodiments shown and described without departing from the scope of the present disclosure. Those with skill in the art will readily appreciate that the teachings of the present disclosure may be implemented in a wide variety of embodiments. This description is intended to be regarded as illustrative instead of restrictive.
Connick, Richard, Ravindran, Arjun
Patent | Priority | Assignee | Title |
10374641, | Jan 12 2017 | Samsung Electronics Co., Ltd. | Electronic device having multiband antenna and method for switching in electronic device having multiband antenna |
10686430, | Jul 12 2019 | NXP USA, INC.; NXP USA ,INC | Receiver with configurable voltage mode |
10763856, | Sep 13 2019 | NXP USA, INC.; NXP USA, INC | High voltage tolerant receiver |
9118398, | Mar 21 2014 | BEKEN CORPORATION | Switch configured to control a transceiver and a radio frequency system comprising the switch |
9231780, | Jan 28 2014 | Samsung Electro-Mechanics Co., Ltd. | Radio frequency switching circuit and electronic device |
9379698, | Feb 04 2014 | Qorvo US, Inc | Field effect transistor switching circuit |
Patent | Priority | Assignee | Title |
3551788, | |||
3699359, | |||
4053916, | Sep 04 1975 | Westinghouse Electric Corporation | Silicon on sapphire MOS transistor |
4316101, | Nov 30 1978 | Telefunken Electronic GmbH | Circuit for switching and transmitting alternating voltages |
4491750, | Sep 28 1982 | Eaton Corporation | Bidirectionally source stacked FETs with drain-referenced common gating |
5012123, | Mar 29 1989 | Hittite Microwave, Inc.; HITTITE MICROWAVE, INC , 21 CABOT ROAD, WOBURN, MASSACHUSETTS 01801, A MASSACHUSETTS CORP | High-power rf switching system |
5146178, | Nov 16 1990 | NTT Mobile Communications Network Inc | Impedance-matched, class F high-frequency amplifier |
5313083, | Dec 16 1988 | Raytheon Company | R.F. switching circuits |
5416043, | Jul 12 1993 | Peregrine Semiconductor Corporation | Minimum charge FET fabricated on an ultrathin silicon on sapphire wafer |
5492857, | Mar 25 1994 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
5548239, | May 21 1993 | Sony Corporation | Radio receiver-transmitter apparatus and signal changeover switch |
5553295, | Mar 23 1994 | Intel Corporation | Method and apparatus for regulating the output voltage of negative charge pumps |
5572040, | Jul 12 1993 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
5596205, | Mar 25 1994 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
5600169, | Jul 12 1993 | Peregrine Semiconductor Corporation | Minimum charge FET fabricated on an ultrathin silicon on sapphire wafer |
5663570, | Jul 12 1993 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
5777530, | Jan 31 1996 | Matsushita Electric Industrial Co., Ltd. | Switch attenuator |
5801577, | Dec 26 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High voltage generator |
5818099, | Oct 03 1996 | International Business Machines Corporation | MOS high frequency switch circuit using a variable well bias |
5861336, | Jul 12 1993 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
5863823, | Jul 12 1993 | PEREGRINE SEMICONDUCTOR CORP | Self-aligned edge control in silicon on insulator |
5883396, | Jul 12 1993 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
5895957, | Jul 12 1993 | Peregrine Semiconductor Corporation | Minimum charge FET fabricated on an ultrathin silicon on sapphire wafer |
5920233, | Nov 18 1996 | Peregrine Semiconductor Corporation | Phase locked loop including a sampling circuit for reducing spurious side bands |
5930638, | Jul 12 1993 | PEREGRINE SEMICONDUCTOR CORP | Method of making a low parasitic resistor on ultrathin silicon on insulator |
5945867, | Feb 24 1997 | Sanyo Electric Co., Ltd. | Switch circuit device |
5973363, | Jul 12 1993 | PEREGRINE SEMICONDUCTOR CORP | CMOS circuitry with shortened P-channel length on ultrathin silicon on insulator |
5973382, | Jul 12 1993 | Peregrine Semiconductor Corporation | Capacitor on ultrathin semiconductor on insulator |
6057555, | Jul 12 1993 | Peregrine Semiconductor Corporation | High-frequency wireless communication system on a single ultrathin silicon on sapphire chip |
6066993, | Jan 16 1998 | Mitsubishi Denki Kabushiki Kaisha | Duplexer circuit apparatus provided with amplifier and impedance matching inductor |
6160292, | Apr 23 1997 | GLOBALFOUNDRIES Inc | Circuit and methods to improve the operation of SOI devices |
6173235, | Apr 11 1996 | Mitsubishi Denki Kabushiki Kaisha | Method of estimating lifetime of floating SOI-MOSFET |
6249027, | Jun 08 1998 | Oracle America, Inc | Partially depleted SOI device having a dedicated single body bias means |
6308047, | Feb 03 1999 | Mitsubishi Denki Kabushiki Kaisha | Radio-frequency integrated circuit for a radio-frequency wireless transmitter-receiver with reduced influence by radio-frequency power leakage |
6452232, | Dec 03 1998 | Sharp Kabushiki Kaisha | Semiconductor device having SOI structure and manufacturing method thereof |
6504212, | Feb 03 2000 | International Business Machines Corporation | Method and apparatus for enhanced SOI passgate operations |
6563366, | Oct 30 1997 | Sony Corporation | High-frequency Circuit |
6631505, | Nov 29 2000 | Renesas Electronics Corporation | Simulation circuit for MOS transistor, simulation testing method, netlist of simulation circuit and storage medium storing same |
6632724, | May 12 1997 | Silicon Genesis Corporation | Controlled cleaving process |
6642578, | Jul 22 2002 | Skyworks Solutions, Inc | Linearity radio frequency switch with low control voltage |
6693326, | Apr 04 2000 | Sharp Kabushiki Kaisha | Semiconductor device of SOI structure |
6790747, | May 12 1997 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
6804502, | Oct 10 2001 | pSemi Corporation | Switch circuit and method of switching radio frequency signals |
6898778, | Jul 13 2000 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit and method of manufacturing the same |
6908832, | Aug 29 1997 | Silicon Genesis Corporation | In situ plasma wafer bonding method |
6924673, | May 31 2002 | SOCIONEXT INC | Input/output buffer for protecting a circuit from signals received from external devices and method of use |
6958519, | Feb 27 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming field effect transistors and field effect transistor circuitry |
6969668, | Apr 21 1999 | Silicon Genesis Corporation | Treatment method of film quality for the manufacture of substrates |
6978437, | Oct 10 2000 | CELERICS TECHNOLOGIES CORPORATION | Photomask for eliminating antenna effects in an integrated circuit and integrated circuit manufacture with same |
6989706, | Mar 27 2003 | National Institute of Advanced Industrial Science and Technology | Method for application of gating signal in insulated double gate FET |
7056808, | Aug 10 1999 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
7057472, | Aug 10 2001 | MURATA MANUFACTURING CO , LTD | Bypass filter, multi-band antenna switch circuit, and layered module composite part and communication device using them |
7058922, | Jul 13 2000 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit and method of manufacturing the same |
7123898, | Oct 10 2001 | pSemi Corporation | Switch circuit and method of switching radio frequency signals |
7138846, | Dec 20 2001 | Matsushita Electric Industrial Co., Ltd. | Field effect transistor switch circuit |
7158067, | Jan 31 2005 | USA AS REPRESENTED BY THE SECRETAR OF THE NAVY, THE | Analog to digital converter using sawtooth voltage signals with differential comparator |
7404157, | Dec 25 2002 | NEC Corporation | Evaluation device and circuit design method used for the same |
7460852, | Oct 10 2001 | pSemi Corporation | Switch circuit and method of switching radio frequency signals |
7616482, | Feb 24 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Multi-state memory cell with asymmetric charge trapping |
7796969, | Oct 10 2001 | pSemi Corporation | Symmetrically and asymmetrically stacked transistor group RF switch |
7860499, | Oct 10 2001 | pSemi Corporation | Switch circuit and method of switching radio frequency signals |
7863691, | Mar 10 2008 | International Business Machines Corporation | Merged field effect transistor cells for switching |
7890891, | Jul 11 2005 | pSemi Corporation | Method and apparatus improving gate oxide reliability by controlling accumulated charge |
7910993, | Jul 11 2005 | pSemi Corporation | Method and apparatus for use in improving linearity of MOSFET's using an accumulated charge sink |
8129787, | Jul 11 2005 | pSemi Corporation | Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink |
8159283, | Aug 09 2005 | Hitachi Metals, Ltd | High frequency switch circuit comprising a transistor on the high frequency path |
20010015461, | |||
20010045602, | |||
20020195623, | |||
20030002452, | |||
20030205760, | |||
20040080364, | |||
20050167751, | |||
20070023833, | |||
20080073719, | |||
20080076371, | |||
20080303080, | |||
20090029511, | |||
20110090022, | |||
20110227637, | |||
20120169398, | |||
20120267719, | |||
20130029614, | |||
20140002171, | |||
20140009214, | |||
20140227983, | |||
CN1256521, | |||
EP385641, | |||
EP1006584, | |||
EP1451890, | |||
JP10242829, | |||
JP11136111, | |||
JP1254014, | |||
JP2003060451, | |||
JP2003189248, | |||
JP2004515937, | |||
JP2161769, | |||
JP3408762, | |||
JP4183008, | |||
JP5575348, | |||
JP6334506, | |||
JP8148949, | |||
JP8307305, | |||
JP9284114, | |||
RE38319, | Jan 24 1998 | Winbond Electronics Corporation | Dual-node capacitor coupled MOSFET for improving ESD performance |
WO227920, | |||
WO2007008934, | |||
WO2007035610, | |||
WO9523460, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 11 2013 | CONNICK, RICHARD | TriQuint Semiconductor, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0402 | |
Feb 20 2013 | TriQuint Semiconductor, Inc. | (assignment on the face of the patent) | / | |||
Apr 29 2013 | RAVINDRAN, ARJUN | TriQuint Semiconductor, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030330 | /0402 | |
Mar 30 2016 | TriQuint Semiconductor, Inc | Qorvo US, Inc | MERGER SEE DOCUMENT FOR DETAILS | 039050 | /0193 |
Date | Maintenance Fee Events |
Oct 29 2018 | REM: Maintenance Fee Reminder Mailed. |
Mar 06 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 06 2019 | M1554: Surcharge for Late Payment, Large Entity. |
Aug 22 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 10 2018 | 4 years fee payment window open |
Sep 10 2018 | 6 months grace period start (w surcharge) |
Mar 10 2019 | patent expiry (for year 4) |
Mar 10 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 10 2022 | 8 years fee payment window open |
Sep 10 2022 | 6 months grace period start (w surcharge) |
Mar 10 2023 | patent expiry (for year 8) |
Mar 10 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 10 2026 | 12 years fee payment window open |
Sep 10 2026 | 6 months grace period start (w surcharge) |
Mar 10 2027 | patent expiry (for year 12) |
Mar 10 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |