An instrument interface of a robotic manipulator and a surgical system including the instrument interface are provided. In one embodiment, the instrument interface includes a spring-loaded input for providing axial load and torque to a sterile adaptor capable of operably coupling an instrument. In another embodiment, a robotic surgical manipulator system includes a manipulator assembly, including a base link operably coupled to a distal end of a manipulator arm, and a carriage link movably coupled to the base link along a lengthwise axis, the carriage link including an integrated instrument interface. The system further includes an instrument operably coupled to the carriage link via the instrument interface, and a processor operably coupled to the manipulator assembly for sensing presence of the instrument.
|
8. A telerobotic surgical manipulator system, comprising:
a manipulator assembly, including:
a base link operably coupled to a distal end of a manipulator arm; and
a carriage link movably coupled to the base link along a lengthwise axis, the carriage link including an instrument interface including:
an instrument input including
an input bar adapted to transfer an axial load and torque to a sterile adaptor configured to operably couple an instrument;
a spring member adapted to provide the axial load to the input bar;
an output pulley adapted to provide the torque to the input bar;
a shaft that extends through the spring member, the shaft being coupled to the input bar and the output pulley; and
a slide unit coupled between the shaft and the output pulley and adapted to transfer the torque from the output pulley to the shaft.
1. An instrument interface of a telesurgical manipulator, comprising:
an instrument input including
an elongated input bar having a length dimension greater than a width dimension, the elongated input bar adapted to transfer an axial load and torque to a sterile adaptor configured to operably couple an instrument;
a spring member defining a load axis extending therethrough and adapted to provide the axial load to the elongated input bar along the load axis, wherein the load axis of the spring member is oriented orthogonally to the length dimension of the elongated input bar;
an output pulley adapted to provide the torque to the input bar;
a shaft, extending through the spring member, the shaft being rigidly coupled to the elongated input bar and movably coupled to the output pulley; and
a slide unit coupled between the shaft and the output pulley, the slide unit adapted to transfer the torque from the output pulley to the shaft and adapted to translate axially along the shaft.
16. An instrument interface of a telesurgical manipulator, comprising:
an instrument input including
an elongated input bar having a length dimension greater than a width dimension, the elongated input bar adapted to transfer an axial load and torque to a sterile adaptor configured to operably couple an instrument;
a spring member defining a load axis extending therethrough and adapted to provide the axial load to the elongated input bar along the load axis, the spring member positioned on a first side of the elongated input bar;
a first projection and a second projection protruding from a surface of a second side of the elongated input bar, the first side and the second side being opposite sides of elongated input bar, and wherein the first projection and the second projection are offset from the load axis by different lengths to facilitate rotational alignment with a disc disposed in between the instrument input and an instrument; and
an output pulley adapted to provide the torque to the input bar.
2. The instrument interface of
3. The instrument interface of
4. The instrument interface of
5. The instrument interface of
6. The instrument interface of
7. The instrument interface of
9. The system of
10. The system of
12. The system of
13. The system of
14. The system of
15. The system of
17. The instrument interface of
18. The instrument interface of
|
This application is a continuation of U.S. patent application Ser. No. 13/112,452, filed May 20, 2011, entitled “Instrument Interface of a Robotic Surgical System,” which is a continuation of U.S. patent application Ser. No. 11/613,695, now U.S. Pat. No. 7,963,913, filed Dec. 20, 2006, entitled “Instrument Interface of a Robotic Surgical System”, which application claims the benefit of U.S. Provisional Application No. 60/752,755, filed Dec. 20, 2005, the full disclosures of which (including all references incorporated by reference therein) are incorporated by reference herein for all purposes.
This application is a continuation of U.S. patent application Ser. No. 13/112,452, filed May 20, 2011, entitled “Instrument Interface of a Robotic Surgical System,” which is a continuation of U.S. patent application Ser. No. 11/613,695, now U.S. Pat. No. 7,963,913, filed Dec. 20, 2006, entitled “Instrument Interface of a Robotic Surgical System”, which is a continuation-in-part of pending U.S. patent application Ser. No. 11/314,040, filed Dec. 20, 2005, now U.S. Pat. No. 7,666,191, which is a continuation-in-part of pending U.S. patent application Ser. No. 10/922,346, filed Aug. 19, 2004, now U.S. Pat. No. 7,357,774, which is a continuation of U.S. patent application Ser. No. 10/004,399, filed Oct. 30, 2001, now abandoned, which is a continuation of U.S. patent application Ser. No. 09/406,360, filed Sep. 28, 1999, now U.S. Pat. No. 6,346,072, which is a continuation of U.S. patent application Ser. No. 08/975,617, filed Nov. 21, 1997, now U.S. Pat. No. 6,132,368, which claimed priority to U.S. Provisional Application No. 60/033,321, filed Dec. 12, 1996, the full disclosures of which are hereby incorporated by reference for all purposes.
This application is related to U.S. application Ser. No. 11/613,578, filed Dec. 20, 2006, entitled “Cable Tensioning In A Robotic Surgical System”, U.S. application Ser. No. 11/613,800, now U.S. Pat. No. 8,182,470, filed Dec. 20, 2006, entitled “Telescoping Insertion Axis Of A Robotic Surgical System”, U.S. application Ser. No. 11/556,484, now U.S. Pat. No. 8,273,076, filed Nov. 3, 2006, entitled “Indicator For Tool State and Communication In a Multi-Arm Robotic Telesurgery”, U.S. application Ser. No. 11/613,915 now U.S. Pat. No. 7,955,322, filed Dec. 20, 2006, entitled “Wireless Communication In A Robotic Surgical System”, and U.S. application Ser. No. 11/395,418, filed Mar. 31, 2006, entitled “Sterile Surgical Adaptor”, now U.S. Pat. No. 7,699,855, the full disclosures of which (including all references incorporated by reference therein) are incorporated by reference herein for all purposes.
The present invention is generally related to medical and/or robotic devices, systems, and methods.
Minimally invasive medical techniques are intended to reduce the amount of extraneous tissue that is damaged during diagnostic or surgical procedures, thereby reducing patient recovery time, discomfort, and deleterious side effects. One effect of minimally invasive surgery, for example, may be reduced post-operative hospital recovery times. Because the average hospital stay for a standard surgery is typically significantly longer than the average stay for an analogous minimally invasive surgery, increased use of minimally invasive techniques could save millions of dollars in hospital costs each year. While many of the surgeries performed each year in the United States could potentially be performed in a minimally invasive manner, only a portion of the current surgeries use these advantageous techniques due to limitations in minimally invasive surgical instruments and the additional surgical training involved in mastering them.
Minimally invasive robotic surgical or telesurgical systems have been developed to increase a surgeon's dexterity and to avoid some of the limitations on traditional minimally invasive techniques. In telesurgery, the surgeon uses some form of remote control, e.g., a servomechanism or the like, to manipulate surgical instrument movements, rather than directly holding and moving the instruments by hand. In telesurgery systems, the surgeon can be provided with an image of the surgical site at the surgical workstation. While viewing a two or three dimensional image of the surgical site on a display, the surgeon performs the surgical procedures on the patient by manipulating master control devices, which in turn control motion of the servomechanically operated instruments.
In robotically-assisted surgery, the surgeon typically operates a master controller to control the motion of surgical instruments at the surgical site from a location that may be remote from the patient (e.g., across the operating room, in a different room, or a completely different building from the patient). The master controller usually includes one or more hand input devices, such as hand-held wrist gimbals, joysticks, exoskeletal gloves or the like, which are operatively coupled to the surgical instruments that are releasably coupled to a patient side surgical manipulator (“the slave”). The master controller controls the instruments' position, orientation, and articulation at the surgical site. The slave is an electro mechanical assembly which includes a plurality of arms, joints, linkages, servo motors, etc. that are connected together to support and control the surgical instruments. In a surgical procedure, the surgical instruments (including an endoscope) may be introduced directly into an open surgical site or more typically through trocar sleeves into a body cavity. Depending on a surgical procedure, there are available a variety of surgical instruments, such as tissue graspers, needle drivers, electrosurgical cautery probes, etc., to perform various functions for the surgeon, e.g., holding or driving a needle, suturing, grasping a blood vessel, or dissecting, cauterizing or coagulating tissue.
A surgical manipulator assembly may be said to be divided into three main components that include a non-sterile drive and control component, a sterilizable end effector or surgical tool/instrument, and an intermediate connector component. The intermediate connector component includes mechanical elements for coupling the surgical tool with the drive and control component, and for transferring motion from the drive component to the surgical tool.
A challenge with telerobotic surgery systems is that a surgeon will typically employ a large number of different surgical instruments/tools during a procedure. Since the number of manipulator arms is limited due to space constraints and cost, many of these surgical instruments will be attached and detached from the manipulator arm a number of times during an operation.
While telesurgical systems, devices, and methods have proven highly effective and advantageous, still further improvements would be desirable. In general, it would be desirable to provide an improved instrument interface on the manipulator arm to minimize instrument exchange time and difficulty during the surgical procedure.
In accordance with an embodiment of the present invention, an instrument interface of a robotic manipulator is provided, the instrument interface including a spring-loaded input for providing axial load and torque to a sterile adaptor capable of operably coupling an instrument. The instrument interface may further include a spring plunger and a spring-loaded release lever.
In accordance with another embodiment of the present invention, a robotic surgical manipulator system is provided, the system comprising a manipulator assembly, including a base link operably coupled to a distal end of a manipulator arm, and a carriage link movably coupled to the base link along a lengthwise axis, the carriage link including an instrument interface as described above. The system further includes an instrument operably coupled to the carriage link via the instrument interface, and a processor operably coupled to the manipulator assembly for sensing the instrument and/or sterile adaptor.
Advantageously, the present invention provides for simple and efficient installment and/or engagement of an instrument sterile adaptor (ISA) while enabling a cost-effective and disposable design for the ISA and a sterile barrier. Other advantages of the invention are provided.
The scope of the invention is defined by the claims, which are incorporated into this section by reference. A more complete understanding of embodiments of the present invention will be afforded to those skilled in the art, as well as a realization of additional advantages thereof, by a consideration of the following detailed description of one or more embodiments. Reference will be made to the appended sheets of drawings that will first be described briefly.
Embodiments of the present invention and their advantages are best understood by referring to the detailed description that follows. It should be appreciated that like reference numerals are used to identify like elements illustrated in one or more of the figures. It should also be appreciated that the figures may not be necessarily drawn to scale.
The present invention generally provides an improved robotic insertion axis, system, and method for inserting an instrument, and in particular includes a telescopic insertion axis for providing greater stiffness and strength, a larger range of motion, and improved visibility of the surgical field.
The present invention is particularly useful as part of a telerobotic surgical system that allows the surgeon to manipulate the surgical instruments through a servomechanism at a location remote from the patient. One example of a robotic surgical system is the da Vinci® S™ surgical system available from Intuitive Surgical, Inc. of Sunnyvale, Calif. A User's Guide for the da Vinci® S™ surgical system is available from Intuitive Surgical, Inc. and is incorporated by reference herein for all purposes.
Processor 4 will typically include data processing hardware and software, with the software typically comprising machine-readable code. The machine-readable code will embody software programming instructions to implement some or all of the methods described herein. While processor 4 is shown as a single block in the simplified schematic of
In one example, manipulator system 6 includes at least four robotic manipulator assemblies. Three linkages 7 (mounted at the sides of the cart in this example) support and position manipulators 8 with linkages 7 in general supporting a base of the manipulators 8 at a fixed location during at least a portion of the surgical procedure. Manipulators 8 move surgical tools 5 for robotic manipulation of tissues. One additional linkage 9 (mounted at the center of the cart in this example) supports and positions manipulator 10 which controls the motion of an endoscope/camera probe 11 to capture an image (preferably stereoscopic) of the internal surgical site. The fixable portion of positioning linkages 7, 9 of the patient-side system is sometimes referred to herein as a “set-up arm”.
In one example, the image of the internal surgical site is shown to operator O by a stereoscopic display 12 in surgeon's console 3. The internal surgical site is simultaneously shown to assistant A by an assistance display 14.
Assistant A assists in pre-positioning manipulator assemblies 8 and 10 relative to patient P using set-up linkage arms 7, 9; in swapping tools 5 from one or more of the surgical manipulators for alternative surgical tools or instruments 5′; in operating related non-robotic medical instruments and equipment; in manually moving a manipulator assembly so that the associated tool accesses the internal surgical site through a different aperture, and the like.
In general terms, the linkages 7, 9 are used primarily during set-up of patient-side system 6, and typically remain in a fixed configuration during at least a portion of a surgical procedure. Manipulators 8, 10 each comprise a driven linkage which is actively articulated under the direction of surgeon's console 3. Although one or more of the joints of the set-up arm may optionally be driven and robotically controlled, at least some of the set-up arm joints may be configured for manual positioning by assistant A.
Some of the manipulators include a telescopic insertion axis 100 in accordance with an embodiment of the present invention, although in other embodiments, all of the manipulators may include a telescopic insertion axis 100. Telescopic insertion axis 100 allows for movement of mounted instrument 5, via three operably coupled links, with improved stiffness and strength compared to previous designs, a larger range of motion, and improved dynamic performance and visibility proximate the surgical field for system users (in addition to other advantages), as is described in greater detail below.
For convenience, a manipulator such as manipulator 8 that is supporting a surgical tool used to manipulate tissues is sometimes referred to as a patient-side manipulator (PSM), while a manipulator 10 which controls an image capture or data acquisition device such as endoscope 11 may be referred to as an endoscope-camera manipulator (ECM). The manipulators may optionally actuate, maneuver and control a wide variety of instruments or tools, image capture devices, and the like which are useful for surgery.
Instruments 5 and endoscope 11 may be manually positioned when setting up for a surgical procedure, when reconfiguring the manipulator system 6 for a different phase of a surgical procedure, when removing and replacing an instrument with an alternate instrument 5′, and the like. During such manual reconfiguring of the manipulator assembly by assistant A, the manipulator assembly may be placed in a different mode than is used during master/slave telesurgery, with the manually repositionable mode sometimes being referred to as a clutch mode. The manipulator assembly may change between the tissue manipulation mode and the clutch mode in response to an input such as pushing a button or switch on manipulator 8 (e.g., a clutch button/switch 103 in
As can be seen in
The surgical tool may include a variety of articulated end effectors, such as jaws, scissors, graspers, needle holders, micro-dissectors, staple appliers, tackers, suction irrigation tools, and clip appliers, that may be driven by wire links, eccentric cams, push-rods, or other mechanisms. In addition, the surgical tool may comprise a non-articulated instrument, such as cutting blades, probes, irrigators, catheters or suction orifices. Alternatively, the surgical tool may comprise an electrosurgical probe for ablating, resecting, cutting or coagulating tissue. Examples of applicable adaptors, tools or instruments, and accessories are described in U.S. Pat. Nos. 6,331,181, 6,491,701, and 6,770,081, the full, disclosures of which (including disclosures incorporated by reference therein) are incorporated by reference herein for all purposes. Applicable surgical instruments are also commercially available from Intuitive Surgical, Inc. of Sunnyvale, Calif.
Referring now to
Referring now to
Base link 102 is operably coupled to a distal end of manipulator arm 50, and in one example has an accessory clamp 108 attached to a distal end of base link 102. An accessory 110, such as a cannula, may be mounted onto accessory clamp 108. An example of applicable accessory clamps and accessories are disclosed in pending U.S. application Ser. No. 11/240,087, filed Sep. 30, 2005, the full disclosure of which is incorporated by reference herein for all purposes. An example of applicable sterile adaptors and instrument housings are disclosed in U.S. application Ser. No. 11/314,040, filed Dec. 20, 2005, now U.S. Pat. No. 7,666,191, and in U.S. application Ser. No. 11/395,418, filed Mar. 31, 2006, now U.S. Pat. No. 7,699,855, the full disclosures of which are incorporated by reference herein for all purposes.
Carriage link 106 includes an instrument interface 101 for operably coupling to an instrument sterile adaptor (ISA) 109, which is capable of operably coupling to a housing of an instrument (e.g., housing 24 of
Idler link 104 is movably coupled between base link 102 and carriage link 106 to allow the links 102, 104, and 106 to move relative to one another along a lengthwise axis (e.g., axis C) in a telescoping fashion. In one embodiment, link 102 has a narrower form factor than link 104, and link 104 has a narrower form factor than link 106, thus providing for greater visibility near the surgical field.
Motion along axes C through G in manipulator 8, as shown in
The drive assembly may further include a plurality of drive motors coupled to the arm for rotation therewith. Yaw and pitch motors control the motion of the arm about the A axis and the B axis (
Referring now to
Referring now to
Hall-effect sensor 514 is used to provide a robust means and method to detect the presence of an instrument mounted on ISA 109. Hall-effect sensors are desirable because they are solid-state devices with no moving parts.
In another example, in addition to the Hall-effect sensors, a third input may be required for the system to recognize an instrument is mounted. The output of Hall-effect sensors 514 may be used in conjunction with an electrical circuit (e.g., a loopback circuit) that closes in the presence of the instrument thereby providing redundant presence confirmation. PCA 516 detects the closing of this circuit as well.
Spring 504a provides a spring force in the axial direction of shaft 504e (an axial load) (shown by the double sided arrow in
The spring-loaded inputs 504, spring plungers 506, and lever 511 provide spring elements on the manipulator, thereby allowing for a disposable design for the ISA and sterile barrier. Advantageously, the manipulator and ISA installment and engagement is easier to use, more reliable and requires less effort while enabling a cost-effective and disposable design for the ISA and a sterile barrier drape.
Referring now to
Referring now to
In this installed but pre-engaged position, discs 304 are pressed upward against top retractor plate 306 by spring loaded inputs 504, and retractor plate assembly 313 is pressed upward by spring loaded inputs 504 and spring plungers 506. In each disc location (aperture 307 of retractor plate 306), there is one tooth 319 on the retractor plate 306 which engages with teeth 314 of disc 304. The teeth configuration has multiple functions, one of which is to push discs 304 out of a “dead zone” which is an angular orientation where the holes 317 in the bottom of disc 304 are in a position where they may not mate with bosses 505 of spring loaded inputs 504 since they do not rotate through a full 360 degrees. Another function of the teeth configuration is to prevent disc 304 from rotating more than 90 degrees during the sterile adaptor engagement sequence.
During the engagement sequence, disc teeth 314 mesh with retractor plate teeth 319 as spring loaded inputs 504 are activated to impart movement of disc 304 through friction between bosses 505 and the bottom surface of disc 304 and through contact with tab 315. When the spring loaded inputs 504 reverse rotational direction, the presence of the four teeth 314 stops this rotational motion of disc 304, and bosses 505 are allowed to line up with holes 317 of disc 304 as the spring loaded inputs 504 rotate relative to disc 304. As holes 317 on the bottom of disc 304 and bosses 505 of spring loaded inputs 504 align, discs 304 drop onto spring loaded inputs 504. At this point, the teeth 319 of top retractor plate 306 clear the teeth 314 of disc 304 as disc 304 is dropped down, thereby allowing disc 304 to move freely relative to retractor plate 306. When discs 304 are engaged onto spring loaded inputs 504, ISA 109 is engaged with adaptor receiving portion 101.
In one embodiment, the engagement sequence happens in milliseconds after installation of ISA 109 onto adaptor receiving portion 101. As ISA 109 is swung down into position, electrical contacts 310 engage electrical contacts 510 (e.g., pogo pins) such that an initially open circuit on the manipulator 8 is closed, which activates the ISA engagement sequence. It is noted that the insert-molded contact 310 in housing 302 may have multiple electrical paths (vias) which engage with contacts on the adaptor receiving portion 101, and which are also used to establish communication with a surgical instrument 5 via instrument electrical contacts 255 (
When the instrument is fully installed, it is held in position at three points along its housing. Two points are at the rail features 301 along the sides of the instrument, and a third point is at the center hold down tab 309 along the front center of the instrument. Advantageously, by holding down the instrument at three locations, the instrument is not over-constrained and installation and removal is made easier.
Embodiments described above illustrate but do not limit the invention. It should also be understood that numerous modifications and variations are possible in accordance with the principles of the present invention. For example, the system is not limited to four robotic manipulator assemblies, but may include two or more in other examples. Accordingly, the scope of the invention is defined only by the following claims.
Cooper, Thomas G., Anderson, S. Christopher, Orban, III, Joseph P., Devengenzo, Roman L., Schena, Bruce Michael, Loh, Alan E.
Patent | Priority | Assignee | Title |
11202683, | Feb 22 2019 | AURIS HEALTH, INC | Surgical platform with motorized arms for adjustable arm supports |
11504203, | Feb 20 2015 | Stryker Corporation | Sterile barrier assembly, mounting system, and method for coupling surgical components |
11690683, | Jul 01 2021 | REMEDY ROBOTICS, INC | Vision-based position and orientation determination for endovascular tools |
11707332, | Jul 01 2021 | REMEDY ROBOTICS, INC | Image space control for endovascular tools |
11779406, | Jun 19 2020 | REMEDY ROBOTICS, INC. | Systems and methods for guidance of intraluminal devices within the vasculature |
11806096, | Dec 04 2018 | MAKO SURGICAL CORP | Mounting system with sterile barrier assembly for use in coupling surgical components |
11894642, | Jul 12 2018 | Illinois Tool Works Inc.; Illinois Tool Works Inc | Reconfigurable welding-type power sockets and power plugs |
12082895, | Dec 04 2018 | MAKO Surgical Corp. | Robotic surgical system with a mounting assembly for attaching an end effector to a robotic arm |
9724163, | Dec 20 2005 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
9795453, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Surgical robotic tools, data architecture, and use |
9949802, | Dec 12 1996 | Intuitive Surgical Operations, Inc. | Multi-component telepresence system and method |
Patent | Priority | Assignee | Title |
1535312, | |||
3335719, | |||
3494356, | |||
3528720, | |||
3622188, | |||
3645835, | |||
3651536, | |||
3678933, | |||
3698791, | |||
3707964, | |||
3724778, | |||
3881761, | |||
3930380, | Aug 19 1974 | General Motors Corporation | Ice dispenser container coupling |
3948552, | Jan 08 1975 | Bottle gripping apparatus | |
3951495, | Sep 23 1974 | Advanced Memory Systems, Inc. | Leadless package receptacle |
4038987, | Feb 08 1974 | Olympus Optical Co., Ltd. | Forceps device for endoscope |
4045118, | Aug 21 1972 | BANK OF BOSTON CONNECTICUT | Drape for operating microscope |
4099614, | Jul 22 1976 | Semperit Aktiengesellschaft | Package for a sterilized pair of gloves and method of forming the same |
4149278, | Sep 27 1977 | Compact artificial hand | |
4183613, | Sep 13 1978 | CHASE MANHATTAN BANK, AS AGENT, THE | Microscope drape and method of making same |
4240604, | Jun 02 1977 | Zeller-Plastik Koehn, Grabner & Co. | Clamping device and its use |
4245985, | Mar 08 1978 | Kaltenbach & Voigt GmbH & Co. | Dental handpiece |
4270367, | Mar 03 1978 | Spring loaded adjustable coupling | |
4281447, | Mar 01 1979 | McDonnell Douglas Corporation | Detachable tool interface system for a robot |
4332066, | Jan 07 1980 | Lockheed Martin Corporation | Compliance mechanism |
4367998, | Sep 13 1979 | United Kingdom Atomic Energy Authority | Manipulators |
4386933, | May 21 1981 | Sterile adapter for use in blood transfers | |
4392485, | Feb 17 1981 | RICHARD WOLF GMBH, KNITTLINGEN, GERMANY | Endoscope |
4456960, | Mar 27 1980 | Kabushiki Kaisha Komatsu Seisakusho | Method and device for detecting tool abnormality in machine tools |
4457026, | Sep 30 1983 | JOHNSON & JOHNSON MEDICAL, INC , A NJ CORP | Surgical head drape |
4486928, | Jul 09 1981 | Magnavox Electronic Systems Company | Apparatus for tool storage and selection |
4494712, | Sep 30 1982 | Ford Motor Company | Tape deck with non-contacting unidirectional rotation sensor configured to prevent capstan tape windup |
4500065, | Mar 01 1982 | ABB ROBOTICS, INC , A NY CORP | Releasable tool mount for manipulator |
4508280, | Nov 09 1983 | Ford Motor Company | Tape deck with take-up reel rotation sensor configured to prevent tape windup on the capstan or pinch roller |
4511305, | Jan 16 1982 | Meidensha Electric Mfg. Co., Ltd. | Manipulator |
4512709, | Jul 25 1983 | ABB ROBOTICS, INC , A NY CORP | Robot toolchanger system |
4561540, | Dec 14 1983 | CHASE MANHATTAN BANK, AS AGENT, THE | Microscope drape |
4573452, | Jul 12 1984 | Surgical holder for a laparoscope or the like | |
4602623, | Dec 30 1983 | Method of delivering a fetus | |
4647643, | Nov 08 1985 | DESERET MEDICAL, INC , A CORP OF DE | Soft non-blocking polyurethanes |
4696544, | Nov 18 1985 | OLYMPUS CORPORATION, 4 NEVADA DRIVE, LAKE SUCCESS, NEW YORK, 10042-1179 | Fiberscopic device for inspection of internal sections of construction, and method for using same |
4705038, | Jan 23 1985 | Smith & Nephew, Inc | Surgical system for powered instruments |
4706372, | Jun 11 1985 | Brown & Sharpe Dea SpA | Device for effecting automatic exchange of measuring tools in a measuring robot or machine |
4710093, | Jun 08 1984 | Kuka Schweissanlagen & Roboter GmbH | Device for the automatic gripping and releasing of a tool holder in a manipulator |
4716811, | Jan 24 1985 | Harsco Corporation | Double toggle gripping apparatus |
4744363, | Jul 07 1986 | Intra-abdominal organ stabilizer, retractor and tissue manipulator | |
4751925, | Dec 28 1984 | Gripper for surgical purposes | |
4766775, | May 02 1986 | Modular robot manipulator | |
4793053, | Apr 16 1987 | General Motors Corporation; GENERAL MOTORS CORPORATION, A CORP OF DE | Quick disconnect device |
4799779, | Mar 22 1988 | Microscope drape | |
4799799, | Feb 06 1985 | The United States of America as represented by the Secretary of the | Determining inert content in coal dust/rock dust mixture |
4809747, | Jul 31 1987 | General Motors Corporation | Quick disconnect device |
4830569, | Mar 31 1987 | Asea Brown Boveri AB | Industrial robot having a detachable electrical connection between housing on robot arm and tool holder |
4832198, | Jun 15 1987 | Container for packaging and counting surgical sponges | |
4834090, | Mar 02 1987 | Suture boot | |
4837703, | Jun 26 1986 | Toshiba Kikai Kabushiki Kaisha | Method for generating tool path |
4848758, | Jun 23 1988 | Jewelry clamp | |
4863204, | Apr 06 1988 | Article handling tool | |
4905710, | Feb 28 1987 | Surgical drape | |
4915563, | May 20 1987 | Societe Nouvelle d'Exploitation La Calhene | Automatic lock for mechanisms controlling various movements of the gripping pliers of a remote handling device when dismounting the ball and socket joint bearing these pliers |
4919112, | Apr 07 1989 | PHOENIXCOR, INC | Low-cost semi-disposable endoscope |
4928546, | Aug 17 1988 | Robotic devices | |
4943939, | Aug 29 1988 | Surgical instrument accounting apparatus and method | |
4979949, | Apr 26 1988 | The Board of Regents of The University of Washington | Robot-aided system for surgery |
4980963, | Apr 05 1989 | Tool changing apparatus | |
4996975, | Jun 01 1989 | Kabushiki Kaisha Toshiba | Electronic endoscope apparatus capable of warning lifetime of electronic scope |
5018266, | Dec 07 1987 | Megamation Incorporated | Novel means for mounting a tool to a robot arm |
5051000, | Nov 28 1989 | Linear compensating bearing | |
5052396, | Apr 24 1987 | CIVCO MEDICAL INSTRUMENTS, INC | Needle guide for ultrasound transducers |
5052402, | Jan 31 1989 | C.R. Bard, Inc. | Disposable biopsy forceps |
5055660, | Jun 16 1988 | Rockwell International Corporation | Portable transaction monitoring unit for transaction monitoring and security control systems |
5077506, | Feb 03 1989 | Smith & Nephew, Inc | Microprocessor controlled arthroscopic surgical system |
5078140, | May 08 1986 | Imaging device - aided robotic stereotaxis system | |
5080108, | Apr 06 1990 | Surgical drape | |
5086401, | May 11 1990 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | Image-directed robotic system for precise robotic surgery including redundant consistency checking |
5122904, | Oct 23 1989 | Olympus Optical Co., Ltd. | Operating microscope with drape and suction means for removing air from the drape |
5133735, | May 10 1990 | Symbiosis Corporation | Thumb-activated actuating member for imparting reciprocal motion to push rod of a disposable laparoscopic surgical instrument |
5143453, | Oct 04 1988 | G.I.R. | Temperature monitoring device containing at least one element of an alloy which memorizes its shape |
5154717, | Apr 26 1988 | The Board of Regents of The University of Washington | Robot-aided system for surgery |
5155693, | Sep 05 1990 | Agilent Technologies Inc | Self documenting record of instrument activity and error messages stamped with date and time of occurrence |
5174300, | Apr 04 1991 | Symbiosis Corporation | Endoscopic surgical instruments having rotatable end effectors |
5176702, | Apr 04 1991 | Symbiosis Corporation | Ratchet locking mechanism for surgical instruments |
5184601, | Aug 05 1991 | KARL STORZ GMBH & CO KG | Endoscope stabilizer |
5207213, | Feb 01 1991 | Circon Corporation; CIRCON CORPORATION, 460 WARD DR , SANTA BARBARA, CA 93111 A CORP OF DE | Laparoscope having means for removing image impeding material from a distal lens |
5217003, | Mar 18 1991 | Wilk Patent Development Corporation | Automated surgical system and apparatus |
5221283, | May 15 1992 | General Electric Company | Apparatus and method for stereotactic surgery |
5236432, | Apr 26 1988 | Board of Regents of the University of Washington | Robot-aided system for surgery |
5243266, | Jul 05 1991 | Kabushiki Kaisha Daihen | Teaching control device for manual operation in an industrial robots-system |
5251127, | Feb 01 1988 | XENON RESEARCH, INC | Computer-aided surgery apparatus |
5255429, | Apr 09 1991 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Component mounting apparatus |
5257998, | Sep 20 1989 | Mitaka Kohki Co., Ltd.; Takaaki, Takizawa | Medical three-dimensional locating apparatus |
5259690, | Jan 04 1990 | Scaffold couplers | |
5271384, | Sep 01 1989 | Tyco Healthcare Group LP | Powered surgical retractor |
5274500, | Jul 23 1992 | Kansas City Medical, Inc.; KANSAS CITY MEDICAL, INC | Video camera drape with lens |
5275608, | Oct 16 1991 | BRIDGE BLOOD TECHNOLOGIES LLC, NEW YORK LIMITED LIABILITY COMPANY | Generic endoscopic instrument |
5284487, | Jul 31 1992 | Surgical compression forceps | |
5294209, | Jul 25 1991 | Yamaha Hatsudoki Kabushiki Kaisha | Tool attaching device |
5295933, | Jun 18 1992 | Quick release weight bar clamp and method for use | |
5305203, | Feb 01 1988 | XENON RESEARCH, INC | Computer-aided surgery apparatus |
5312212, | Sep 28 1992 | HOLDEN AMERICA INC ; 4077776 CANADA INC | Axially compliant tool holder |
5313935, | Dec 31 1992 | Symbiosis Corporation | Apparatus for counting the number of times a surgical instrument has been used |
5316541, | Jan 19 1993 | Enclosure for surgical procedures | |
5318589, | Apr 15 1992 | Microsurge, Inc. | Surgical instrument for endoscopic surgery |
5337732, | Sep 16 1992 | California Institute of Technology | Robotic endoscopy |
5339799, | Apr 23 1991 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
5343385, | Aug 17 1993 | International Business Machines Corporation | Interference-free insertion of a solid body into a cavity |
5354296, | Mar 24 1993 | Symbiosis Corporation | Electrocautery probe with variable morphology electrode |
5354314, | Dec 23 1988 | MEDICAL INSTRUMENTATION AND DIAGNOSTICS CORPORATION MIDCO | Three-dimensional beam localization apparatus and microscope for stereotactic diagnoses or surgery mounted on robotic type arm |
5355743, | Dec 19 1991 | Board of Regents, The University of Texas System | Robot and robot actuator module therefor |
5359993, | Dec 31 1992 | Symbiosis Corporation | Apparatus for counting the number of times a medical instrument has been used |
5369851, | Oct 26 1992 | PASCHAL-WERK G MAIER GMBH | Clamp for connecting the sections at the edges of formwork panels |
5372147, | Jun 16 1992 | TYCO HEALTHCARE GROUP AG; Covidien AG | Peritoneal distension robotic arm |
5380338, | Sep 03 1992 | Minnesota Scientific, Inc. | Laparoscope holder with rotatable gripping pads |
5382885, | Aug 09 1993 | The University of British Columbia | Motion scaling tele-operating system with force feedback suitable for microsurgery |
5397323, | Oct 30 1992 | International Business Machines Corporation | Remote center-of-motion robot for surgery |
5399951, | May 12 1992 | UNIVERSITE JOSEPH FOURIER | Robot for guiding movements and control method thereof |
5400267, | Dec 08 1992 | Hemostatix Corporation | Local in-device memory feature for electrically powered medical equipment |
5400772, | May 24 1991 | Minnesota Scientific, Inc. | Surgical retractor apparatus with improved clamping device |
5402793, | Nov 19 1993 | Advanced Technology Laboratories, Inc. | Ultrasonic transesophageal probe for the imaging and diagnosis of multiple scan planes |
5402801, | Nov 02 1993 | International Business Machines Corporation | System and method for augmentation of surgery |
5403319, | Apr 26 1988 | Board of Regents of the University of Washington | Bone imobilization device |
5413573, | May 24 1991 | Onesys Oy | Device for surgical procedures |
5417210, | May 27 1992 | INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NEW YORK | System and method for augmentation of endoscopic surgery |
5427097, | Dec 10 1992 | PACIFIC REPUBLIC CAPITAL CORP | Apparatus for and method of carrying out stereotaxic radiosurgery and radiotherapy |
5429142, | May 27 1993 | Linvatec Corporation | Surgical video systems cover |
5433221, | Oct 05 1994 | Windowed self-centering drape for surgical camera | |
5441042, | Aug 05 1991 | KARL STORZ GMBH & CO KG | Endoscope instrument holder |
5445638, | Mar 08 1993 | GYRUS ACMI, INC | Bipolar coagulation and cutting forceps |
5451368, | Feb 25 1987 | Ethicon, Inc | Process and apparatus for dry sterilization of medical devices and materials |
5457857, | Jan 31 1994 | Pivoted clamp | |
5458132, | Mar 15 1993 | Olympus Optical Co., Ltd. | Endoscope cover-sheathed endoscope system |
5480409, | May 10 1994 | Laparoscopic surgical instrument | |
5490524, | Mar 20 1995 | TRAC ELECTRONICS, LLC | Surgical drape for a laser targeting device used with an x-ray machine |
5498230, | Oct 03 1994 | Sterile connector and video camera cover for sterile endoscope | |
5520678, | Nov 30 1993 | Richard Wolf GmbH | Manipulator arm with proximal and distal control balls |
5535973, | Oct 17 1994 | Innovative Medical Products | Universal clamp |
5562700, | Feb 18 1994 | Ethicon Endo-Surgery, Inc. | Cable-actuated jaw assembly for surgical instruments |
5570500, | Jan 22 1994 | PASCHAL-WERK G MAIER GMBH | Clamp for connecting form panels with clamping jaws urging sections of panels together at their edges |
5571110, | Apr 26 1988 | Board of Regents of the University of Washington | Orthopedic saw guide for use in a robot-aided system for surgery |
5617857, | Jun 06 1995 | IMAGE GUIDED TECHNOLOGIES, INC | Imaging system having interactive medical instruments and methods |
5624398, | Feb 08 1996 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
5630431, | Jun 13 1991 | International Business Machines Corporation | System and method for augmentation of surgery |
5631832, | Apr 27 1984 | Apparatus and method responsive to the on-board measuring of haulage parameters of a vehicle | |
5631973, | May 05 1994 | SRI International | Method for telemanipulation with telepresence |
5649956, | Jun 07 1995 | SRI International | System and method for releasably holding a surgical instrument |
5653705, | Oct 07 1994 | General Surgical Innovations, Inc | Laparoscopic access port for surgical instruments or the hand |
5658077, | Mar 14 1995 | AMERICAN MEDICAL MANUFACTURING, INC | Sponge counting bag |
5676673, | Sep 13 1995 | GE Medical Systems Global Technology Company, LLC | Position tracking and imaging system with error detection for use in medical applications |
5678284, | Nov 20 1990 | Device for releasably engaging an object | |
5690635, | Apr 26 1988 | The Board of Regents of The University of Washington | Prosthesis template for use in a robot-aided system for surgery |
5695500, | Nov 02 1993 | International Business Machines Corporation | System for manipulating movement of a surgical instrument with computer controlled brake |
5695501, | Sep 30 1994 | SCHAERER MEDICAL USA, INC | Apparatus for neurosurgical stereotactic procedures |
5697939, | Aug 20 1992 | Olympus Optical Co., Ltd. | Apparatus for holding a medical instrument in place |
5710870, | Sep 07 1995 | ALBERTO RICARDO CUETO, TRUSTEE OF THE GUILLERMO RODRIGUEZ REVOCABLE TRUST - 2005 | Decoupled six degree-of-freedom robot manipulator |
5716354, | Apr 05 1995 | OLYMPUS WINTER & IBE GMBH | Endoscopic instrument with rotatable instrument coupling |
5732712, | Jul 12 1996 | Sterile encapsulated operating room video monitor and video monitor support device | |
5741210, | Oct 10 1995 | Minnesota Scientific, Inc. | Clamping device for a surgical retractor |
5749885, | Oct 02 1995 | Smith & Nephew, Inc | Surgical instrument with embedded coding element |
5762458, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive cardiac procedures |
5765565, | Jul 12 1996 | Sterile encapsulated operating room video monitor and video monitor support device | |
5779623, | Oct 08 1993 | LEONARD MEDICAL, INC | Positioner for medical instruments |
5784542, | Sep 07 1995 | ALBERTO RICARDO CUETO, TRUSTEE OF THE GUILLERMO RODRIGUEZ REVOCABLE TRUST - 2005 | Decoupled six degree-of-freedom teleoperated robot system |
5785643, | Jul 26 1995 | LYNN, JAMES R | Laparoscopic scope manipulator |
5792044, | Mar 22 1996 | SDGI Holdings, Inc | Devices and methods for percutaneous surgery |
5792135, | May 16 1997 | Intuitive Surgical Operations, Inc | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
5797900, | May 16 1997 | Intuitive Surgical Operations, Inc | Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
5800423, | May 14 1993 | SRI International | Remote center positioner with channel shaped linkage element |
5802641, | Mar 07 1997 | ALLEN MEDICAL SYSTEMS, INC | Leg holder system for simultaneous positioning in the abduction and lithotomy dimensions |
5807377, | May 20 1996 | Intuitive Surgical Operations, Inc | Force-reflecting surgical instrument and positioning mechanism for performing minimally invasive surgery with enhanced dexterity and sensitivity |
5807378, | Jun 07 1995 | SRI International | Surgical manipulator for a telerobotic system |
5808665, | Jan 21 1992 | SRI International | Endoscopic surgical instrument and method for use |
5810880, | Jun 07 1995 | SRI International | System and method for releasably holding a surgical instrument |
5814038, | Jun 07 1995 | SRI International | Surgical manipulator for a telerobotic system |
5817084, | May 14 1993 | SRI International | Remote center positioning device with flexible drive |
5830121, | Oct 27 1993 | Asahi Kogaku Kogyo Kabushiki Kaisha | Endoscopic apparatus having an endoscope and a peripheral device wherein total usage of the endoscope is quantified and recorded |
5833656, | Feb 08 1996 | Symbiosis Corporation | Endoscopic robotic surgical tools and methods |
5849022, | Jul 29 1994 | Olympus Optical Co., Ltd. | Medical instrument for use in combination with endoscopes |
5853363, | Jul 28 1997 | MICROTEK MEDICAL, INC | Surgical microscope operating drape and methods of operation and manufacture thereof |
5855583, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive cardiac procedures |
5873814, | Jul 12 1996 | Sterile encapsulated endoscopic video monitor and method | |
5876325, | Nov 02 1993 | Olympus Optical Co., Ltd. | Surgical manipulation system |
5876328, | Apr 23 1997 | Endolap, Inc. | Surgical camera drape assembly and method |
5878193, | Aug 10 1992 | Intuitive Surgical Operations, Inc | Automated endoscope system for optimal positioning |
5929899, | Jul 24 1995 | Asahi Kogaku Kogyo Kabushiki Kaisha | Electronic endoscope which stores image signals of the three primary colors supplied in a field-sequential system into a single memory using a point-sequential system |
5931832, | May 14 1993 | SRI International | Methods for positioning a surgical instrument about a remote spherical center of rotation |
5941889, | Oct 14 1997 | CIVCO Medical Instruments Inc. | Multiple angle disposable needle guide system |
5951461, | Dec 20 1996 | Image-guided laryngoscope for tracheal intubation | |
5954259, | Aug 05 1994 | United States Surgical Corporation | Self-contained powered surgical apparatus for applying surgical fasteners |
5964780, | Oct 06 1995 | Deutsche Forschungsanstalt fur Luft-und Raumfahrt e.V. | Gripping apparatus for use in minimally-invasive surgery |
5970980, | Jul 12 1996 | Sterile encapsulated operating room video monitor and video monitor support device | |
5971997, | Feb 03 1995 | INTEGRA RADIONICS, INC | Intraoperative recalibration apparatus for stereotactic navigators |
5976122, | May 20 1996 | Intuitive Surgical Operations, Inc | Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity |
5992782, | Jan 08 1997 | Oracle America, Inc | Tape drive coupling apparatus |
5996889, | Apr 15 1996 | INVITEC GMBH & CO KG | Process and device for the monitoring and control of the flow of material in a hospital |
5997471, | Mar 10 1995 | Forschungszentrum Karlsruhe GmbH | Apparatus for guiding surgical instruments for endoscopic surgery |
6024695, | Nov 02 1993 | International Business Machines Corporation | System and method for augmentation of surgery |
6042166, | May 07 1997 | Komax Holding AG | Gripper |
6056281, | Oct 03 1997 | ANDEL JEWELRY, LLC | Adjustable stoppers and mounting assemblies for parts grippers |
6063095, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive surgical procedures |
6067869, | Dec 30 1997 | Kiekert AG | Actuating assembly for motor-vehicle door latch |
6102044, | Oct 08 1999 | Microtek Medical Holdings, Inc; MICROTEK MEDICAL, INC | Electrode carrying surgical drape and method |
6102850, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Medical robotic system |
6120433, | Sep 01 1994 | Olympus Optical Co., Ltd. | Surgical manipulator system |
6123080, | Oct 27 1998 | P3 MEDICAL LIMITED | Drape |
6132368, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Multi-component telepresence system and method |
6134993, | Oct 14 1998 | Lisle Corporation | Pliers with adjustable jaws |
6149607, | Aug 04 1998 | Medtronic, Inc | Multiple sample biopsy device |
6151981, | Jul 24 1997 | Two-axis cartesian robot | |
6152871, | Mar 22 1996 | Warsaw Orthopedic, Inc | Apparatus for percutaneous surgery |
6152920, | Oct 10 1997 | EP Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body |
6167658, | Sep 28 1999 | Boat weather cover and ventilation system | |
6167884, | Feb 27 1998 | Janin Group | Optically transparent medical instrument cover |
6190399, | May 12 1995 | Boston Scientific Scimed, Inc | Super-elastic flexible jaw assembly |
6197017, | Feb 24 1998 | HANSEN MEDICAL, INC | Articulated apparatus for telemanipulator system |
6206903, | Aug 13 1999 | Intuitive Surgical Operations, Inc | Surgical tool with mechanical advantage |
6208515, | Nov 26 1996 | Siemens Aktiengesellschaft | Socket for an integrated circuit |
6231565, | Jun 18 1997 | Covidien LP | Robotic arm DLUs for performing surgical tasks |
6236880, | May 21 1999 | Radiation-sensitive surgical probe with interchangeable tips | |
6246200, | Aug 04 1998 | Intuitive Surgical Operations, Inc | Manipulator positioning linkage for robotic surgery |
6259806, | Jan 21 1992 | SRI International | Method and apparatus for transforming coordinate systems in a telemanipulation system |
6276312, | Nov 06 1998 | Stant Manufacturing Inc. | Thermal control cooling system vacuum valve |
6325808, | Dec 08 1998 | WEN, JOHN T | Robotic system, docking station, and surgical tool for collaborative control in minimally invasive surgery |
6327756, | Nov 06 1998 | Legrand; Legrand SNC | Fixing clamp, especially for inspection lamps |
6331181, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Surgical robotic tools, data architecture, and use |
6334860, | Dec 18 1998 | Karl Storz GmbH & Co. KG | Bipolar medical instrument |
6346072, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Multi-component telepresence system and method |
6370411, | Feb 10 1998 | Biosense, Inc. | Catheter calibration |
6394998, | Jan 22 1999 | Intuitive Surgical Operations, Inc | Surgical tools for use in minimally invasive telesurgical applications |
6398726, | Nov 20 1998 | Intuitive Surgical Operations, Inc | Stabilizer for robotic beating-heart surgery |
6424885, | Apr 07 1999 | Intuitive Surgical Operations, Inc | Camera referenced control in a minimally invasive surgical apparatus |
6434507, | Sep 05 1997 | Medtronic Navigation, Inc | Medical instrument and method for use with computer-assisted image guided surgery |
6451027, | Dec 16 1998 | Intuitive Surgical Operations, Inc | Devices and methods for moving an image capture device in telesurgical systems |
6468265, | Nov 20 1998 | Intuitive Surgical Operations, Inc | Performing cardiac surgery without cardioplegia |
6491701, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Mechanical actuator interface system for robotic surgical tools |
6554844, | Feb 24 1998 | AURIS HEALTH, INC | Surgical instrument |
6607170, | Mar 02 1994 | Safe disposal of surgical sponges | |
6612310, | Jun 22 2000 | GE Medical Systems Global Technology Company, LLC | Windowed medical drape |
6676684, | Sep 04 2001 | Intuitive Surgical Operations, Inc | Roll-pitch-roll-yaw surgical tool |
6699177, | Feb 20 1996 | Intuitive Surgical Operations, Inc | Method and apparatus for performing minimally invasive surgical procedures |
6738656, | Sep 15 1994 | GE Medical Systems Global Technology Company, LLC | Automatic registration system for use with position tracking an imaging system for use in medical applications |
6770081, | Jan 07 2000 | Intuitive Surgical Operations, Inc | In vivo accessories for minimally invasive robotic surgery and methods |
6805453, | Sep 20 2001 | CARL-ZEISS-STIFTUNG HEIDENHEIM BRENZ | Medical instrument arrangement with drape |
6862780, | Jan 17 2000 | Arnos Australia Pty Ltd | Clamps |
6866671, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Surgical robotic tools, data architecture, and use |
6889116, | Sep 29 2000 | KARL STORZ SE & CO KG | Manipulator |
6912959, | Mar 12 2001 | American Sterilizer Company | Surgical table and clamp system |
6936042, | Jan 22 1999 | Intuitive Surgical Operations, Inc | Surgical tools for use in minimally invasive telesurgical applications |
6966104, | Jan 23 2001 | ERICO International Corporation | Reinforcing bar tool and method |
7048745, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Surgical robotic tools, data architecture, and use |
7074180, | Apr 10 1996 | Atricure, Inc | Visualization during closed-chest surgery |
7122032, | May 17 2002 | Olympus Corporation | Operation system and mounting device for external device for use in the operation system |
7250028, | Nov 09 1999 | Intuitive Surgical Operations, Inc | Endoscopic beating-heart stabilizer and vessel occlusion fastener |
7263501, | Mar 11 2003 | ABBOTT POINT OF CARE INC | Point-of-care inventory management system and method |
7320556, | Jul 11 2000 | Gripping devices | |
7357774, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Multi-component telepresence system and method |
7395563, | Apr 02 2004 | CIVCO MEDICAL INSTRUMENTS CO , INC | Support system for use when performing medical imaging of a patient |
7524320, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Mechanical actuator interface system for robotic surgical tools |
7666191, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Robotic surgical system with sterile surgical adaptor |
7699855, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Sterile surgical adaptor |
7727244, | Nov 21 1997 | Intuitive Surgical Operations, Inc | Sterile surgical drape |
7770859, | Sep 05 2007 | Airbus Operations GmbH | Holding element for fastening an equipment element to a supporting rail |
7819885, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Multi-component telepresence system and method |
7907166, | Dec 30 2005 | Intuitive Surgical Operations, Inc | Stereo telestration for robotic surgery |
7918861, | Feb 24 1998 | AURIS HEALTH, INC | Flexible instrument |
7963913, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Instrument interface of a robotic surgical system |
8105338, | Dec 12 1996 | Intuitive Surgical Operations, Inc. | Sterile surgical adaptor |
8142447, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Mechanical actuator interface system for robotic surgical tools |
8182469, | Nov 21 1997 | Intuitive Surgical Operations, Inc | Surgical accessory clamp and method |
8202278, | Nov 21 1997 | Intuitive Surgical Operations, Inc. | Sterile surgical drape |
8206406, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Disposable sterile surgical adaptor |
8216250, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Sterile surgical adaptor |
8529582, | Dec 12 1996 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
8608773, | Dec 12 1996 | Intuitive Surgical Operations, Inc | Surgical robotic tools, data architecture, and use |
8758352, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Mechanical actuator interface system for robotic surgical tools |
8998799, | Dec 12 1996 | Intuitive Surgical Operations, Inc. | Sterile surgical adaptor |
8998930, | Dec 20 2005 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
20020045888, | |||
20020087048, | |||
20020091374, | |||
20020177754, | |||
20030006653, | |||
20030050649, | |||
20030083673, | |||
20030085147, | |||
20030111366, | |||
20040035334, | |||
20040049205, | |||
20040127891, | |||
20040133189, | |||
20040179754, | |||
20050051050, | |||
20050149003, | |||
20050184207, | |||
20050222554, | |||
20050229937, | |||
20050240178, | |||
20060111692, | |||
20060113208, | |||
20060161136, | |||
20060161137, | |||
20060161138, | |||
20060167440, | |||
20060235436, | |||
20060276775, | |||
20070043338, | |||
20070070157, | |||
20070137371, | |||
20070137372, | |||
20070142824, | |||
20070142969, | |||
20070185376, | |||
20070239172, | |||
20090030429, | |||
20090247819, | |||
20110028990, | |||
20110066161, | |||
20120209291, | |||
20120232566, | |||
20120239060, | |||
20120247489, | |||
20140180310, | |||
20150173841, | |||
D438617, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Portion of an adaptor for a medical instrument |
D441076, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Adaptor for a medical instrument |
D441862, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Portion of an interface for a medical instrument |
D444555, | Dec 08 1998 | Intuitive Surgical Operations, Inc | Interface for a medical instrument |
DE102007030856, | |||
DE19537320, | |||
DE19950440, | |||
DE9304063, | |||
EP606531, | |||
EP705571, | |||
EP1321106, | |||
EP1439026, | |||
EP1889576, | |||
EP2263594, | |||
EP2263595, | |||
GB2366319, | |||
JP11507252, | |||
JP1280449, | |||
JP2000505328, | |||
JP2002500524, | |||
JP2003061969, | |||
JP2003235868, | |||
JP2003325543, | |||
JP2004000334, | |||
JP2004097533, | |||
JP2004244091, | |||
JP2005524442, | |||
JP3121064, | |||
JP3143438, | |||
JP4092656, | |||
JP59190214, | |||
JP6261911, | |||
JP6269461, | |||
JP661205, | |||
JP7194610, | |||
JP7241300, | |||
JP7509637, | |||
JP8182684, | |||
JP8215211, | |||
JP8224248, | |||
JP8280697, | |||
JP8509886, | |||
JP884735, | |||
WO1304, | |||
WO33755, | |||
WO3092523, | |||
WO9220295, | |||
WO9313916, | |||
WO9320770, | |||
WO9403113, | |||
WO9414129, | |||
WO9426167, | |||
WO9503001, | |||
WO9505780, | |||
WO9516396, | |||
WO9530964, | |||
WO9608209, | |||
WO9639944, | |||
WO9712554, | |||
WO9728734, | |||
WO9729690, | |||
WO9729710, | |||
WO9825666, | |||
WO9950721, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 06 2013 | Intuitive Surgical Operations, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 02 2017 | ASPN: Payor Number Assigned. |
May 04 2020 | REM: Maintenance Fee Reminder Mailed. |
Oct 19 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 13 2019 | 4 years fee payment window open |
Mar 13 2020 | 6 months grace period start (w surcharge) |
Sep 13 2020 | patent expiry (for year 4) |
Sep 13 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 13 2023 | 8 years fee payment window open |
Mar 13 2024 | 6 months grace period start (w surcharge) |
Sep 13 2024 | patent expiry (for year 8) |
Sep 13 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 13 2027 | 12 years fee payment window open |
Mar 13 2028 | 6 months grace period start (w surcharge) |
Sep 13 2028 | patent expiry (for year 12) |
Sep 13 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |