A wheelchair suspension assembly includes a frame, a drive assembly, an anti-tip linkage, a front anti-tip wheel, and a rear anti-tip wheel. The drive assembly includes a drive wheel. The front anti-tip wheel is positioned forward of the drive wheel by the anti-tip linkage. The rear anti-tip wheel is positioned rearward of the drive wheel the anti-tip linkage. The anti-tip linkage couples the front anti-tip wheel to the rear anti-tip wheel such that upward movement of the front anti-tip wheel relative to the frame causes upward movement of the rear anti-tip wheel relative to the frame. The anti-tip linkage includes a front anti-tip pivot arm that is pivotally coupled to the frame, a rear anti-tip pivot arm that is pivotally coupled to the frame, and a connecting link that couples the front anti-tip pivot arm and the rear anti-tip pivot arm.

Patent
   9913768
Priority
Oct 09 2009
Filed
Apr 20 2015
Issued
Mar 13 2018
Expiry
Oct 08 2030
Assg.orig
Entity
Large
10
485
currently ok
3. A wheelchair suspension assembly comprising:
a frame;
a drive assembly that includes a drive wheel;
an anti-tip linkage;
an anti-tip linkage spring;
a front anti-tip wheel positioned forward of the drive wheel by the anti-tip linkage;
a rear anti-tip wheel positioned rearward of the drive wheel the anti-tip linkage;
wherein the anti-tip linkage couples the front anti-tip wheel to the rear anti-tip wheel such that upward movement of the front anti-tip wheel relative to the frame causes upward movement of the rear anti-tip wheel relative to the frame;
wherein the anti-tip linkage includes a front anti-tip pivot arm that is pivotally coupled to the frame, a rear anti-tip pivot arm that is pivotally coupled to the frame, and a connecting link that couples the front anti-tip pivot arm and the rear anti-tip pivot arm;
wherein the anti-tip linkage spring is directly coupled to the rear anti-tip pivot will and is directly coupled to the frame to bias the rear anti-tip pivot arm downward relative to the frame; and
wherein the drive assembly is pivotally coupled to the frame at a first drive assembly pivot axis.
1. A wheelchair comprising:
a frame;
first and second drive assemblies that each include a drive wheel;
first and second suspension assemblies that each include an anti-tip linkage and a shock absorber with a spring return;
first and second front anti-tip wheels positioned forward of the drive wheels by the first and second anti-tip linkages;
first and second rear anti-tip wheels positioned rearward of the drive wheels by the first and second anti-tip linkages;
the first anti-tip linkage couples the first front anti-tip wheel to the first rear anti-tip wheel such that upward movement of the first front anti-tip wheel relative to the frame causes upward movement of the first rear anti-tip wheel relative to the frame, wherein the first anti-tip linkage includes a first rigid front anti-tip pivot arm that is pivotally coupled to the frame, a first rigid rear anti-tip pivot arm that is pivotally coupled to the frame, and a first rigid connecting link that couples the first rigid front anti-tip pivot arm and the first rigid rear anti-tip pivot arm;
wherein the first shock absorber with spring return is directly coupled to the first rigid rear anti-tip pivot arm and is directly coupled to the frame to bias the first rigid rear anti-tip pivot arm downward relative to the frame;
the second anti-tip linkage couples the second front anti-tip wheel to the second rear anti-tip wheel such that upward movement of the second front anti-tip wheel relative to the frame causes upward movement of the second rear anti-tip wheel relative to the frame, wherein the second anti-tip linkage includes a second rigid front anti-tip pivot arm that is pivotally coupled to the frame, a second rigid rear anti-tip pivot arm that is pivotally coupled to the frame, and a second rigid connecting link that couples the second rigid front anti-tip pivot arm and the second rigid rear anti-tip pivot arm;
wherein the second shock absorber with spring return is directly coupled to the second rigid rear anti-tip pivot arm and is directly coupled to the frame to bias the second rigid rear anti-tip pivot arm downward relative to the frame;
wherein the first drive assembly is pivotally coupled to the frame at a first drive assembly pivot axis that is forward of an axis of rotation of the drive wheel of the first drive assembly;
wherein the first drive assembly is biased downward relative to the frame by a first drive assembly biasing spring that is coupled to the frame;
wherein the second drive assembly is pivotally coupled to the frame at a second drive assembly pivot axis that is forward of an axis of rotation of the drive wheel of the second drive assembly; and
wherein the second drive assembly is biased downward relative to the frame by a second drive assembly biasing spring that is coupled to the frame.
2. The wheelchair of claim 1 wherein the first rigid connecting link is pivotally connected to the first rigid front anti-tip pivot arm and the first rigid rear anti-tip pivot arm and the second rigid connecting link is pivotally connected to the second rigid front anti-tip pivot arm and the second rigid rear anti-tip pivot arm.
4. The wheelchair suspension assembly of claim 3 wherein the anti-tip linkage spring comprises a shock absorber with a spring return.
5. The wheelchair suspension assembly of claim 3 wherein the front anti-tip pivot arm is rigid.
6. The wheelchair suspension assembly of claim 3 wherein the rear anti-tip pivot arm is rigid.
7. The wheelchair suspension assembly of claim 3 wherein the connecting link is rigid.
8. The wheelchair suspension assembly of claim 3 wherein the drive assembly pivot axis is forward of the axis of rotation of the drive wheel.
9. The wheelchair suspension assembly of claim 3 wherein the drive assembly is biased downward relative to the frame by a drive assembly biasing spring.
10. The wheelchair suspension assembly of claim 3 wherein the connecting link is pivotally connected to the front anti-tip pivot arm and the rear anti-tip pivot arm.

The present application is a divisional application of U.S. Ser. No. 12/900,548, filed Oct. 8, 2010, titled “WHEELCHAIR SUSPENSION”, which claims the benefit of U.S. provisional application Ser. No. 61/250,222, filed on Oct. 9, 2009, which is incorporated herein by reference in its entirety.

Wheelchairs and scooters are an important means of transportation for a significant portion of society. Whether manual or powered, these vehicles provide an important degree of independence for those they assist. However, this degree of independence can be limited if the wheelchair is required to traverse obstacles such as, for example, curbs that are commonly present at sidewalks, driveways, and other paved surface interfaces. This degree of independence can also be limited if the vehicle is required to ascend inclines or descend declines.

Most wheelchairs have front and rear anti-tip wheels to stabilize the chair from excessive tipping forward or backward and to ensure that the drive wheels are always in contact with the ground. The anti-tip wheels are typically much smaller than the drive wheels and located both forward and rearward of the drive wheels.

The present application discloses exemplary embodiments of wheelchairs and wheelchair suspension assemblies. In one exemplary embodiment, a wheelchair suspension assembly includes a frame, a drive assembly, an anti-tip linkage, a front anti-tip wheel, and a rear anti-tip wheel. The drive assembly includes a drive wheel. The front anti-tip wheel is positioned forward of the drive wheel by the anti-tip linkage. The rear anti-tip wheel is positioned rearward of the drive wheel the anti-tip linkage. The anti-tip linkage couples the front anti-tip wheel to the rear anti-tip wheel such that upward movement of the front anti-tip wheel relative to the frame causes upward movement of the rear anti-tip wheel relative to the frame. The anti-tip linkage includes a front anti-tip pivot arm that is pivotally coupled to the frame, a rear anti-tip pivot arm that is pivotally coupled to the frame, and a connecting link that couples the front anti-tip pivot arm and the rear anti-tip pivot arm.

In the accompanying drawings which are incorporated in and constitute a part of the specification, embodiments of the invention are illustrated, which together with a general description of the invention given above and the detailed description given below, serve to exemplify the principles of this invention.

FIG. 1 is a side view of an exemplary embodiment of a wheelchair;

FIG. 1A is a side view of a second configuration of the wheelchair of FIG. 1;

FIG. 1B is a side view of a third configuration of the wheelchair of FIG. 1;

FIG. 1C is a side view of a fourth configuration of the wheelchair of FIG. 1;

FIG. 1D is a side view of the wheelchair of FIG. 1 traversing an obstacle;

FIG. 2 is a top view of the wheelchair shown in FIG. 1;

FIG. 3A is a side view of an exemplary embodiment of a wheelchair;

FIG. 3B is a side view of the wheelchair of FIG. 3A, with a drive wheel shown in schematically to more clearly illustrate a suspension assembly of the chassis;

FIG. 3C is a perspective view of the wheelchair of FIG. 3B with a suspension assembly shown on one side of the chassis and the suspension assembly removed from the other side of the chassis

FIG. 3D shows a front anti-tip wheel of the chassis of FIG. 3B traversing an obstacle;

FIG. 3E shows a drive wheel of the chassis of FIG. 3B traversing an obstacle;

FIG. 3F shows a rear anti-tip wheel of the chassis of FIG. 3B traversing an obstacle;

FIG. 3G shows the front anti-tip wheel of the chassis of FIG. 3B in engagement with a support surface to inhibit further tipping;

FIG. 3H is a perspective view of the wheelchair of FIG. 3C, with the drive assembly and drive wheel removed;

FIG. 4A is a side view of another embodiment of a wheelchair;

FIG. 4B is a top view of the embodiment of the wheelchair shown in FIG. 4A;

FIG. 5 is a side view of the wheelchair of FIG. 4A traversing an obstacle;

FIG. 6A is a side view of another embodiment of a wheelchair;

FIG. 6B is a top view of the embodiment of the wheelchair shown in FIG. 6A;

FIG. 7 is a side view of the wheelchair of FIG. 6A traversing an obstacle;

FIG. 8A is a side view of another embodiment of a wheelchair;

FIG. 8B is a top view of the embodiment of the wheelchair shown in FIG. 8A;

FIG. 9 is a side view of the wheelchair of FIG. 8A traversing an obstacle;

FIG. 10A is a side view of another embodiment of a wheelchair;

FIG. 10B is a top view of the embodiment of the wheelchair shown in FIG. 10A;

FIG. 11A is a side view of another embodiment of a wheelchair;

FIG. 11B is a top view of the embodiment of the wheelchair shown in FIG. 11A;

FIG. 12 is a side view of the wheelchair of FIG. 11A traversing an obstacle;

FIG. 13A is a side view of another embodiment of a wheelchair;

FIG. 13B is a top view of the embodiment of the wheelchair shown in FIG. 13A;

FIG. 14A is a side view of another embodiment of a wheelchair;

FIG. 14B is a top view of the embodiment of the wheelchair shown in FIG. 14A;

FIG. 15 is a schematic illustration of a pair of drive assemblies independently suspended from a wheelchair frame;

FIG. 16 is a side view of another embodiment of a wheelchair;

FIG. 16A is a side view of a second configuration of the wheelchair of FIG. 16;

FIG. 16B is a side view of a third configuration of the wheelchair of FIG. 16;

FIG. 16C is a side view of a fourth configuration of the wheelchair of FIG. 16;

FIG. 17 is a top view of the wheelchair shown in FIG. 16;

FIG. 18 is a side view of the wheelchair of FIG. 16 traversing an obstacle;

FIG. 19A is a side view of an exemplary embodiment of a wheelchair;

FIG. 19B is a side view of the wheelchair of FIG. 19A, with a drive wheel shown schematically to more clearly illustrate a suspension assembly of the chassis;

FIG. 19C shows a front anti-tip wheel of the chassis of FIG. 19B traversing an obstacle;

FIG. 19D shows a drive wheel of the chassis of FIG. 19B traversing an obstacle;

FIG. 19E shows a rear anti-tip wheel of the chassis of FIG. 19B traversing an obstacle;

FIG. 19F shows the front anti-tip wheel of the chassis of FIG. 19B in engagement with a support surface to inhibit further tipping;

FIG. 20A is a schematic illustration of a first embodiment of a variable length motion transfer arrangement coupled to components of a wheelchair suspension;

FIG. 20B is a schematic illustration of a second embodiment of a variable length motion transfer arrangement coupled to components of a wheelchair suspension;

FIG. 20C is a schematic illustration of a third embodiment of a variable length motion transfer arrangement coupled to components of a wheelchair suspension;

FIG. 21A is a schematic illustration of an alternate embodiment of an of an anti-tip structure;

FIG. 21B is a schematic illustration of an alternate embodiment of an of an anti-tip structure;

FIG. 22A is a schematic illustration of an alternate embodiment of an of an anti-tip structure;

FIG. 22B is a schematic illustration of an alternate embodiment of an of an anti-tip structure;

FIG. 23 is a side view of another embodiment of a wheelchair;

FIG. 23A is a side view of another embodiment of a wheelchair;

FIG. 24 is a top view of the wheelchair shown in FIG. 23;

FIG. 25 is a side view of the wheelchair of FIG. 23 traversing an obstacle;

FIG. 25A is a side view of the wheelchair of FIG. 23A traversing an obstacle;

FIG. 26A is a side view of an exemplary embodiment of a wheelchair; and

FIG. 26B is a side view of the wheelchair of FIG. 26A, with a drive wheel removed to more clearly illustrate a suspension assembly of the chassis.

The present patent application specification and drawings provide multiple embodiments of a vehicle, such as a wheelchair, and suspension that enhances the ability of the vehicle to traverse obstacles and/or improve the ride quality of the wheelchair. The illustrated embodiments of the vehicles are wheelchairs, but the concepts of the illustrated embodiments are equally applicable to other types of vehicles. Generally, the wheelchairs each include a frame, a seat supported by the frame, a pair of drive assemblies, a pair of front anti-tip wheels, and at least one rear anti-tip wheel. In one embodiment, the front anti-tip wheels are connected to the frame, such that positions of axles of the front anti-tip wheels are fixed relative to the frame. In this embodiment, the drive assemblies are moveable with respect to the frame and optionally with respect to one another. In another embodiment, a linkage couples a front anti-tip wheel to a rear anti-tip wheel such that movement of the front anti-tip wheel causes movement of the corresponding rear anti-tip wheel and/or vice versa. For example, the linkage may couple the front anti-tip wheel to the rear anti-tip wheel such that upward movement of the front anti-tip wheel relative to the frame causes upward movement of the rear anti-tip wheel relative to the frame. Similarly, the linkage may couple the front anti-tip wheel to the rear anti-tip wheel such that downward movement of the front anti-tip wheel relative to the frame causes downward movement of the rear anti-tip wheel relative to the frame.

In this application, the term “frame” refers to any component or combination of components that are configured for coupling, mounting, attaching, or affixing of a drive assembly and at least one anti-tip wheel. In this application, the terms “couple,” “mount,” “attach,” “affix,” “fix,” etc. are to be interpreted to include direct and indirect, through intermediate “coupling,” “mounting,” “attaching,” “affixing,” “fixing,” etc. For example, a component that is “fixed” to the frame may be directly connected to the frame or the component may be connected to the frame by one or more intermediate components that prevent relative movement of the component with respect to the frame.

FIGS. 1 and 2 illustrate a first embodiment of a wheelchair 100. The wheelchair 100 includes a frame 102, a seat 103 supported by the frame, first and second drive assemblies 104, 105 (see FIG. 2), first and second suspension assemblies 106, 107 (see FIG. 2), first and second front anti-tip wheels 120, 121 (see FIG. 2) and at least one rear anti-tip wheel 108. The seat 103 is shown schematically in FIGS. 1 and 2 and is omitted in the illustrations of many of the embodiments to indicate that any type of seat can be used. Also, seat 103 may face in either direction (i.e. toward the “front” anti-tip wheels 120 as shown or toward the rear anti-tip wheels 108) in any of the embodiments disclosed in this application. As such, the illustrated embodiments may be configured as front wheel drive wheelchairs or rear wheel drive wheelchairs. In addition, the wheelchair 100 may be configured as a mid-wheel drive wheelchair. Any of the drive and suspension arrangements disclosed in this application may be used on front wheel drive wheelchairs, rear wheel drive wheelchairs, or mid wheel drive wheelchairs. The direction of forward travel may be in the direction indicated by arrow 50 or in direction indicated by arrow 51.

In the illustrated embodiments, the wheelchair may include two separate drive assemblies. However, in other embodiments a single drive motor may drive both drive wheels. In the illustrated embodiments, each drive assembly 104, 105 may be coupled to the frame by a corresponding suspension assembly 106, 107, such that each drive assembly is moveable relative to the frame 102, and such that the drive assemblies are moveable relative to one another. In another embodiment, the drive assemblies are moveable with respect to the frame, but are fixed or linked to one another. The suspension assemblies 106, 107 can take a wide variety of different forms, several non-limiting examples of which are disclosed in detail below. The suspension assembly 106, 107 can be any arrangement that allows the drive assemblies 106, 107 to move upward and/or downward relative to the frame. In this application, the terms “up”, “upward”, “down”, “downward”, “above” and “below” and any other directional terms refer to the relative positions of the components when all of the wheels of the wheelchair are on a flat, level surface, such as support surface 119 illustrated in FIG. 1.

In the embodiment illustrated by FIGS. 1 and 2, each drive assembly 104, 105 includes a drive motor 130 and a drive wheel 132. The drive motor 130 may comprise a motor/gear box combination, a brushless, gearless motor, or any other known arrangement for driving the drive wheel 132. The drive motor 130 drives the drive wheel 132 about the axis of rotation 112.

The at least one rear anti-tip wheel 108 may take a wide variety of different forms. For example, there may be one, two, or any number of rear anti-tip wheels. Each rear anti-tip wheel 108 may be a wheel of a caster assembly 170 which is rotatable about a substantially vertical axis 171 with the wheel 108 being rotatable about a substantially horizontal axis 174. Alternatively, the wheel 108 may be mounted for rotation only about a substantially horizontal axis 174 (i.e. there is no rotational connection at 171). In this alternative embodiment, the wheel 108 would typically, but not necessarily, be off the ground.

In the illustrated embodiment, two rear anti-tip wheels 108 are disposed rearward of the drive wheels 132. The rear anti-tip wheels may be disposed on the ground or spaced apart from a horizontal support surface when the wheelchair is at rest in a normal operating position on the horizontal support surface. The rear anti-tip wheels may include integral suspension elements, such as resilient spokes. In the example illustrated by FIGS. 1 and 2, two caster assemblies 170 include anti-tip wheels 108 that are disposed on the horizontal support surface 119 when the wheelchair is in a normal operating position.

In the example illustrated by FIGS. 1 and 2, the suspension assemblies 106, 107 are mirror images of one another. As such, only suspension assembly 106 is described in detail. In the illustrated embodiments, the suspension assemblies 106, 107 are independently moveable relative to one another. However, the suspension assemblies 106, 107 can be linked together, such that they move in unison, such that one assembly causes movement of the other assembly, or movement of one assembly is limited based on the position of the other assembly. The illustrated suspension assembly 106 includes a pivot arm 134 and a biasing member 172. The pivot arm 134 is pivotally coupled to the frame 102 at a pivot axis 110. The illustrated drive assembly 104 is fixed to the pivot arm 134. However, the drive assembly 104 may be otherwise coupled to the pivot arm, such that movement of the pivot arm 134 causes movement of the drive assembly 104 relative to the frame 102. The pivot arm 134 may take a wide variety of different forms. For example, the pivot arm 134 may be any member that is pivotable with respect to the frame 102 to move the drive assembly 104 upward and downward with respect to the frame. The illustrated pivot arm 134 includes a forward link 180 and a caster assembly 170, which includes a rearward link 182. In the embodiment illustrated by FIGS. 1 and 2, the drive assembly 102 is fixed to the forward link 180 and a rearward link 182 that supports the rear anti-tip wheel. The rear anti-tip wheel 108 may be coupled to the rearward link 182 in any manner where movement of the pivot arm 134 causes movement of the rear anti-tip wheel 108. The forward link 180 and the rearward link 182 of the pivot arm 134 may be fixed relative to one another as indicated schematically by brace member 184. It should be understood that no actual brace member 184 is required. Rather, the schematic brace member merely indicates any fixed connection between the forward link 180 and the rearward link 182 or that the links are integrally formed. Alternatively, the forward link 180 and the rearward link 182 may be independent members that are pivotable about a common pivot axis or pivotable about two separate pivot axes (See FIGS. 4A and 4B). When the forward link 180 and the rearward link 182 are not fixed together, they may optionally be coupled together by an extendable link 186 (See FIGS. 20A, 20B, and 20C), which would replace the fixed brace member.

The axis 110 can be positioned at a wide variety of different locations with respect to the frame 102. For example, the pivot axis 110 can be positioned at any position on the frame or below the frame using with one or more brackets, etc. In the embodiment illustrated by FIGS. 1 and 2, the drive assembly pivot axis 110 of the drive assembly 104 is below an axis of rotation 112 of a drive axle 114 of the drive assembly 104.

The pivot arm 134 may be a substantially rigid member that is connected to the motor drive 130 and the rear anti-tip wheel 108. In one embodiment, the pivot arm 134 is flexible or one or more portions of the pivot arm are flexible to provide inherent shock absorbing properties in the pivot arm. The pivot arm 134 may be made from a wide variety of materials, including, but not limited to, metals and plastics.

The biasing member 172 can take a wide variety of different forms. Any spring device, devices or assembly can be used as the biasing member. The biasing member may be a single spring, a bi-directional spring, or multiple spring elements. The biasing member may include a shock absorbing component, for example, the biasing member may be a shock absorber 2006 with a spring return (See FIG. 20C).

In the example illustrated by FIGS. 1 and 2, a spring mount 190 is fixed to the frame 102. The biasing member 172 is disposed between the spring mount 190 and the pivot arm 134. The biasing member 172 illustrated by FIG. 1 is a compression spring that biases the rearward link 182 downward relative to the frame 102 as indicated by arrow 192. An optional stop 194 may be fixed to the frame to limit downward movement of the rearward link 182 with respect to the frame. In one embodiment, the biasing member is not fixed to the mount 190 or the pivot arm 134. In another embodiment, the biasing member is connected to one or both of the mount 190 and the pivot arm 134.

In the embodiment illustrated by FIGS. 1 and 2, the downward biasing of the rearward link 182 causes upward biasing of the forward link 180. FIGS. 1, 1A, 1B and 1C illustrate that the biasing member 172 can be an extension spring or a compression spring positioned at a variety of different locations to provide the upward drive assembly/downward rearward link 182 biasing. For example, in FIG. 1A the biasing member 172 is an extension spring positioned below the rearward link 182. In FIG. 1B, the biasing member 172 is an extension spring positioned above the forward link 180. In FIG. 1C, the biasing member 172 is a compression spring positioned below the forward link 180. In another embodiment, the biasing member 172 is configured to bias the forward link 180 downward and rearward link 182 upward. This can be accomplished in a variety of different ways. For example, in the examples illustrated by FIGS. 1 and 1C, the biasing member 172 can be changed from a compression spring to an extension spring and, in the examples illustrated by FIGS. 1A and 1B, the biasing member 172 can be changed from an extension spring to a compression spring. In another embodiment, the biasing member 172 is configured to bias the pivot arm 134 to a home position, such as the position relative to the frame illustrated by FIG. 1. Biasing to a home position can be accomplished in a variety of different ways. For example, a bidirectional spring can be coupled to the pivot arm and/or any one or more of the spring arrangements that bias the rear link 182 downward can be used with any one or more of the spring arrangements that bias the forward link 180 downward. In an exemplary embodiment, the biasing member is configured such that the drive wheel 132 and the rear anti-tip wheel 108 engage the horizontal support surface 119 when the wheelchair is at rest on the horizontal support surface.

The first and second front anti-tip wheels 120, 121 may take a wide variety of different forms. For example, the wheels 120, 121 may be wheels of caster assemblies (see for example, rear caster assemblies 170) or the wheels may be mounted for rotation only about a substantially horizontal axis 173, as in the embodiment illustrated by FIG. 1. In the illustrated embodiment, the first and second front anti-tip wheels 120, 121 are located forward of the drive wheels 132. The front anti-tip wheels 120, 121 may be disposed on the horizontal support surface 119 or spaced apart from the horizontal support surface 119 when the wheelchair is at rest or in a normal operating position, as in the embodiment illustrated by FIG. 1. In one exemplary embodiment, the front anti-tip wheels 120, 121 may include integral suspension elements, such as resilient spokes.

The first and second front anti-tip wheels 120, 121 are supported by first and second arms 191 that are coupled to the frame 102. However, any number of arms and front anti-tip wheels may be included. In the example illustrated by FIGS. 1 and 2, the arms 191 are fixedly connected to the frame. However, in other embodiments, the arms 191 may be suspended from the frame such that the arms are moveable with respect to the frame. For example, the arms 191 may be pivotally connected to the frame (See for example arm 1790 in FIG. 16C) and/or coupled to the frame for translational movement relative to the frame (See for example coupling 806 in FIG. 8A). The first and second arms 191 may take a wide variety of different forms. The arms 191 may be rigid or substantially rigid. In one embodiment, the arms 191 are flexible to provide inherent shock absorbing properties in the arm. The arms 191 may be made from a wide variety of materials, including, but not limited to, metals and plastics. In the example illustrated by FIGS. 1 and 2, the arms 191 are rigid. An axle that defines the axis of rotation 173 of each of the front anti-tip wheels 120, 121 is connected to each of the arms. As such, the front anti-tip wheels 120, 121 are connected to the arms 191 such that positions of axes of rotation 173 of the front anti-tip wheels with respect to the frame 102 are fixed. In the example illustrated by FIGS. 1 and 2, the front anti-tip idler wheels 120, 121 are spaced apart from the horizontal support surface 119 when the wheelchair is at rest or in the normal operating position on the horizontal support surface 119.

FIGS. 3A-3H illustrate a more specific embodiment of the wheelchair 100 illustrated by FIGS. 1 and 2. It should be understood that the present application is not limited to the more specific embodiment illustrated by FIGS. 3A-3H. FIG. 3A illustrates the wheelchair 100 at rest in the normal operating position on the horizontal support surface 119. FIG. 3B illustrates the wheelchair of FIG. 3A with the drive wheel 132 schematically illustrated to more clearly illustrate the suspension 106. FIGS. 1D and 3D-3G illustrate operation of the wheelchair 100. More specifically, these views are elevational views that illustrate embodiments of the wheelchair 100 traversing over an obstacle 300 by ascending the obstacle.

Referring to FIGS. 1D and 3D, the drive wheels 132 bring the front anti-tip wheels 120, 121 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120, 121 up and onto the obstacle. The drive wheels 132 remain on the ground and the upward movement (indicated by arrow 302) of the front anti-tip wheels 120, 121 causes the frame 102 to rotate (indicated by arrow 304) about the pivot axis 110 of the suspensions 106, 107. The rotation 304 of the frame 102 relative to the pivot axis causes compression (indicated by arrows 306) of the biasing member 172. As a result, additional downward force is applied to the rear anti-tip wheel 108.

Referring to FIG. 3E, the drive wheels 132 continue to drive the wheelchair 100 forward. The drive wheels 132 engage and climb over the obstacle 300. As the drive wheels 132 move up and over the obstacle, the biasing member 172 forces the rear anti-tip wheel 108 down.

Referring to FIG. 3F, the drive wheels 132 move the wheelchair 100 further forward on the obstacle 300. The rear anti-tip wheels 108 engage the obstacle 300. The biasing member 172 cushions the impact between the rear anti-tip wheels 108 and the obstacle. The drive wheels 132 continue to drive the wheelchair 100 forward and pull the rear anti-tip wheels 108 up onto the obstacle 300.

Referring to FIG. 3G, a variety of situations can cause forward tipping of a wheelchair. For example, traveling down a hill, decelerating rapidly, and driving off of an obstacle, such as a curb can cause forward tipping. In the example illustrated by FIG. 3F, the front anti-tip wheels 120, 121 engage the support surface 119 to prevent excessive forward tipping.

FIGS. 4A and 4B illustrate another embodiment of a wheelchair 400. The wheelchair 400 has separate forward and rearward links 180, 182. Referring to FIG. 4B, as in all of the embodiments described herein, the wheelchair 400 may include any number of rear anti-tip wheels. For example, FIG. 4B illustrates that the wheelchair 400 may include a single center anti-tip wheel (shown in phantom), first and second rear anti-tip wheels (shown in solid lines), or three rear anti-tip wheels (all of the illustrated anti-tip wheels). The forward link 180 is pivotally connected to the frame 102 at a pivot axis 410 and the rearward link 182 is pivotally connected to the frame at a pivot axis 411. The pivot axes 410, 411 may be positioned at any location with respect to the frame 102, including locations near or below the frame. The pivot axis 410 may be forward or rearward of the axis of rotation 112 of the drive wheel. The pivot axis 410 may be coincident with the pivot axis 411. The separate links 180, 182 allow for independent movement of the drive assembly 104 relative to the rear anti-tip wheel 108. Separate biasing members 472, 473 bias the links 180, 182 downward relative to the frame as indicated by arrows 420, 422 respectively. An optional motion transfer link 402 may be coupled to the forward and rearward links 180, 182 to control relative motion therebetween. The motion transfer link 402 can take a wide variety of different forms. For example, the link may be rigid, flexible, or extendible in length. Any link or arrangement that transfers at least some portion of motion in at least one direction of the forward link 180 to the rearward link 182 and/or vice versa can be used as a motion transfer link 402. Examples include, but are not limited to springs, struts, shock absorbers, rigid links, flexible links, belts, wires, cam arrangements, gear trains, any combination of these, etc.

FIG. 5 illustrates the wheelchair 400 traversing over an obstacle 300. The drive wheels 132 bring the front anti-tip wheels 120 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120 up and onto the obstacle. The rear anti-tip wheels are biased against the ground by the biasing member 473 and the drive wheels 132 are biased against the ground by the biasing member 472. Upward movement (indicated by arrow 502) of the front anti-tip wheels 120 causes the frame 102 to cant. The canting of the frame 102 may cause some relaxation of the biasing member 472 and/or some compression of the biasing member 473. The drive wheels 132 continue to drive the wheelchair 400 forward, and the drive wheels climb over the obstacle 300. The drive wheels 132 move the wheelchair 400 further forward to pull the rear anti-tip wheels over the obstacle 300.

FIGS. 6A and 6B illustrate another embodiment of a wheelchair 600. The wheelchair 600 has a pivot arm 134 and one or more rear anti-tip wheels 108 are connected to the frame 102 by a fixed arm 602. The drive assembly 104 is connected to the pivot arm 134. The pivot arm 134 is pivotally connected to the frame 102 at a pivot axis 610. The pivot axis 610 may be positioned at any location with respect to the frame 102, including locations near or below the frame. The pivot axis 610 may be forward or rearward of the axis of rotation 112 of the drive wheel. The biasing member 172 biases the pivot arm 134 downward relative to the frame as indicated by arrow 618.

FIG. 7 illustrates the wheelchair 600 traversing over an obstacle 300. The drive wheels 132 bring the front anti-tip wheels 120 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120 up and onto the obstacle. The drive wheels 132 are biased against the ground by the biasing member 172. Upward movement (indicated by arrow 702) of the front anti-tip wheels 120 causes the frame 102 to pivot about the pivot axis 610 (indicated by arrow 704). The pivoting of the frame 102 may cause some relaxation of the biasing member 172 depending on the arrangement of the biasing member. The drive wheels 132 continue to drive the wheelchair 600 forward, and the drive wheels climb over the obstacle 300. The drive wheels 132 move the wheelchair 600 further forward to pull the rear anti-tip wheels 108 over the obstacle 300.

FIGS. 8A and 8B illustrate another embodiment of a wheelchair 800. In the exemplary embodiment illustrated by FIGS. 8A and 8B, the wheelchair includes track suspension assemblies 806, 807 (see FIG. 8B). The suspension assemblies 806, 807 are mirror images of one another. As such, only suspension assembly 806 is described in detail. The suspension assembly 806 may be any arrangement that defines a path of travel of the drive assembly 104 with respect to the frame 102. For example, the suspension assembly 806 may include at least one track 808, at least one follower 810, and at least one biasing member 172, such as a spring or other similar device. The illustrated suspension assembly 806 includes two tracks 808 and two followers 810, but any number of tracks and followers can be used. The illustrated followers 810 are attached to the drive assembly 104 and the tracks 808 are attached to the frame 102. Alternatively, the followers 810 could be attached to the frame 102 with the tracks 808 attached to the drive assembly 104. Further, the drive assembly 104 and/or frame 102 may be otherwise coupled to the tracks 808 and followers 810. In the illustrated embodiment, the followers 810 are slideably disposed in the tracks 808 such that the tracks 808 define the path of relative movement of the drive assembly 104 relative to the frame 102.

The illustrated tracks 808 are linear and define a path of travel that extends in a generally vertical direction. However, the tracks can be configured to define a path of travel having any shape, extending in any direction, including arcuate shapes. The path of travel can have one or more straight and/or curved portions. Further, an arrangement may be included to rotate the drive assembly 104 relative to the frame 102 as the drive assembly 104 moves along the path of travel.

The biasing member 172 can take a wide variety of different forms, as described above. In the example illustrated by FIGS. 8A and 8B, the biasing member 172 is disposed in the track 808 between an end 812 of the track and the follower 810. This arrangement biases the drive assembly 104 downward relative to the frame 102. However, the biasing member 172 can be arranged in any manner to provide a biasing force between the drive assembly 104 and the frame 102. The biasing member 172 may be connected directly to the frame 102 and the drive assembly 104 or through one or more intermediate members. An optional stop 894, such as the end surface of the track, may be fixed to the frame to limit downward movement of the drive assembly 104 with respect to the frame. In an exemplary embodiment, the biasing member 172 causes the drive wheel 132 to engage the horizontal support surface 119 when the wheelchair is at rest on the horizontal support surface.

In the example illustrated by FIGS. 8A and 8B, the wheelchair 800 has a rearward link 882 that supports the rear anti-tip wheel 108. The rearward link 882 is optionally pivotally connected to the frame at a pivot axis 810. The pivot axis 810 may be positioned at any location with respect to the frame 102, including locations near or below the frame. The separate link 882 allow for independent movement of the drive assembly 104 relative to the rear anti-tip wheel 108. A separate biasing member 873 biases the link 882 downward relative to the frame 102 as indicated by arrow 820.

FIG. 9 illustrates the wheelchair 800 traversing over an obstacle 300. The drive wheels 132 bring the front anti-tip wheels 120 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120 up and onto the obstacle. The rear anti-tip wheels 108 are biased against the ground by the biasing member 873 and the drive wheels 132 are biased against the ground by the biasing member 172. Upward movement (indicated by arrow 802) of the front anti-tip wheels 120 causes the frame 102 to cant. The canting of the frame 102 may cause some relaxation of the biasing member 172 and some compression of the biasing member 873. The drive wheels 132 continue to drive the wheelchair 800 forward, and the drive wheels climb over the obstacle 300. The drive wheels 132 move the wheelchair 800 further forward to pull the rear anti-tip wheels over the obstacle 300.

FIGS. 10A and 10B illustrate another embodiment of a wheelchair 1000. The wheelchair 1000 is similar to the wheelchair 800, with the exception that the movement of the rear anti-tip wheels 108 relative to the frame 102 is at least partially linked to movement of the drive assembly 104 relative to the frame. This coupling can be accomplished in a wide variety of different ways. In the example illustrated by FIG. 10A, the relative movement of the drive assembly 104 relative to the rear anti-tip wheels 108 is restricted by another track and follower arrangement 1002. However, any arrangement can be used. Any link or arrangement that transfers at least some portion of motion in at least one direction of the drive assembly 104 to the rear anti-tip wheel 108 can be used.

The illustrated track and follower arrangement 1002 includes at least one track 1008, at least one follower 1010, and at least one coupling member 1012. The illustrated follower 1010 is attached or coupled to the pivot link 882 and the track 1008 is attached to the frame 102. Alternatively, the follower 1010 could be attached to the frame 102 with the track 1008 attached to the pivot link 882. In the illustrated embodiment, the follower 1010 is slideably disposed in the track 1008. The illustrated track 1008 is linear and defines a path of travel that extends in a generally vertical direction. However, the tracks can be configured to define a path of travel having any shape, extending in any direction, including arcuate shapes. The path of travel can have one or more straight and/or curved portions.

In the illustrated embodiment, the coupling member 1012 couples the follower 1010 to the drive assembly 104. As a result, the position of the rear anti-tip wheel 108 is at least partially dependent on the position of the drive assembly 104. The coupling member 1012 can take a wide variety of different forms. Any arrangement of transferring at least some portion of movement of the drive assembly 104 to the follower can be used. In the illustrated embodiment, the follower 1012 is an extension of the link 882 that is engaged by the drive assembly 104 when the drive assembly moves upward relative to the frame 102. This upward movement of the follower 1010 relative to the frame translates into downward movement of the rear anti-tip wheel relative to the frame 102 in the embodiment illustrated by FIG. 10A.

The wheelchair 1000 will traverse obstacles in generally the same manner as the wheelchair 800, except the movement of the rear anti-tip wheel 108 relative to the frame is somewhat dependent on the position of the drive assembly 104 relative to the frame.

FIGS. 11A and 11B illustrate another embodiment of a wheelchair 1100. The wheelchair 1100 is similar to the wheelchair 1000, except the rear anti-tip wheel 108 is connected to the frame 102 by a fixed arm 1102. FIG. 12 illustrates the wheelchair 1100 traversing over an obstacle 300. The drive wheels 132 bring the front anti-tip wheels 120 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120 up and onto the obstacle. The drive wheels 132 are biased against the ground by the biasing member 172. Upward movement (indicated by arrow 1102) of the front anti-tip wheels 120 causes the frame 102 to cant. The canting of the frame 102 may cause some relaxation of the biasing member 172 depending on the arrangement of the biasing member. The drive wheels 132 continue to drive the wheelchair 1100 forward, and the drive wheels climb over the obstacle 300. The drive wheels 132 move the wheelchair 1100 further forward to pull the rear anti-tip wheels 108 over the obstacle 300.

FIGS. 13A and 13B illustrate another embodiment of a wheelchair 1300. The wheelchair 1300 is similar to the wheelchair 800, except the rear anti-tip wheels 108 are each coupled to the frame 102 by a track suspension assembly 1306. The suspension assembly 1306 may be any arrangement that defines a path of travel of the rear anti-tip wheel with respect to the frame. For example, the suspension assembly 1306 may include at least one track 1308, at least one follower 1310, and at least one biasing member 173, such as a spring. The illustrated suspension assembly 1306 includes two tracks 1308 and two followers 1310, but any number of tracks and followers can be used. The illustrated followers 1310 are attached to an arm 1350 that carries the rear anti-tip wheel 108 and the tracks 1308 are attached to the frame 102. Alternatively, the followers 1310 could be attached to the frame 102 with the tracks 1308 attached to the rear anti-tip wheel. Further, the rear anti-tip wheels 108 and/or the frame 102 may be otherwise coupled to the tracks 1308 and followers 1310. In the illustrated embodiment, the followers 1310 are slideably disposed in the tracks 1308 such that the tracks 808 define the path of relative movement of the rear anti-tip wheels 108 with respect to the frame 102. The illustrated tracks 808 are linear and define a path of travel that extends in a generally vertical direction. However, the tracks can be configured to define a path of travel having any shape, extending in any direction. The path of travel can have one or more straight and/or curved portions. Further, the arm 1350 can be pivoted or rotated relative to the frame as the arm 1350 and connected anti-tip wheel 108 moves along the path of travel.

The biasing member 173 can take a wide variety of different forms as described above. In the example illustrated by FIGS. 13A and 13B, the biasing member 173 is disposed in the track 1308 between an end 1312 of the track and the follower 1310. This arrangement biases the anti-tip wheel 108 downward relative to the frame 102. However, the biasing member 173 can be arranged in any manner to provide a biasing force between the rear anti-tip wheel 108 and the frame 102. The biasing member 173 may be connected directly to the frame 102 and the anti-tip wheel 108 or through one or more intermediate members. A stop 1394, such as the end surface of the track, may be fixed to the frame to limit downward movement of the rear anti-tip wheel 108 with respect to the frame. In an exemplary embodiment, the biasing member 173 causes the rear anti-tip wheel 108 to engage the horizontal support surface 119 when the wheelchair is at rest on the horizontal support surface.

Referring to FIG. 13A, an optional motion transfer link 1352 (not shown in FIG. 13B) may be coupled to the drive assembly 104 and the rear anti-tip wheel 108 to control relative motion therebetween. The motion transfer link 1352 can take a wide variety of different forms. For example, the link may be rigid, flexible, or extendible in length. Any link 1352 or arrangement that transfers at least some portion of motion in at least one direction of the drive assembly 104 to the rear anti-tip wheel 108 can be used.

FIGS. 14A and 14B illustrate another embodiment of a wheelchair 1400. The wheelchair 1400 is similar to the wheelchair 1300, except the track suspension assemblies 806 are replaced with the pivot arm 180 and biasing member 172 arrangement shown in FIGS. 4A and 4B. An optional motion transfer link 1452 (not shown in FIG. 14B) may be coupled to the drive assembly 104 and the rear anti-tip wheel 108 to control relative motion therebetween. The motion transfer link 1452 can take a wide variety of different forms and can be coupled to the suspension assemblies in a wide variety of different ways, including, but not limited to, pivot connections, etc. For example, the link may be rigid, flexible, or extendible in length. Any link 1452 or arrangement that transfers at least some portion of motion in at least one direction of the drive assembly 104 to the rear anti-tip wheel 108 can be used.

FIG. 15 is a schematic view illustrating drive wheels 132 suspended to sides 1500 of the frame 102. In one embodiment, one or more wheels that are suspended from the frame, such as drive wheels 132, front anti-tip wheels 120, 121 (not shown in FIG. 15) and/or rear anti-tip wheels 108 (not shown in FIG. 15), are suspended such that upward and downward movement of the wheel does not result in significant fore and aft movement of the suspended wheel. This can be accomplished in a variety of different ways. For example, the track and follower arrangements disclosed above may be configured to have this effect. In FIG. 15, drive wheels 132 are coupled to the frame 102 by a pivot arm 1502. A pivot axis 1504 of the pivot arm 1502 is perpendicular or substantially perpendicular to an axis of rotation 112 of the drive wheel (which is generally perpendicular to the sides 1500 of the frame). As a result, when the pivot arm 1502 pivots upward or downward, the drive wheel 132 does not move substantially fore or aft with respect to the frame 102. Any of the suspensions of wheels relative to the frame disclosed in this application can be replaced with this type of suspension.

FIGS. 16 and 17 illustrate another embodiment of a wheelchair 1700. The wheelchair 1700 includes a frame 102, a seat 103 supported by the frame, first and second drive assemblies 104, 105, first and second suspension assemblies 1706, 1707, first and second front anti-tip wheels 120, 121, and a pair of rear anti-tip wheels 108. Each drive assembly 104, 105 is coupled to the frame 102. In the embodiment illustrated by FIGS. 16 and 17, the drive assemblies are fixed to the frame 102. However, the drive assemblies 104, 105 can alternatively be coupled to the frame in a manner that allows relative movement between the drive assemblies and the frame 102. For example, the drive assemblies 104, 105 can be coupled to the frame 102 using any of the suspension assemblies disclosed in this application.

In the example illustrated by FIGS. 16 and 17, the suspension assemblies 1706, 1707 are mirror images of one another. As such, only suspension assembly 1706 is described in detail. In the exemplary embodiment, a front anti-tip wheel 120 is positioned forward of the drive wheels 122 and the rear anti-tip wheel 108 is positioned rearward of the drive wheels. The suspension 1706 includes a linkage 1709 and a biasing member 172. The linkage 1709 couples the front anti-tip wheel 120 to the rear anti-tip wheel 108 such that movement of the front anti-tip wheel relative to the frame 102 is transferred to the rear anti-tip wheel 108 and/or vice versa. The linkage 1709 may take a wide variety of different forms. Any arrangement that transfers motion of the front anti-tip wheel 120 relative to the frame 102 to the rear anti-tip wheel 108 can be employed. In the exemplary embodiment illustrated by FIGS. 16 and 17, the linkage 1709 couples the front anti-tip wheel 120 to the rear anti-tip wheel 108 such that upward movement of the front anti-tip wheel 120 relative to the frame 102 causes upward movement of the rear anti-tip wheel 108 relative to the frame and/or vice versa. A wide variety of different linkages or arrangements may couple the front anti-tip wheel 120 and the rear anti-tip wheel 108 such that upward movement of the front anti-tip wheel 120 relative to the frame 102 causes upward movement of the rear anti-tip wheel 108 relative to the frame and/or vice versa. The illustrated linkage 1709 is but one example of the many different arrangements that may be used.

The linkage 1709 includes a front anti-tip pivot arm 1790, a rear anti-tip pivot arm 1734, and a connecting link 1711. The front anti-tip pivot arm 1790 is pivotally connected to the frame 102 at a pivot axis 1713. A forward portion 1735 of the front anti-tip pivot arm 1790 extends forward from the pivot axis 1713 and a rearward portion 1737 of the front anti-tip pivot arm 1790 extends rearward from the pivot axis 1713. The rear anti-tip pivot arm 1734 is pivotally coupled to the frame 102 at a pivot axis 1710. A forward portion 1780 of the rear anti-tip pivot arm 1734 extends forward from the pivot axis 1710 and a rearward portion 1782 of the rear anti-tip pivot arm 1734 extends rearward from the pivot axis. The pivot axis 1713 and the pivot axis 1710 can be positioned at a wide variety of different locations. For example, the pivot axis 1713 and the pivot axis 1710 can be positioned at any position on the frame and/or positions below the frame by one or more brackets. In the embodiment illustrated by FIG. 16, the pivot axis 1713 is forward and below the axis of rotation 112 of the drive wheel 132. In the embodiment illustrated by FIG. 16C and the embodiment illustrated by FIG. 19, the pivot axis 1713 is aligned with the axis of rotation 112 of the drive wheel. In another embodiment, the pivot axis is positioned below the axis of rotation 173 of the front anti-tip wheel. In the embodiments illustrated by FIGS. 16 and 19B, the pivot axis 1710 is positioned forward of a midplane 1750 (i.e. a plane located at a position half way between the front and the back of the frame). The illustrated pivot axis 1710 is located at or near a bottom of the frame. Nevertheless, pivot axis 1710 can also be positioned very near or even at or behind the mid-plane 1750.

The pivot arms 1734, 1790 may be substantially rigid members or may be flexible to provide inherent shock absorbing properties in the pivot arm. The pivot arms 1734, 1790 may be made from a wide variety of materials, including, but not limited to, metals and plastics.

The connecting link 1711 couples the front anti-tip pivot arm 1790 to the rear anti-tip pivot arm 1734. The connecting link may take a variety of different forms and may be coupled to the pivot arms 1734, 1790 in a wide variety of different ways. The connecting link 1711 may have any configuration that transfers motion between the front anti-tip pivot arm 1790 and the rear anti-tip pivot arm 1734. In the example illustrated by FIG. 17, the connecting link 1711 is a rigid member that is pivotally connected to the front anti-tip pivot arm 1790 at a pivot axis 1792 and that is pivotally connected to the rear anti-tip pivot arm at a pivot axis 1794. The connecting link could also be flexible, or extendible in length and can be coupled to the pivot arms in any manner.

The biasing member 172 can take a wide variety of different forms. Any spring device, devices, or assembly can be used as the biasing member. The biasing member may be a single spring, a bi-directional spring, or multiple spring elements. The biasing member may include a shock absorbing component, for example, the biasing member may be a shock absorber with a spring return 2006 (See FIG. 20C). In the example illustrated by FIGS. 16 and 17, the biasing member 172 is disposed between a mount 1790 that is fixed to the frame and the pivot arm 1734. The biasing member 172 illustrated by FIG. 16 is a compression spring that biases the rear anti-tip arm 1734 downward as indicated by arrow 1762. A stop 194 may be fixed to the frame to limit downward movement of the pivot arm 1734 with respect to the frame. In the embodiment illustrated by FIGS. 16 and 17, the downward biasing of the rear pivot arm 1734 causes downward biasing of the forward anti-tip arm 1790 through the connecting link 1711 as indicated by arrow 1764.

FIGS. 16A-16C illustrate that the biasing member 172 can be an extension spring or a compression spring positioned at a variety of different locations to provide the downward front and rear pivot arms 1790, 1734 biasing. For example, in FIG. 16A the biasing member 172 is an extension spring positioned below the rear anti-tip arm 1734. In FIG. 16B the biasing member 172 is an extension spring positioned above the front anti-tip arm 1790. In FIG. 16C, the biasing member 172 is a compression spring positioned above the front anti-tip arm 1790. In another embodiment, the biasing member 172 is configured to bias the front and rear anti-tip arms 1790, 1734 upward. This can be accomplished in a variety of different ways. For example, in the examples illustrated by FIGS. 16 and 16C, the biasing member 172 can be changed from a compression spring to an extension spring and in the examples illustrated by FIGS. 16A and 16B, the biasing member 172 can be changed from an extension spring to a compression spring. In another embodiment, the biasing member 172 is configured to bias the pivot arm 134 to a home position, such as the position relative to the frame illustrated by FIG. 16.

Biasing to a home position can be accomplished in a variety of different ways. For example, a bidirectional spring can be coupled to the linkage 1709 and/or any one or more of the spring arrangements that bias the pivot arms downward can be used with any one or more of the spring arrangements that bias the pivot arms upward. In an exemplary embodiment, whether the biasing member 172 biases the arms upward, downward, or to a home position, the biasing member causes the rear anti-tip wheel 108 to engage the horizontal support surface 119 and the front anti-tip wheel to be spaced apart from the horizontal support surface when the wheelchair is at rest on the horizontal support surface. In another embodiment, the front anti-tip wheel 120 engages the horizontal support surface 119 when the wheelchair is at rest on the horizontal support surface.

The front anti-tip wheel 120 is connected to the forward end 1735 of the front anti-tip arm 1790 and the rear anti-tip wheel is connected to the rearward end 1782 of the rear anti-tip arm 1734. As noted above, the first and second front anti-tip wheels 120, 121 and the rear anti-tip wheels 108 may take a wide variety of different forms. In the embodiment illustrated by FIGS. 16 and 17, the front anti-tip wheels 120, 121 are mounted for rotation only about a substantially horizontal axis 173 and the rear anti-tip wheels 108 are wheels of caster assemblies 170.

FIGS. 19A-19F illustrate a more specific embodiment of the wheelchair 1700 illustrated by FIGS. 16 and 17. It should be understood that the present application is not limited to the more specific embodiment illustrated by FIGS. 19A-19D. FIG. 19A illustrates the wheelchair 1700 at rest in the normal operating position on the horizontal support surface 119. FIG. 19B illustrates the wheelchair of FIG. 19A with the drive wheel 132 shown schematically to more clearly illustrate the suspension 1706.

FIGS. 18 and 19C-19E illustrate operation of the wheelchair 1700 to traverse over an obstacle 300. Referring to FIGS. 18 and 19C, the drive wheels 132 bring the front anti-tip wheels 120 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120, 121 up and onto the obstacle. This cause the anti-tip wheels 120 to move upward with respect to the frame 102, which, in turn, causes the anti-tip wheels 108 to move upward relative to the frame 102. In the embodiments illustrated by FIGS. 18 and 19C, the linkage 1709 transfers the upward movement of the front anti-tip wheel 120 to the rear anti-tip wheel 108 against the biasing force of the biasing member 172. When anti-tip wheel 120 moves upward, the front anti-tip pivot arm 1790 rotates about the pivot axis 1713 as indicated by arrow 1910. In the embodiment illustrated by FIG. 19C, the pivot axis 1713 is coincident with the axis of rotation 112 of the drive wheel 132, but could be positioned at any location. The rotation of the front anti-tip pivot arm 1790 forces the connecting link 1711 downward as indicated by arrow 1912. The downward movement of the connecting link 1711 causes the rear anti-tip pivot arm 1734 to rotate about the pivot axis 1710 as indicated by arrow 1914. The rearward portion 1782 of the rear anti-tip pivot arm 1734 moves relatively upward with respect to the frame against the biasing force of the biasing member 172 as indicated by arrow 1916. The drive wheels 132 and the rear anti-tip wheels 108 remain on the ground and the upward movement (indicated by arrow 302) of the front anti-tip wheels 120 may cause the frame 102 to cant.

Referring to FIG. 19D, the drive wheels 132 continue to drive the wheelchair 1700 forward. The drive wheels 132 engage and climb over the obstacle 300. Referring to FIG. 19E, the drive wheels 132 move the wheelchair 1700 further forward on the obstacle 300. The rear anti-tip wheels 108 engage the obstacle 300. The biasing member 172 cushions the impact between the rear anti-tip wheels 108 and the obstacle. The drive wheels 132 continue to drive the wheelchair 1700 forward and pull the rear anti-tip wheels 108 up onto the obstacle 300.

Referring to FIG. 19F, a variety of situations can cause forward tipping of a wheelchair. For example, traveling down a hill, decelerating rapidly, and driving off of an obstacle, such as a curb can cause forward tipping. In the example illustrated by FIG. 19F, the front anti-tip wheels 120 engage the support surface to prevent excessive forward tipping. When the front anti-tip wheels 120, 121 engage the support surface 119, the biasing member 172 is compressed by the linkage 1709 to cushion the impact with the support surface.

In one exemplary embodiment, the amount of force applied by the biasing member 172, and/or the position of the pivot axis 1713 can be adjusted or selected to control the amount of resistance to forward tip provided by the front anti-tip pivot arm 1790. For example, the resistance to forward tip can be increased for a heavy user by increasing a spring constant of the biasing member and/or shortening the distance between the pivot axis 1713 and the front anti-tip wheel 120. The spring constant of the biasing member can be decreased and/or the distance between the pivot axis 1713 and the front anti-tip wheel 120 can be increased to provide smoother curb climbing for a lighter user that may need less resistance to forward tip.

FIGS. 23 and 24 illustrate another embodiment of a wheelchair 2300. The wheelchair 2300 includes a frame 102, first and second drive assemblies 104, 105, first and second suspension assemblies 2306, 2307, first and second front anti-tip wheels 120, 121, and one or more rear anti-tip wheels 108. Each drive assembly 104, 105 is coupled to the frame 102. In the embodiment illustrated by FIGS. 23 and 24, the drive assemblies are fixed to the frame 102. However, the drive assemblies 104, 105 can alternatively be coupled to the frame in a manner that allows relative movement between the drive assemblies and the frame 102. For example, the drive assemblies 104, 105 can be coupled to the frame 102 using any of the suspension assemblies disclosed in this application or any other suspension arrangement.

In the example illustrated by FIGS. 23 and 24, the suspension assemblies 2306, 2307 are mirror images of one another. As such, only suspension assembly 2306 is described in detail. In the exemplary embodiment, a front anti-tip wheel 120 is positioned forward of the drive wheels 122 and the rear anti-tip wheel 108 is positioned rearward of the drive wheels. The suspension 2306 includes a linkage 2309 and a biasing member 172. The linkage 2309 couples the front anti-tip wheel 120 to the rear anti-tip wheel 108 such that movement of the front anti-tip wheel relative to the frame 102 is transferred to the rear anti-tip wheel 108 and/or vice versa. The linkage 2309 may take a wide variety of different forms. Any arrangement that transfers motion of the front anti-tip wheel 120 relative to the frame 102 to the rear anti-tip wheel 108 and/or vice versa can be employed. In the exemplary embodiment illustrated by FIGS. 23 and 24, the linkage 2309 couples the front anti-tip wheel 120 to the rear anti-tip wheel 108 such that upward movement of the front anti-tip wheel 120 relative to the frame 102 causes upward movement of the rear anti-tip wheel 108 relative to the frame and vice versa. A wide variety of different linkages or arrangements may couple the front anti-tip wheel 120 and the rear anti-tip wheel 108 such that upward movement of the front anti-tip wheel 120 relative to the frame 102 causes upward movement of the rear anti-tip wheel 108 relative to the frame and/or vice versa. The illustrated linkage 2309 is but one example of the many different arrangements that may be used.

The linkage 2309 includes a front anti-tip pivot arm 2390, a rear anti-tip pivot arm 2334, and a connecting link 2311. The front anti-tip pivot arm 2390 is pivotally connected to the frame 102 at a pivot axis 2313. A first portion 2335 of the front anti-tip pivot arm 2390 extends forward from the pivot axis 2313 and a second portion 2337 of the front anti-tip pivot arm 2390 extends upward from the first portion 2335. The rear anti-tip pivot arm 2334 is pivotally coupled to the frame 102 at a pivot axis 2310. A forward portion 2380 of the rear anti-tip pivot arm 2334 extends forward from the pivot axis 2310 and a rearward portion 2382 of the rear anti-tip pivot arm 2334 extends rearward from the pivot axis. The pivot axis 2313 and the pivot axis 2310 can be positioned at a wide variety of different locations. For example, the pivot axis 2313 and the pivot axis 2310 can be positioned at any position on the frame and/or positions below the frame by one or more brackets. In the embodiment illustrated by FIG. 23, the pivot axis 2313 is forward and below the axis of rotation 112 of the drive wheel 132. In the embodiment illustrated by FIG. 23, the pivot axis 2310 is positioned forward of a midplane 2350 (i.e. a plane located at a position half way between the front and the back of the frame). The illustrated pivot axis 2310 is located at or near a bottom of the frame. Nevertheless, pivot axis 2310 can also be positioned very near or even at or behind the mid-plane 2350.

The pivot arms 2334, 2390 may be substantially rigid members or may be flexible to provide inherent shock absorbing properties in the pivot arm. The pivot arms 2334, 2390 may be made from a wide variety of materials, including, but not limited to, metals and plastics.

The connecting link 2311 couples the front anti-tip pivot arm 2390 to the rear anti-tip pivot arm 2334. The connecting link may take a variety of different forms and may be coupled to the pivot arms 2334, 2390 in a wide variety of different ways. The connecting link 2311 may have any configuration that transfers motion between the front anti-tip pivot arm 2390 and the rear anti-tip pivot arm 2334. In the example illustrated by FIG. 23, the connecting link 2311 is a rigid member that is pivotally connected to the front anti-tip pivot arm 2390 at a pivot axis 2392 and that is pivotally connected to the rear anti-tip pivot arm at a pivot axis 2394. The connecting link could also be flexible, or extendible in length and can be coupled to the pivot arms in any manner.

The biasing member 172 can take a wide variety of different forms. Any spring device, devices, or assembly can be used as the biasing member. The biasing member may be a single spring, a bi-directional spring, or multiple spring elements. The biasing member may include a shock absorbing component, for example, the biasing member may be a shock absorber with a spring return 2006 (See FIG. 20C). In the example illustrated by FIG. 23, the biasing member 172 is connected (optionally pivotally connected) between a first mount 2391 that is connected to the frame 102 and a second mount 2393 that is connected to the front pivot arm 2390. The biasing member 172 illustrated by FIG. 23 is a compression spring that biases the front anti-tip arm 2390 downward as indicated by arrow 2364. A stop 194 may be fixed to the frame to limit downward movement of the pivot arm 2334 and/or the pivot arm 2390 with respect to the frame. In the embodiment illustrated by FIG. 23, the downward biasing of the front pivot arm 2390 causes downward biasing of the rear anti-tip arm 2334 through the connecting link 2311 as indicated by arrow 2362.

The embodiment illustrated by FIG. 23A is similar to the embodiment illustrated by FIG. 23, except, the biasing member 172 is connected (optionally pivotally connected) between a first mount 2391A that is connected to the frame 102 and a second mount 2393A that is connected to the rear pivot arm 2334 (instead of the front pivot arm 2390). In the embodiment illustrated by FIG. 23A, the downward biasing of the rear pivot arm 2334 causes downward biasing of the front anti-tip arm 2390 through the connecting link 2311 as indicated by arrow 2364.

The biasing member 172 can be an extension spring, a compression spring, or any type of extendible or retractable device or member positioned at a variety of different locations to provide the downward front and rear pivot arms 2390, 2334 biasing. In another embodiment, the biasing member 172 is configured to bias the front and rear anti-tip arms 2390, 2334 upward. This can be accomplished in a variety of different ways. For example, the biasing member 172 can be changed to apply force in the direction opposite the direction indicated by arrow 2364.

In the embodiment illustrated by FIG. 23, the front and rear anti-tip wheels 120, 108 are biased into contact with the support surface. However, the front and rear anti-tip wheels 120, 108 can be biased to any home position. For example, the front anti-tip wheel 120 or the rear anti-tip wheel 108 can be biased to a home position that is above the support surface. Biasing to a home position can be accomplished in a variety of different ways. For example, a bidirectional spring can be coupled to the linkage 2309 and/or any one or more spring arrangements that bias the pivot arms downward can be used with any one or more spring arrangements that bias the pivot arms upward. In an exemplary embodiment, whether the biasing member 172 biases the arms upward, downward, or to a home position, the biasing member causes the front anti-tip wheel 120 and the rear anti-tip wheel 108 to engage the horizontal support surface 119 when the wheelchair is at rest on the horizontal support surface. In another embodiment, the front anti-tip wheel 120 is spaced apart from the horizontal support surface 119 when the wheelchair is at rest on the horizontal support surface.

The front anti-tip wheel 120 is a wheel of a caster assembly. The illustrated front anti-tip wheel is rotatable about a caster axis 175. The illustrated front anti-tip wheel is connected to the forward end 2335 of the front anti-tip arm 2390 and the rear anti-tip wheel is connected to the rearward end 2382 of the rear anti-tip arm 2334. As noted above, the first and second front anti-tip wheels 120, 121 and the rear anti-tip wheels 108 may take a wide variety of different forms. In the embodiment illustrated by FIG. 23, the front anti-tip wheels 120, 121 and the rear anti-tip wheels 108 are wheels of caster assemblies.

FIGS. 26A and 26B illustrate a more specific embodiment of the wheelchair 2300 illustrated by FIGS. 23 and 24. It should be understood that the present application is not limited to the more specific embodiment illustrated by FIGS. 26A and 26B. FIG. 26A illustrates the wheelchair 2300 at rest in the normal operating position on the horizontal support surface 119. FIG. 26B illustrates the wheelchair of FIG. 26A with the drive wheel 132 removed to more clearly illustrate the suspension 2306.

FIGS. 25 and 25A illustrate operation of the exemplary embodiments of the wheelchair 2300 to traverse over an obstacle 300. The drive wheels 132 bring the front anti-tip wheels 120 into engagement with the obstacle 300. The drive wheels 132 force the anti-tip wheels 120, 121 up and onto the obstacle. This cause the anti-tip wheels 120 to move upward with respect to the frame 102, which, in turn, causes the anti-tip wheels 108 to move upward relative to the frame 102. The linkage 2309 transfers the upward movement of the front anti-tip wheel 120 to the rear anti-tip wheel 108 against the biasing force of the biasing member 172. The biasing member 172 is compressed as indicated by arrows 2500 in FIG. 25 and arrows 2500A in FIG. 25A. When anti-tip wheel 120 moves upward, the front anti-tip pivot arm 2390 rotates about the pivot axis 2313 as indicated by arrow 2410. The rotation of the front anti-tip pivot arm 2390 forces the connecting link 2311 downward as indicated by arrow 2412. The downward movement of the connecting link 2311 causes the rear anti-tip pivot arm 2334 to rotate about the pivot axis 2310 as indicated by arrow 2414. The rearward portion 2382 of the rear anti-tip pivot arm 2334 moves relatively upward with respect to the frame against the biasing force of the biasing member 172 as indicated by arrow 2416. The drive wheels 132 and the rear anti-tip wheels 108 remain on the ground and the upward movement (indicated by arrow 302) of the front anti-tip wheels 120 may cause the frame 102 to cant.

The drive wheels 132 continue to drive the wheelchair 2300 forward. The drive wheels 132 engage and climb over the obstacle 300. The drive wheels 132 move the wheelchair 2300 further forward on the obstacle 300. The rear anti-tip wheels 108 engage the obstacle 300. The biasing member 172, through the linkage 2309 in the FIG. 23 embodiment (or directly in the FIG. 23A embodiment), cushions the impact between the rear anti-tip wheels 108 and the obstacle. The drive wheels 132 continue to drive the wheelchair 2300 forward and pull the rear anti-tip wheels 108 up onto the obstacle 300.

A variety of situations can cause forward tipping of a wheelchair. The front anti-tip wheels 120 are configured to engage the support surface to prevent excessive forward tipping. When the front anti-tip wheels 120, 121 engage the support surface 119, the biasing member 172 is compressed by the linkage 2309 to cushion the impact with the support surface.

In one exemplary embodiment, the amount of force applied by the biasing member 172, and/or the position of the pivot axis 2313 can be adjusted or selected to control the amount of resistance to forward tip provided by the front anti-tip pivot arm 2390. For example, the resistance to forward tip can be increased for a heavy user by increasing a spring constant of the biasing member and/or shortening the distance between the pivot axis 2313 and the front anti-tip wheel 120. The spring constant of the biasing member can be decreased and/or the distance between the pivot axis 2313 and the front anti-tip wheel 120 can be increased to provide smoother curb climbing for a lighter user that may need less resistance to forward tip.

In the embodiments disclosed above, the motion of one or more wheels with respect to the frame may be linked to the motion of one or more other wheels with respect to the frame. The wheels may be linked in a wide variety of different ways. For example, one or more rigid links may couple the relative motion of one or more wheels relative to the frame to one or more other wheels with respect to the frame or a variable length link may couple the relative motion of one or more wheels to one or more other wheels. FIGS. 20A, 20B, and 20C illustrate examples of variable length links. FIG. 20A illustrates a shock absorber 2002, FIG. 20B illustrates a spring 2004, and FIG. 20C illustrates a shock absorber with a spring return 2006. In these examples, the variable length links are pivotally connected to pivot arms, but the variable length links could be coupled to the wheels in any manner. A wide variety of other variable length links may also be used.

In one exemplary embodiment, one or more of the anti-tip wheels 120, 121, 108 of the wheelchair are replaced with an anti-tip structure that is not a wheel. Such an arrangement may be particularly useful applications where the corresponding wheel is normally off the ground. For example, the front anti-tip wheels 102, 121 in the embodiments disclosed above may be replaced with an anti-tip structure that is not a wheel. However, an anti-tip structure that is not a wheel may be used in any wheelchair configuration. Anti-tip wheels may be replaced with a wide variety of different anti-tip structures. For example, any structure capable of engaging an obstacle (for example, a curb), and sliding or otherwise moving over the obstacle can be used. Examples of anti-tip structures that can be used in place of a wheel include, but are not limited to, members with inclined surfaces (such as inclined skis), continuous tracks (such as those used on tanks), cylinders having a spiral flange (such as those used on screw propelled vehicles), rotatable geometric shapes (such as triangles, squares, etc), and the like.

FIG. 21A and 21B illustrate embodiments where the anti-tip structure is a ski 2100. The illustrated ski 2100 has arched contact surfaces 2102, but can have any shape and may be flat. FIGS. 22A and 22B illustrate embodiments where the anti-tip structures are continuous tracks 2200. The tracks 2200 include belts 2202 disposed around rollers 2204, such that the belts are moveable around the rollers.

The anti-tip structures may be mounted to the wheelchair in any orientation with respect to the wheelchair. In the embodiments illustrated by FIGS. 21A, 21B, 22A, and 22B, bottom or contact surfaces 2102, 2202 of the anti-tip structures are inclined upward, away from a support arm 2104 that connects or couples the anti-tip structure to the frame. This upward inclination facilitates movement of the anti-tip structure over the obstacle.

The anti-tip structures 2100, 2200 can be mounted or coupled to the support arm 2104 in a variety of different ways. In the embodiments illustrated by FIGS. 21A and 22A, the anti-tip structures 2100, 2200 are fixed to the support arm 2104. In the embodiments illustrated by FIGS. 21B and 22B, the anti-tip structures 2100, 2200 are moveably coupled to the support arm 2104. The anti-tip structures 2100, 2200 can be moveably coupled to the support arm 2104 in a variety of different ways. Any arrangement that allows the anti-tip structure 2100, 2200 to move with respect to the support arm 2104 can be used. In the illustrated examples, the anti-tip structures 2100, 2200 are pivotally connected to the support arm 2104. An optional biasing member 2150, such as a spring, biases the anti-tip structure 2100, 2200 forward as indicated by arrow 2152. The biasing member 2150 cushions impact between the anti-tip structure 2100, 2200.

While various inventive aspects, concepts and features of the inventions may be described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects, concepts and features may be used in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present inventions. Still further, while various alternative embodiments as to the various aspects, concepts and features of the inventions—such as alternative materials, structures, configurations, methods, devices and components, alternatives as to form, fit and function, and so on—may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the inventive aspects, concepts or features into additional embodiments and uses within the scope of the present inventions even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the inventions may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present disclosure, however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated. Moreover, while various aspects, features and concepts may be expressly identified herein as being inventive or forming part of an invention, such identification is not intended to be exclusive, but rather there may be inventive aspects, concepts and features that are fully described herein without being expressly identified as such or as part of a specific invention, the inventions instead being set forth in the appended claims. Descriptions of exemplary methods or processes are not limited to inclusion of all steps as being required in all cases, nor is the order that the steps are presented to be construed as required or necessary unless expressly so stated.

While the present invention has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. For example, pivotal connections can be made of any number of structures including bearing assemblies, pins, nuts and bolts, and frictionless sleeve assemblies. Additionally, springs or shock absorbers can be added between pivoting and non-pivoting components to limit, dampen, or somewhat resist the pivotal motions of these components. Therefore, the invention, in its broader aspects, is not limited to the specific details, the representative apparatus, and illustrative examples shown and described. Accordingly, departures can be made from such details without departing from the spirit or scope of the applicant's general inventive concept.

Cuson, Robert L., Bekoscke, Robert A., Stothard, Daniel J.

Patent Priority Assignee Title
10206832, Jul 07 2016 Permobil AB Swing arm linkage for a mid-wheel drive wheelchair
10226392, Jun 22 2016 IMMENSE WEALTH PRECISION INDUSTRY CO , LTD Electric wheelchair frame
11213441, Oct 25 2002 WILMINGTON SAVINGS FUND SOCIETY, FSB Suspension for wheeled vehicles
11234875, Feb 15 2012 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair suspension
11464687, Feb 08 2007 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair suspension
11535078, Feb 14 2007 WILMINGTON SAVINGS FUND SOCIETY, FSB Stability control system
11819464, Feb 08 2007 Invacare Corporation Wheelchair suspension
11850906, Feb 14 2007 Invacare Corporation Stability control system
11857470, Oct 09 2009 Invacare Corporation Wheelchair suspension
11903887, Feb 25 2020 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair and suspension systems
Patent Priority Assignee Title
1116086,
1151414,
1773254,
1973627,
2398211,
2427482,
2767995,
2949153,
2986200,
3104112,
3174176,
3191990,
3195670,
3210092,
3282605,
3314672,
3506079,
3573877,
3580591,
3589700,
3592282,
3602522,
3618968,
3627157,
3661228,
3664450,
3682462,
3689103,
3709313,
3848883,
3862751,
3876012,
3881773,
3883153,
3893529,
3901337,
3901527,
3905437,
3917312,
3930551, Jun 09 1973 SPASTICS SOCIETY, THE A BRITISH COMPANY Electric drive for wheel chairs
3952822, Mar 19 1973 Stiftelsen Teknisk Hjalp at Handikappade Permobilstiftelsen Electrically powered wheel-chair for indoor and outdoor use
3953054, Mar 19 1973 Permobilstiftelsen Hand operated wheel-chair
3976152, Dec 05 1973 Wheelchair having pivotable ramp for climbing curbs
4078817, Jun 10 1976 Reme Enterprises, Inc.; National Patent Search Associates, Inc. Shock absorber attachment for wheelchairs or the like
4108449, Jan 31 1977 Stair-climbing wheelchair
4118020, Aug 10 1977 CATERPILLAR INC , A CORP OF DE Spring assembly and method of assembly thereof
4119163, Oct 03 1977 Curb climbing wheel chair
4128137, Feb 24 1976 British Technology Group Limited Peripatetic vehicles
4190263, May 22 1978 Albuquerque Patents, Ltd. Wheelchair with shock absorber
4222449, Jun 08 1978 Step-climbing wheel chair
4245847, Oct 31 1977 Wheelchair
4247125, May 08 1978 Wheelchair
4264085, Apr 20 1979 Wheelchair convenience attachments
4310167, May 15 1980 The University of Virginia Alumni Patents Foundation Center of gravity wheelchair with articulated chassis
4333681, Nov 16 1979 Power operated reclining wheelchair
4337958, Jul 11 1980 Kawasaki Motors Corp. U.S.A. Suspension and stabilizing system for a snowmobile
4341278, Feb 19 1979 Wheelchair
4375295, Apr 20 1979 Detachable wheelchair backrest
4387325, Apr 15 1981 Invacare Corporation Electric wheelchair with speed control circuit
4405142, Mar 09 1981 Stainless Medical Products, Inc. Knock down wheel chair
4436320, May 07 1981 Everest & Jennings, Inc. Chassis for invalid wheelchairs
4437678, Aug 06 1980 Vehicular suspension
4455029, Apr 03 1981 Wheel chairs
4455031, Nov 27 1981 Wheelchair
4456295, Nov 12 1981 Bicycle seat adapter
4483407, Mar 26 1982 Hitachi, Ltd. Variable configuration track laying vehicle
4500102, Nov 16 1982 Invacare Corporation Sports wheelchair
4513832, May 03 1982 PERMOBIL AB, A SWEDEN CORP Wheeled chassis
4515385, Jun 08 1981 Wheelchair and attachment therefor
4542918, Oct 27 1981 The Spastics Scoiety Foldable wheelchairs
4545593, Nov 04 1983 Enhanced mobility wheelchair
4545616, Feb 25 1983 National Research Development Corporation Mobile chair with elevating seat
4556229, Jul 09 1982 Kleindienst GmbH Stair-climbing apparatus for wheelchair
4565385, Jan 16 1984 Tiltable supporting wheelchair
4592570, Oct 27 1983 Everest & Jennings Ultra light wheelchair
4618155, Nov 13 1985 Stair-climbing wheelchair
4641848, Apr 15 1985 DRIVE MEDICAL CANADA INC Wheelchair with rocking seat assembly
4655471, Jan 13 1986 GF HEALTH PRODUCTS, INC Wheelchair having adjustable backrest
4687068, Jan 27 1983 Australian Transcenders International Pty. Ltd. Invalid's wheelchair and like conveyances
4720223, May 07 1985 REXNORD INC Controlled preload, self-retracting captive fastener assembly
4721321, Nov 16 1982 Invacare Corporation Wheelchair with adjustable rear canes
4721322, Jun 17 1986 Anti-dive braking apparatus
4730842, Apr 18 1986 Wheel Ring, Inc. Adjustable wheelchair
4736983, Nov 26 1986 Shock absorber for a bicycle seat
4759418, Feb 24 1986 PROPEL PARTNERSHIP 1987, A REGISTERED ISRAELI PARTNERSHIP Wheelchair drive
4763910, Aug 23 1985 DIGITRON AG, AARAU Resiliently mounted, pivotable steering roll, especially for driverless vehicles
4805712, Apr 01 1986 The Spastics Society Wheelchair
4805925, Nov 16 1982 Invacare Corporation Adjustable rear wheel mounting assembly for wheelchairs
4811966, Jan 13 1987 The Spastics Society Kerb climbing device
4823900, May 01 1984 Four-wheel drive wheel-chair with compound wheels
4826194, Oct 26 1987 Two-wheel vehicle with auxiliary support system
4840394, Apr 21 1988 The United States of America as represented by the Administrator of the Articulated suspension system
4861056, Nov 12 1987 DUFFY, GEORGE Y, JR Folding wheelchair with improved frame and suspension system
4862983, Nov 26 1984 Truck body mount
4886294, May 12 1988 Anti-tip device for a vehicle
4905972, Jan 10 1985 The Secretary of State for Trade and Industry in Her Britannic Majesty's Damped spring
4919441, Dec 24 1986 Yamaha Hatsudoki Kabushiki Kaisha Vehicle with steering-controlled torsion bar stabilizer
4926952, Jun 09 1988 Four-wheel drive wheelchair with compound wheels
4934626, Jun 07 1988 TAKATA CORPORATION, NO 18-1, TORANOMON 1-CHOME, MINATO-KU, TOKYO, JAPAN Acceleration sensing device
4951766, Jan 12 1988 Octopedia GmbH Electric wheel-chair
4962942, May 22 1989 Triodyne Inc. Minimum energy curb negotiating wheelchair
4967864, Oct 05 1988 Everest & Jennings, Inc. Modular power drive wheelchair
4989890, Sep 30 1986 Invacare Corporation Length and width adjustable wheelchair
5020816, Jan 30 1989 Mulholland Designs, Inc. Adjustable frame wheelchair
5042607, Jun 22 1987 MEDISWEDE AB HONEKULLAVAGEN 7 S-435 44 MOLNLYCKE, SWEDEN CORPORATION OF SWEDEN Power driven vehicle for disabled
5044647, Nov 17 1989 PROTZMAN, JACK Stabilized reclining wheelchair seat
5044648, Apr 18 1989 KNAPP ENGINEERING, INC Bicycle suspension system
5076390, Jul 03 1990 Multiple mode wheelchair construction
5076602, Apr 27 1990 EVEREST & JENNINGS INTERNATIONAL LTD Seating system for a wheel chair
5113959, Sep 10 1989 Propel Partnership 1987 Electric drive attachment for a wheelchair
5123495, Jun 10 1988 Quest Technologies, Inc. Wheelchair stair climbing control system
5125468, Jun 02 1989 NOVESKY, ROGER Electric control for wheelchair drive unit
5137295, Feb 28 1991 GF HEALTH PRODUCTS, INC ; GRAHAM-FIELD HEALTH PRODUCTS, INC ; GRAHAM-FIELD, INC ; GRAHAM-FIELD EXPRESS DALLAS , INC ; GRAHAM-FIELD TEMCO, INC ; EVEREST & JENNINGS INTERNATIONAL LTD ; GRAHAM-FIELD BANDAGE, INC ; GRAHAM-FIELD EXPRESS PUERTO RICO , INC ; Everest & Jennings, Inc; LABAC SYSTEMS, INC ; MEDICAL SUPPLIES OF AMERICA, INC ; HEALTH CARE WHOLESALERS, INC ; RABSON MEDICAL SALES, LTD ; Smith & Davis Manufacturing Company; LUMEX BASIC AMERICAN HOLDINGS, INC FORMERLY KNOWN AS FUQUA ENTERPRISES, INC ; BASIC AMERICAN MEDICAL PRODUCTS, INC ; LUMEX MEDICAL PRODUCTS, INC ; KUSCHALL OF AMERICA, INC ; MUL ACQUISITION CORP II; LUMEX SALES AND DISTRIBUTION CO , INC ; BASIC AMEICAN SALES AND DISTRIBUTIONS CO , INC ; GRAHAM-FIELD SALES CORP ; ZENS DATA SYSTEMS, INC ; HC WHOLESALERS INC ; CRITICAL CARE ASSOCIATES, INC Wheelchair with anti-tip assembly
5156226, Oct 05 1988 Everest & Jennings, Inc. Modular power drive wheelchair
5176393, Apr 27 1990 GF HEALTH PRODUCTS, INC Modular wheelchair
5180025, Dec 13 1991 Wheeled-chair chassis with a suspension mechanism
5180275, May 28 1991 BRAUN CORPORATION, THE, A CORP OF INDIANA Rotary bus lift with power stowable platform
5181133, May 15 1991 RealD Inc Drive method for twisted nematic liquid crystal shutters for stereoscopic and other applications
5181733, Dec 13 1991 Anti-tip device for wheelchair
5183133, Mar 13 1991 Canadian Aging & Rehabilitation Product Development Corporation Motor-driven chair
5197559, Sep 04 1990 FORTRESS SCIENTIFIQUE DU QUEBEC LTEE 705 HODGE Foldable wheelchair with optional power or manual drive
5203610, Nov 14 1990 INVACARE CORPORATION, A CORP OF OH Reclining lift chair having wheels for transport
5209509, May 26 1990 Gunnell, Inc. Wheelchair footrest assembly
5222567, Apr 26 1991 Invacare Corporation Power assist device for a wheelchair
5228709, Sep 10 1992 WU, JOHNSON Wheelchair driving mechanism
5230522, Jun 25 1991 Apparatus for moving a wheelchair over stepped obstacles
5241876, Dec 17 1991 Houser Carter, Inc. Device for operating a wheelchair with one arm
5248007, Nov 21 1989 QUEST TECHNOLOGIES CORPORATION Electronic control system for stair climbing vehicle
5290055, Oct 07 1992 Wheelchair push bar and method
5294141, Nov 14 1990 Invacare Corporation Attended to self propelled convertible pivoting wheelchair
5297021, Nov 16 1992 FOLIO PRODUCTS, INC Zero shear recliner/tilt wheelchair seat
5301964, Mar 29 1993 THELMA F GARIN TRUST Wheelchair
5316328, Jun 14 1993 Amigo Mobility International, Inc. Bumper mounted anti-tip stabilizers for chair-mounting vehicles utilized by physically disadvantaged persons and others desiring mobility assistance, and methods of stabilizing such vehicles
5341533, Jan 25 1993 CREDIT SUISSE FIRST BOSTON MANAGEMENT CORPORATION Modular ramp
5351774, Jun 02 1992 SUNRISE MEDICAL US LLC Powered wheelchair with a detachable power drive assembly
5366037, Nov 23 1992 Invacare Corporation Powered wheelchair having drive motors integrated into driven wheels
5372211, Oct 01 1992 The United States of America as represented by the Administrator of the Method for surmounting an obstacle by a robot vehicle
5403031, Dec 08 1993 The Boler Company Parallelogram lift axle suspension system with a control for axle caster adjustment
5419571, Mar 08 1993 CP FORMATION LLC Wheel chair with provisions for patient walker
5435404, Jul 31 1992 Invacare Corporation Powered mobility chair for individual
5447317, Jun 25 1991 Method for moving a wheelchair over stepped obstacles
5464271, Apr 04 1994 Bicycle seatpost with pivotal suspension
5467838, Jan 19 1994 Automatically deployable vehicle stabilization system
5482261, Feb 15 1995 MATTHEW WARREN, INC Nested spring assembly
5485140, Jun 24 1994 Vehicle obstacle detector and alarm system
5489139, Apr 27 1995 Parallel link seatpost suspension
5513875, Sep 19 1991 Hitachi Construction Machinery Co., Ltd. Lockable suspension system for a work vehicle having a stabilizing link
5518081, Jul 15 1993 All-terrain, all-weather wheelchair
5531284, Jun 02 1992 Sunrise Medical HHG Inc Powered wheelchair with a detachable power drive assembly
5540297, Jun 15 1994 Invacare (Deutschland) GmbH Two-motor wheelchair with battery space
5562172, Jan 06 1994 Wheeled vehicle arrangement for distributing agricultural materials in fields having undulations such as soft walled levees and the like
5564512, Dec 17 1992 Richard van Seenus Nederland B.V. Wheelchair
5575348, Apr 15 1994 Invacare Corporation Powered wheelchair with adjustable center of gravity and independent suspension
5611555, Jan 04 1993 Articulated balancer with an oscillating axle and having locking possibilities
5628377, Jun 16 1995 M I C, Societe Anonyme Goods-handling cart with stabilizing wheels
5701122, Oct 04 1996 Electronic curb feeler
5727802, Jul 14 1994 GF HEALTH PRODUCTS, INC Suspension wheelchair and wheelchair frame
5727809, Nov 15 1993 Collapsible wheelchair
5762155, Nov 29 1994 Richard van Seenus Nederland B.V. Wheelchair frame and castor assembly
5772048, Apr 22 1996 Quick-release bicycle stand
5772226, Mar 18 1994 IDC Medical Lifting device for a stand-up wheelchair, and a wheelchair using the same
5772237, May 21 1996 MILLER TECHNICAL SERVICES, INC Suspension system for powered wheelchair
5833248, May 23 1996 Exedy Corporation Stairway ascending/descending vehicle having an arm member with a torque transmitting configuration
5848658, Oct 06 1997 Invacare Corporation Adjustable front wheel stabilizer for power wheelchair
5851018, Nov 12 1996 Invacare Corporation Camber adjustment assembly for a wheelchair
5851019, May 01 1997 Caribbean Billing International, Ltd Wheel chair with independent suspension
5853059, Apr 15 1994 Invacare Corporation Powered wheelchair with adjustable center of gravity and independent suspension
5855387, May 01 1997 Caribbean Billing International, Ltd. Wheel chair with independent suspension
5899475, Dec 31 1996 MEDEQUIP SUB 1 LIMITED Vehicle having wheels and castors
5904214, Jul 11 1997 Power assist anti-tip wheel system for invalid carriage
5921532, Oct 07 1994 NEWAY ANCHORLOK INTERNATIONAL, INC Air spring with internal support member
5944131, Nov 01 1996 Pride Mobility Products, Corporation Mid-wheel drive power wheelchair
5954351, Sep 19 1996 SAF-HOLLAND, GmbH Vehicle suspension system and assembly and mounting plate therefor
5957474, Feb 24 1997 PDG INC ; PDG PRODUCT DESIGN GROUP INC Wheelchair for large individuals
5964473, Nov 18 1994 Degonda-Rehab S.A. Wheelchair for transporting or assisting the displacement of at least one user, particularly for handicapped person
5988304, Jun 22 1994 Wheelchair combination
5996716, Oct 25 1996 Orthofab Adjustable wheelchair
6003624, Jun 06 1995 UNIVERSITY OF WASHINGTON, THE Stabilizing wheeled passenger carrier capable of traversing stairs
6029763, Aug 27 1997 ELECTROCRAFT, INC Worm gear assembly for a medical mobility apparatus permitting manual reverse mobility
6041876, Oct 06 1997 Invacare Corporation Anti-tip assembly for power wheelchair
6047979, Apr 03 1998 Geer Products Ltd. Wheelchair anti-tipping device
6062600, Jul 17 1996 DEKA Products Limited Partnership Anti-tipping mechanism
6068280, Sep 13 1996 TORRES, HANK G Self-leveling seat for a wheelchair
6070898, Aug 14 1998 Sunrise Medical HHG Inc Suspension system for a wheelchair
6073951, Oct 06 1997 Invacare Corporation Articulating seat/chassis interface for a wheelchair
6079698, Aug 18 1997 PPM TECHNOLOGIES Isolation system for vibratory equipment
6079725, Jul 24 1997 DUFFY, GEORGE Y, JR Folding wheelchair with improved suspension system
6095271, Oct 06 1997 Sunrise Medical HHG Inc Battery mounting system for a powered wheelchair
6129165, Jul 03 1996 Pride Mobility Products, Corporation Curb-climbing power wheelchair
6131679, Oct 06 1997 Invacare Corporation Anti-tip assembly for power wheelchair
6135222, Sep 11 1998 Nissin Medical Industries Co., Ltd. Installing structure for an electrically-driven wheelchair
6161856, Nov 13 1998 Invacare Corporation Wheelchair suspension system
6168178, May 02 1998 Sunrise Medical HHG Inc. Convertible wheelchair and a method for converting a wheelchair chassis
6176335, Jul 03 1996 Pride Mobility Products, Corporation Power wheelchair
6179076, Oct 06 1998 SUNNYBROOK & WOMEN S COLLEGE HEALTH SCIENCES CENTRE Motorized chair base
6186252, Nov 01 1996 Pride Mobility Products, Corporation Foldable midwheel drive power chair
6196343, Oct 23 1998 Invacare Corporation Mid-wheel drive wheelchair
6199647, Nov 01 1996 Pride Mobility Products Corporation Mid-wheel drive power wheelchair
6206119, May 05 1999 PIHSIANG MACHINERY MFG , CO , LTD Electrical wheelchair with double frame structure
6209670, Nov 16 1998 Sunnybrook & Women's College Health Science Centre Clutch for multi-directional transportation device
6217114, Dec 21 1995 Degonda-Rehab SA Stationary or wheeled inclinable seat arrangement, in particular for the sick or handicapped
6225894, Sep 24 1998 Meritor Heavy Vehicle Systems, LLC Roll-over detector for vehicles
6234263, Jan 22 1999 A & D Boivin Design Recreational vehicle
6234507, Aug 14 1998 SUNRISE MEDICAL US LLC Suspension system for a wheelchair
6241275, Jun 14 1999 Sunrise Medical HHG Inc. Foldable wheelchair and link configuration for foldable wheelchair
6264218, Jun 14 1999 Sunrise Medical HHG Inc. Adjustable wheelchair frame
6279927, Jun 06 1997 Misawahomu Kabushiki Kaisha; Kabushiki Kaisha Yunikamu Wheelchair
6312000, Oct 29 1999 SUNRISE MEDICAL US LLC Wheelchair fender and method of mounting wheelchair fender
6322089, Oct 05 1998 SAF-HOLLAND, GmbH Suspension for motor vehicles
6341657, Nov 18 1998 Electric Mobility Corporation Suspension for central drive vehicle
6341671, Jun 12 2000 Wheelchair parking brake
6347688, May 18 2001 Wheel chair rollback stop
6357793, Oct 29 1999 Sunrise Medical HHG Inc.; Sunrise Medical HHG Inc Anti-tip wheel
6375209, Oct 06 1997 Kurt Manufacturing Company Powered wheelchair
6394738, Feb 01 2000 Rite-Hite Holding Corporation Automatic outrigger for a vehicle
6405816, Jun 03 1999 DEKA Products Limited Partnership Mechanical improvements to a personal vehicle
6425597, Nov 13 1998 Invacare Corporation Lightweight wheelchair frame
6428020, Oct 28 1997 Wheeled conveyance
6428029, Feb 09 2001 Advanced Mobility Systems Corporation Wheelchair frame
6429541, Dec 27 1999 Aisin AW Co., Ltd.; AISIN AW CO , LTD Hybrid drive apparatus
6454286, Oct 18 1999 Takenaka Corporation Traveling device for smooth and stable movement on uneven and inclined surfaces
6460641, Jun 29 2000 Invacare Corporation Mid-wheel drive wheelchair with front wheel multiple bias suspension and anti-tip assembly
6460869, Aug 19 1998 Sollac Transverse member for a motor vehicle rear axle assembly
6494474, Nov 01 1999 Burke Mobility Products, Inc.; BURKE MOBILITY PRODUCTS, INC Adjustable wheelchair anti-tip assembly
6533305, Nov 27 2000 Motorcycle front wheel suspension system having pneumatic springs and a dedicated pressure air source
6533306, Jan 18 2001 Pride Mobility Products Corporation Adjustable height anti-tip wheels for a power wheelchair
6543564, May 27 1994 DEKA Products Limited Partnership Balancing personal vehicle
6543798, Apr 04 2000 Pride Mobility Products Corporation Anti-tip caster suspension for a wheelchair
6554086, Oct 27 2000 Invacare Corporation Obstacle traversing wheelchair
6568030, Feb 08 1999 KYB Corporation Caster
6581711, Feb 07 2000 Suspension assembly with compact design with low center of gravity application
6588799, Jan 09 2001 Vehicle anti-rollover device
6601863, Oct 06 1997 Invacare Corporation Mid-wheel drive wheelchair with rigid front wheel anti-tip stabilizer
6640916, Jul 03 1996 Pride Mobility Products, Corporation Mid-wheel drive power wheelchair
6684969, Apr 26 2001 Electric Mobility Corporation Changeable personal mobility vehicle
6688437, Apr 10 2001 Universal Medical Products, Inc. Wheelchair brake system with anti-rollback and anti-tip capabilities
6702306, Jun 08 2000 Pushchairs
6712369, Feb 28 2002 PiHsiang Machinery Mfg. Co., Ltd. Anti-turnover mechanism of electrical wheelchair
6715845, Jun 03 1999 DEKA Products Limited Partnership Mechanical improvements to a personal vehicle
6776430, Sep 09 2002 Pride Mobility Products Corporation Stabilizing system for a reclinable wheelchair
6851711, Aug 16 2002 WILMINGTON SAVINGS FUND SOCIETY, FSB Vehicle having an anti-dive/lockout mechanism
6857490, Dec 11 2001 Stair-climbing wheelchair
6923278, May 06 2002 Pride Mobility Products Corporation Adjustable anti-tip wheels for power wheelchair
6923280, Oct 27 2000 Invacare Corporation Obstacle traversing wheelchair
6935448, Oct 27 2000 Invacare Corporation Obstacle traversing wheelchair
6938923, Apr 30 2002 Pride Mobility Products Corporation Power wheelchair
7021641, Aug 13 2003 PI HSIANG MACHINERY MFG CO Suspension structure for wheelchair
7040429, Oct 10 2001 Invacare Corporation Wheelchair suspension
7055634, Oct 10 2001 Invacare Corporation Wheelchair suspension
7066290, Oct 19 2001 Invacare Corporation Wheelchair suspension having pivotal motor mount
7083195, Oct 25 2002 WILMINGTON SAVINGS FUND SOCIETY, FSB Suspension with releasable locking system
7100716, Jul 26 2001 Ulrich Alber GmbH Modular wheel chair
7175193, Feb 27 2003 PI HSIANG MACHINERY MFG CO Wheel bracket mechanism for an electric wheelchair equipped with auxiliary wheels
7219755, Oct 27 2000 Invacre Corp. Obstacle traversing wheelchair
7219924, Apr 30 2002 Pride Mobility Products Corporation Rear wheel drive power wheelchair with ground-contacting anti-tip wheels
7232008, Oct 08 2003 Pride Mobility Products Corporation Active anti-tip wheels for power wheelchair
7234554, Jul 02 2003 Pride Mobility Products Corporation Rear wheel drive power wheelchair
7264272, Mar 16 2004 Pride Mobility Products Corporation Bi-directional anti-tip system for powered wheelchairs
7273118, Jul 25 2005 Electric wheelchair frame
7293801, Aug 18 2003 WILMINGTON SAVINGS FUND SOCIETY, FSB Self-stabilizing suspension for wheeled vehicles
7316282, Oct 08 2003 Pride Mobility Products Corporation Anti-tip system for wheelchairs
7370876, Sep 23 2005 Kwang Yang Motor Co., Ltd. Wheelchair suspension
7374002, Oct 19 2001 Invacare Corporation Wheelchair suspension
7380824, Mar 09 2006 KWANG YANG MOTOR CO , LTD Wheelchair suspension
7389835, Oct 08 2003 Pride Mobility Products Corporation Active anti-tip system for power wheelchairs
7398842, May 24 2005 Articulating quad-drive wheelchair
7413038, Oct 08 2003 Pride Mobility Products Corporation Anti-tip system for a power wheelchair
7461897, Dec 05 2003 JZ CAPITAL PARTNERS LIMITED Seat positioning and control system
7472767, Oct 10 2001 Invacare Corporation Wheelchair suspension
7490683, Dec 15 2003 Curb-climbing power wheelchair
7506709, Oct 22 2004 GOLDEN TECHNOLOGIES INC Personal mobility vehicle suspension system having a compensation mechanism
7516984, Mar 08 2006 Jointed mechanism of electric wheelchair
7556109, Aug 31 2006 Kwang Yang Motor Co., Ltd. Electric wheelchair suspension
7597163, Oct 27 2000 Invacare Corporation Obstacle traversing wheelchair
7735591, Sep 18 2006 Pride Mobility Products Corporation Powered wheelchair having an articulating beam and related methods of use
7766106, Jul 14 2005 Pride Mobility Products Corporation Powered wheelchair configurations and related methods of use
7775307, Apr 25 2007 Merite Health Products Co., Ltd. Power wheelchair
7828310, Feb 25 2009 Karma Medical Products Co., Ltd. Chassis structure for mid-wheel drive power wheelchair
7882909, Sep 14 2006 PITTSBURGH, UNIVERSITY OF Personal vehicle
7896394, May 11 2006 SUNRISE MEDICAL US LLC Midwheel drive wheelchair with independent front and rear suspension
8037953, Oct 17 2005 Pride Mobility Products Corporation Powered wheelchair having a side-access battery compartment
8113531, Aug 16 2006 SUNRISE MEDICAL US LLC Personal mobility vehicle having a pivoting suspension with a torque activated release mechanism
8118321, Aug 24 2007 Levo Wohlen Vehicle with central wheel drive, in particular a wheelchair or stand-up wheelchair
8172015, Oct 10 2001 Invacare Corporation Wheelchair suspension
8172016, Oct 27 2000 Invacare Corporation Obstacle traversing wheelchair
8177257, May 08 2007 Wheelchair base
8186463, Jun 24 2005 Degonda Rehab SA Wheelchair with middle wheel drive
8210556, Aug 18 2005 SUNRISE MEDICAL US LLC Midwheel drive wheelchair with independent front and rear suspension
8272461, Feb 08 2007 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair suspension
8286738, Jul 14 2009 Merits Health Products Co., Ltd. Wheel set structure of an electric wheelchair
8297388, Jan 12 2007 INVACARE INTERNATIONAL SARL Wheelchair with suspension arms
8573341, Oct 19 2001 Invacare Corporation Wheelchair suspension
865514,
8910975, Feb 14 2007 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair with suspension
9010470, Oct 09 2009 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair suspension
9308143, Feb 15 2012 WILMINGTON SAVINGS FUND SOCIETY, FSB Wheelchair suspension
9346335, Feb 14 2007 WILMINGTON SAVINGS FUND SOCIETY, FSB Stability control system
9370455, Oct 10 2001 Invacare Corporation Wheelchair suspension
20010011613,
20010013437,
20020023787,
20020088657,
20020175027,
20030030243,
20030075365,
20030122332,
20030168264,
20030168265,
20030201632,
20030205420,
20040004342,
20040032119,
20040060748,
20040084230,
20040094944,
20040144580,
20040150204,
20040159476,
20040168839,
20040188152,
20040232683,
20040262859,
20050034903,
20050077694,
20050077714,
20050077715,
20050127631,
20050151360,
20050206124,
20050206149,
20050225040,
20050225041,
20060021806,
20060076747,
20060076748,
20060082117,
20060086554,
20060201723,
20060213705,
20060244249,
20060249317,
20060255581,
20060266565,
20070018418,
20070023209,
20070039766,
20070080003,
20070095582,
20070107955,
20070181353,
20070209848,
20080053720,
20080083573,
20080087481,
20080157513,
20080208394,
20090091092,
20090121532,
20090145677,
20090295119,
20100004820,
20100013172,
20100065346,
20100084209,
20100102529,
20100301576,
20110083913,
20110215540,
20120217070,
20120217713,
20120299262,
20130207364,
CA2254372,
CN101636139,
CN1138825,
CN1839779,
D397645, Jul 03 1996 Pride Mobility Products, Corporation Motorized wheelchair
D404693, Jul 03 1996 Pride Mobility Products, Corporation Power wheelchair
D429665, Oct 29 1999 SUNRISE MEDICAL US LLC Wheelchair suspension
D491115, Jul 14 2003 Pride Mobility Products Corporation Power wheelchair
D632229, Apr 14 2009 Hoveround Corporation Personal mobility vehicle
DE10136368,
DE10136369,
DE1399822,
DE152186,
DE19806500,
DE2256934,
EP1147969,
EP127929,
EP1279391,
EP1279392,
EP1434345,
EP1479362,
EP1513479,
EP1522292,
EP1522295,
EP1582189,
EP18101,
EP2111204,
EP2226048,
EP268960,
EP312969,
EP339500,
EP369791,
EP419085,
EP445171,
EP511113,
EP677285,
EP702945,
EP829247,
EP841052,
EP908165,
EP908166,
EP927551,
EP988848,
FR2215054,
FR2399822,
FR2455886,
FR2498925,
FR2738147,
FR2749502,
FR27505,
FR2858764,
GB1503910,
GB151915,
GB154369,
GB2040237,
GB2061197,
GB2141980,
GB2224980,
GB265885,
GB474349,
GB841175,
JP11059506,
JP2000102569,
JP2000288032,
JP2001070347,
JP2001104391,
JP2001212181,
JP2001258948,
JP2001327545,
JP2002143223,
JP2002165841,
JP2004202264,
JP3011978,
JP410248877,
JP4158864,
JP57186589,
JP7328073,
JP8038552,
RE32242, Sep 24 1984 Quadra Wheelchairs, Inc. Wheelchair construction
SE431393,
WO8910,
WO9356,
WO12040,
WO54718,
WO66060,
WO101914,
WO234190,
WO3030800,
WO3034969,
WO3049664,
WO3101364,
WO4037569,
WO416451,
WO711668,
WO779346,
WO8100759,
WO8124953,
WO884462,
WO897879,
WO8200445,
WO8404451,
WO8706205,
WO8906117,
WO9005515,
WO9006097,
WO9209463,
WO9324342,
WO9413241,
WO9415567,
WO9615752,
WO9744206,
WO9846184,
WO9917700,
//////////////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 03 2010CUSON, ROBERT L Invacare CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0360420850 pdf
Dec 03 2010STOTHARD, DANIEL J Invacare CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0360420850 pdf
Dec 07 2010BEKOSCKE, ROBERT A Invacare CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0360420850 pdf
Apr 20 2015Invacare Corporation(assignment on the face of the patent)
Jul 26 2022Invacare CorporationGLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TERM LOAN 0611310814 pdf
Jul 26 2022FREEDOM DESIGNS, INC GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TERM LOAN 0611310814 pdf
Jul 26 2022Invacare CorporationGLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE I NOTES 0611310833 pdf
Jul 26 2022FREEDOM DESIGNS, INC GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE I NOTES 0611310833 pdf
Jul 26 2022Invacare CorporationGLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE II NOTES 0611310852 pdf
Jul 26 2022FREEDOM DESIGNS, INC GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE II NOTES 0611310852 pdf
Feb 02 2023MEDBLOC, INC PNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
Feb 02 2023FREEDOM DESIGNS, INC PNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
Feb 02 2023ADAPTIVE SWITCH LABORATORIES, INC PNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
Feb 02 2023Invacare CorporationPNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
Feb 02 2023INVACARE HOLDINGS, LLCPNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
Feb 02 2023INVAMEX HOLDINGS, LLCPNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
Feb 02 2023Invacare CorporationGLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0630900603 pdf
Feb 02 2023MOTION CONCEPTS L P GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0630900603 pdf
Feb 02 2023FREEDOM DESIGNS, INC GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0630900603 pdf
Feb 02 2023INVACARE CREDIT CORPORATIONPNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0627390687 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTInvacare CorporationINTELLECTUAL PROPERTY RELEASE TRANCHE II NOTES 0636010183 pdf
May 05 2023MOTION CONCEPTS L P WHITE OAK COMMERCIAL FINANCE, LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0635530217 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTFREEDOM DESIGNS, INC INTELLECTUAL PROPERTY RELEASE TRANCHE II NOTES 0636010183 pdf
May 05 2023FREEDOM DESIGNS, INC GLAS TRUST COMPANY LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE I NOTES 0640050231 pdf
May 05 2023MOTION CONCEPTS L P GLAS TRUST COMPANY LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE I NOTES 0640050231 pdf
May 05 2023Invacare CorporationGLAS TRUST COMPANY LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE I NOTES 0640050231 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS EXISTING COLLATERAL AGENTGLAS TRUST COMPANY LLC, AS SUCCESSOR COLLATERAL AGENTASSIGNMENT OF SECURITY INTEREST IN INTELLECTUAL PROPERTY RIGHTS0636250607 pdf
May 05 2023FREEDOM DESIGNS, INC WHITE OAK COMMERCIAL FINANCE, LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0635530217 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTInvacare CorporationINTELLECTUAL PROPERTY RELEASE TRANCHE I NOTES 0635940906 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTFREEDOM DESIGNS, INC INTELLECTUAL PROPERTY RELEASE TRANCHE I NOTES 0635940906 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTInvacare CorporationINTELLECTUAL PROPERTY RELEASE DIP PAYOFF 0635940272 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTFREEDOM DESIGNS, INC INTELLECTUAL PROPERTY RELEASE DIP PAYOFF 0635940272 pdf
May 05 2023GLAS TRUST CORPORATION LIMITED, AS COLLATERAL AGENTMOTION CONCEPTS L P INTELLECTUAL PROPERTY RELEASE DIP PAYOFF 0635940272 pdf
May 05 2023PNC Bank, National AssociationInvacare CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
May 05 2023PNC Bank, National AssociationADAPTIVE SWITCH LABORATORIES, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
May 05 2023PNC Bank, National AssociationFREEDOM DESIGNS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
May 05 2023PNC Bank, National AssociationMEDBLOC, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
May 05 2023Invacare CorporationWHITE OAK COMMERCIAL FINANCE, LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0635530217 pdf
May 05 2023FREEDOM DESIGNS, INC GLAS TRUST COMPANY LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE II NOTES 0636370705 pdf
May 05 2023MOTION CONCEPTS L P GLAS TRUST COMPANY LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE II NOTES 0636370705 pdf
May 05 2023Invacare CorporationGLAS TRUST COMPANY LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TRANCHE II NOTES 0636370705 pdf
May 05 2023PNC Bank, National AssociationINVAMEX HOLDINGS LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
May 05 2023PNC Bank, National AssociationINVACARE HOLDINGS, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
May 05 2023PNC Bank, National AssociationINVACARE CREDIT CORPORATIONRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0636950106 pdf
Sep 13 2024WHITE OAK COMMERCIAL FINANCE, LLCWILMINGTON SAVINGS FUND SOCIETY, FSBASSIGNMENT OF PATENT SECURITY AGREEMENT0688950111 pdf
Oct 29 2024FREEDOM DESIGNS, INC WILMINGTON SAVINGS FUND SOCIETY, FSB, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0693400095 pdf
Oct 29 2024MOTION CONCEPTS L P WILMINGTON SAVINGS FUND SOCIETY, FSB, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0693400095 pdf
Oct 29 2024Invacare CorporationWILMINGTON SAVINGS FUND SOCIETY, FSB, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0693400095 pdf
Nov 04 2024WILMINGTON SAVINGS FUND SOCIETY, FSBMOTION CONCEPTS L P RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0693520322 pdf
Nov 04 2024WILMINGTON SAVINGS FUND SOCIETY, FSBFREEDOM DESIGNS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0693520322 pdf
Nov 04 2024WILMINGTON SAVINGS FUND SOCIETY, FSBInvacare CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0693520322 pdf
Nov 05 2024GLAS TRUST COMPANY LLCInvacare CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0693860475 pdf
Nov 05 2024GLAS TRUST COMPANY LLCFREEDOM DESIGNS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0693860475 pdf
Nov 05 2024GLAS TRUST COMPANY LLCMOTION CONCEPTS L P RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0693860475 pdf
Date Maintenance Fee Events
Sep 13 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Mar 13 20214 years fee payment window open
Sep 13 20216 months grace period start (w surcharge)
Mar 13 2022patent expiry (for year 4)
Mar 13 20242 years to revive unintentionally abandoned end. (for year 4)
Mar 13 20258 years fee payment window open
Sep 13 20256 months grace period start (w surcharge)
Mar 13 2026patent expiry (for year 8)
Mar 13 20282 years to revive unintentionally abandoned end. (for year 8)
Mar 13 202912 years fee payment window open
Sep 13 20296 months grace period start (w surcharge)
Mar 13 2030patent expiry (for year 12)
Mar 13 20322 years to revive unintentionally abandoned end. (for year 12)