A dual-node capacitor coupling technique is used to lower the trigger voltage and to improve the uniform turn-on of a multi-finger MOSFET transistor. Preferably, each MOSFET is an NMOS device. Specifically, each NMOS device includes a capacitor that is connected between the gate of the NMOS device and the pad terminal. A first resistor is connected between the gate and the p-well, while a second resistor is connected between the p-well and the grounded source. For a positive ESD pulse to VSS, the p-well is pulled up to approximately 0.7 V during the initial ESD event, such that the source junction is forward biased and that the trigger voltage of the NMOS device is lowered. At the same time the gate voltage is coupled within the range of approximately 1 to 2 V to promote the uniform turn on of the gate fingers of the NMOS devices during the initial ESD event.
|
|
The present invention relates to a primary ESD protection circuit, and more particularly, the present invention relates to a primary ESD protection circuit having a dual-node capacitor coupled multi-finger NMOSFET structure.
Electrostatic discharges (ESDs) from human handling of a metal-oxide semiconductor (MOS) IC chip, or from other causes, permanently damage the IC chip. Often the thin-oxide layer that isolates the gate electrode from the substrate of a MOS field effect transistor is irreparably ruptured by a voltage spike applied across it. A voltage spike or ESD is often applied to the gate, because the gate electrode is connected to an external terminal or pin of the IC chip. The external terminals are formed on an input or output pad. To prevent such damage from excessive electrostatic discharges, a protective device is often connected between the pad and the internal circuits.
As CMOS technology is scaled down into submicron regime, the processes and the structures, such as a thinner gate oxide, shorter channel length, shallower source/drain junction, LDD (Lightly-Doped Drain) structure, and silicided diffusion, greatly degrade the ESD robustness of submicron CMOS ICs. Submicron CMOS devices, such as short channel thin-oxide MOS devices, are extremely susceptible to ESD damage. Therefore, ESD protection has become one of the most important elements with respect to the reliability of submicron CMOS ICs.
An NMOSFET is a very effective ESD protection device. Specifically, NMOS devices, either with the gate grounded (GGNMOS) or with the gate coupled to the positive ESD transient voltage (GCNMOS), have been commonly used as primary ESD protection elements for integrated circuits.
GGNMOS or GCNMOS can be used as the primary ESD protection element for ESD protection of an input pin. The input pad is connected to the drain of the NMOS, whose gate is either grounded or coupled to the drain and VSS by a capacitor and a resistor. The drain of the NMOS transistor is then connected to a series resistor of the order of 200 ohms, and then a secondary ESD protection element (say, a smaller GGNMOS) before connected to the first input gate.
In one application, an NMOS is used as the pull down transistor of a CMOS buffer to drive an output voltage for an external device. In this type of application, the gate of the NMOS is connected to an output driving signal.
In another common NMOS application, the gate is electrically connected to ground, and the NMOS is used as an ESD protection device for an input pin or a power bus during an ESD event.
The ESD protective action of an NMOS is based on the device's snap-back mechanism, which enables the NMOS to conduct a high level of ESD current between its drain and source. This occurs when a strong electric field across the depletion region in the drain substrate junction becomes high enough to begin avalanche breakdown, which in turn causes impact ionization, resulting in the generation of both minority and majority carriers. The minority carriers flow toward the drain contact, and the majority carrier flow toward the substrate/p-well contact, causing a local potential build up across the current path in the p-well substrate.
When the local substrate potential is 0.6 V high than an adjacent n+ source potential, the source junction becomes forward biased. The forward biased source junction then injects minority carriers (electrons) into the p-well, and these carriers eventually reach the drain junction to further enhance the impact ionization effect (see "ESD in Silicon Integrated Circuits", by A. Amerasekera and C. Duvvury Chap. 3, Sec. 1., John Wiley & Sons, 1995). Eventually, the NMOS reaches a low impedance (snap-back) state, which enables it to conduct a large amount of ESD current.
To enhance the ESD protection capabilities of a MOSFET device, it is desirable to have a rapid turn on with a high degree of uniformity throughout the device. A known technique for accomplishing this objective utilizes a multi-gate-finger configuration to increase the gate effectiveness. However, in a typical multi-gate-finger NMOS structure, as shown in
When a MOSFET gate finger is triggered during an ESD event, the entire finger turns on. This is due to the cascading effect of the previously described impact ionization and snap-back process along the entire gate finger. Moreover, experimental data indicates that a long-gate-finger structure (e.g. 100 um×2), as shown in
A commonly used multi-gate-finger structure is shown in
One prior art technique for improving the uniform turn on of such a multi-gage-finger NMOS structure uses a gate coupled technique, as shown in
The present invention overcomes the deficiencies of the prior art. Specifically, a dual-node capacitor coupling technique is used to lower the trigger voltage and to improve the uniform turn-on of a multi-finger MOSFET transistor.
Preferably, each MOSFET is an NMOS device, although it will be understood by those skilled in the art that PMOS devices may be used as desired. Each NMOS device includes a capacitor that is connected between the gate of the NMOS device and the pad terminal. A first resistor is connected between the gate and the p-well, while a second resistor is connected between the p-well and the grounded source. For a positive ESD pulse to VSS, the p-well is pulled up to approximately 0.7 V during the initial ESD event, such that the source junction is forward biased and that the trigger voltage of the NMOS device is lowered. At the same time, the gate voltage is coupled within the range of approximately 1 to 2 V to promote the uniform turn on of the gate fingers of the NMOS devices during the initial ESD event.
In another embodiment the input signal line from the pad terminal is replaced by a VDD line from a VDD source to protect against a bus-to-bus ESD event, from VDD to VSS.
The following detailed description, giving by way of example and not intended to limit the present invention solely thereto, will best be understood in conjunction with the accompanying drawings in which like reference numbers depict like elements:
FIG. 8 shows a portion of a dual-node capacitor in accordance with a second embodiment of the present invention.
The present invention improves over conventional gate-coupling and well-coupling techniques in that the embodiments provide a lower trigger voltage for each MOSFET in the multi-finger MOSFET device, while improving the turn-on consistency for each MOSFET. Note that, although the present invention is particularly well suited to a multi-finger MOSFET ESD protection device, the present invention may also be employed in a single MOSFET device while providing stellar results.
Device 60 includes a primary protection circuit that includes MOSFET 40, capacitor 12, and first and second resistors 14, 16, respectively. Illustratively, MOSFET 40 is an NMOS transistor but as previously discussed, may be a PMOS transistor as well. In addition, although only one NMOS transistor is shown, it is to be understood that multiple transistors may be connected in parallel, with their poly gates connected together to a capacitor and first and second resistors, to form a dual-node capacitor coupled multi-finger MOSFET device. Accordingly, the protection device of
Referring back to
Note that if MOSFET device 40 was a PMOSFET (so that its bulk is formed of an n-well region), its drain would be connected between pad 10 and buffer 20, and its source would be connected to power source VDD.
The basic operation of
As discussed, a 1 to 2 V gate potential assists in the uniform turn-on of NMOS fingers during an ESD event. An approximate 0.7 V p-well potential, during the initial ESD event, causes the source junction to become forward-biased such that minority carriers are injected which, when flowing towards the drain, help to reduce the trigger voltage of the snap-back mechanism so as to improve the ESD robustness of the NMOS transistor.
The operation of
where CC is the coupling capacitance between the drain and the gate, CGD is the gate-to-drain overlap capacitance, CGS is the gate-to-source overlap capacitance and CGB is the gate-oxide capacitance. The initial R-C relaxation time constant when the source junction is pinned at forward biasing may be expressed by the following equation:
which is preferably designed to be within the range of approximately 10 to 30 ns. As an example, the coupling capacitor used in the order of 0.5 to 3 PF, and R1 (resistor 14) and R2 (resistor 16) are in the order to 4 to 20 Kohms.
FIG. 8 illustrates and alternative embodiment of the present invention. Specifically, the inventive primary ESD protection circuit 80 is employed to protect against a bus-to-bus ESD event, from VDD to VSS. Accordingly, the input signal line from pad terminal 10 of
Furthermore, the pad terminal 10 in
Finally, the above-discussion is intended to be merely illustrative of the invention. Numerous alternative embodiments may be devised by those having ordinary skill in the art without departing from the spirit and scope of the following claims.
Wong, Shyh-Chyi, Lin, Shin-Tron
Patent | Priority | Assignee | Title |
11695375, | Dec 03 2020 | NXP USA, INC. | Power amplifier with a power transistor and an electrostatic discharge protection circuit on separate substrates |
6734711, | Apr 01 2003 | Texas Instruments Incorporated | Slow input transition stabilizer circuit |
7518192, | Nov 10 2004 | Taiwan Semiconductor Manufacturing Company, Ltd. | Asymmetrical layout structure for ESD protection |
8681459, | Mar 31 2009 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Integrated protection circuit |
8729952, | Aug 16 2012 | Qorvo US, Inc | Switching device with non-negative biasing |
8829967, | Jun 27 2012 | Qorvo US, Inc | Body-contacted partially depleted silicon on insulator transistor |
8847672, | Jan 15 2013 | Qorvo US, Inc | Switching device with resistive divider |
8923782, | Feb 20 2013 | Qorvo US, Inc | Switching device with diode-biased field-effect transistor (FET) |
8977217, | Feb 20 2013 | Qorvo US, Inc | Switching device with negative bias circuit |
9203396, | Feb 22 2013 | Qorvo US, Inc | Radio frequency switch device with source-follower |
9214932, | Feb 11 2013 | Qorvo US, Inc | Body-biased switching device |
9379698, | Feb 04 2014 | Qorvo US, Inc | Field effect transistor switching circuit |
9865744, | Jan 22 2010 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
Patent | Priority | Assignee | Title |
4423431, | Dec 24 1979 | FUJITSU LIMITED, A JAPAN CORP | Semiconductor integrated circuit device providing a protection circuit |
5528188, | Mar 13 1995 | International Business Machines Corporation | Electrostatic discharge suppression circuit employing low-voltage triggering silicon-controlled rectifier |
5631793, | Sep 05 1995 | Winbond Electronics Corporation | Capacitor-couple electrostatic discharge protection circuit |
5686751, | Jun 28 1996 | Winbond Electronics Corp. | Electrostatic discharge protection circuit triggered by capacitive-coupling |
5721656, | Jun 10 1996 | Winbond Electronics Corporation | Electrostatc discharge protection network |
5818086, | Jun 11 1996 | Winbond Electronics Corporation | Reinforced ESD protection for NC-pin adjacent input pin |
5852541, | Oct 22 1997 | Winbond Electronics Corp. | Early trigger of ESD protection device by an oscillation circuit |
6249410, | Aug 23 1999 | Taiwan Semiconductor Manufacturing Company | ESD protection circuit without overstress gate-driven effect |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 25 2001 | Winbond Electronics Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 12 2006 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 02 2011 | REM: Maintenance Fee Reminder Mailed. |
Sep 28 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Dec 08 2011 | RMPN: Payer Number De-assigned. |
Date | Maintenance Schedule |
Nov 18 2006 | 4 years fee payment window open |
May 18 2007 | 6 months grace period start (w surcharge) |
Nov 18 2007 | patent expiry (for year 4) |
Nov 18 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 18 2010 | 8 years fee payment window open |
May 18 2011 | 6 months grace period start (w surcharge) |
Nov 18 2011 | patent expiry (for year 8) |
Nov 18 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 18 2014 | 12 years fee payment window open |
May 18 2015 | 6 months grace period start (w surcharge) |
Nov 18 2015 | patent expiry (for year 12) |
Nov 18 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |