The method for resolving atherosclerotic plaque buildup and/or eroding unwanted tissue in a blood vessel includes the steps of: inserting an electrode in and along the lumen of a blood vessel; manually manipulating said electrode through the blood vessel; positioning said electrode proximate to atherosclerotic plaque buildup site or unwanted tissue site in the blood vessel; supplying a predetermined high-frequency, high-voltage electrical current to said electrode; maintaining said predetermined current for a predetermined time period; and sensing from time to time, the amount of plaque or unwanted tissue at the site.

The electrosurgical plaque-resolving or tissue-eroding device is adapted to be inserted within and along the lumen of a blood vessel and manipulated therethrough to a desired position where the device is operated to resolve atherosclerotic plaque buildup or erode tissue in the blood vessel according to the method to re-establish desired blood flow through the blood vessel or to remove tissue therefrom. The device comprises an elongate flexible hollow tubular body having a distal end and a proximal end. A hollow tip member is mounted at the distal end of the flexible hollow tubular body and an electrode is associated with the hollow tip member for resolving plaque or eroding tissue. A power supply circuit for supplying a high-frequency, high-voltage electrical current to the electrode is coupled to the electrode. A mechanism for sensing, from time to time, the amount of plaque or tissue at the site in the blood vessel is also provided with the device.

Patent
   RE33925
Priority
Dec 08 1988
Filed
Dec 08 1988
Issued
May 12 1992
Expiry
May 12 2009
Assg.orig
Entity
Large
310
39
all paid
1. An electrosurgical plaque-resolving or tissue-eroding device having a distal end which is insertable within and along the lumen of a blood vessel and manipulated manipulatable therethrough to a desired position without causing undue trauma where the device is operated to thermally resolve atherosclerotic plaque buildup or erode tissue in the blood vessel to re-establish desired blood flow through the blood vessel or to remove tissue therefrom, said device comprising: an elongate flexible hollow tubular body having a distal end, a proximal end, and a diameter smaller than the diameter of the vessel into which said device is inserted; first passage means within said tubular body for supplying a flushing fluid to the site where plaque or tissue is resolved or eroded; second passage means within said tubular body for evacuating, such as by suction, debris at the site of resolving plaque or eroding tissue from the site; a hollow tip member mounted at said distal end of said flexible hollow tubular body; an electrode adjacent to and in operative association with said hollow tip member for resolving plaque or eroding tissue, said tip member being beveled or rounded at the distal end of said device; means for supplying a high-frequency electrical current to said electrode for cutting tissue or coagulating body fluid; and means for sensing, from time to time, the amount of plaque or tissue at the site in the blood vessel.
2. The device of claim 1 wherein said hollow tip member is an electrode.
3. The device of claim 2 wherein said hollow tip member is made of stainless steel.
4. The device of claim 2 wherein said electrode has the shape of a stove pipe hat having its top removed, with the brim shaped portion of said electrode being at the distal end of said device.
5. The device of claim 2 wherein said electrode is an unobstructed ring electrode positioned within said first passage means of the hollow tip member, a distal end of said ring electrode being flush with the end of said tip member.
6. The device of claim 2 wherein said electrode has the shape of a hollow mushroom including a head which is situated at the distal end of the device.
7. The device of claim 2 including an electrical insulator which has a high temperature melting point and which connects said tip member electrode to said tubular body.
8. The device of claim 7 including a ring electrode between said electrical insulator and said tubular body to form said device as a bipolar device.
9. The device of claim 7 wherein said insulator is made of a material selected from the group consisting of glass, ceramic, fluorocarbon polymers, polyimide polymers and polyphenylene sulfide.
10. The device of claim 7 wherein said insulator has an inwardly stepped formation and said electrode is cup shaped, with a portion of its bottom removed, and is attached to a distal end of said electrical insulator with the cup walls surrounding said stepped formation.
11. The device of claim 1 wherein said electrode is covered with an ultra thin layer of insulation on the surface thereof which contacts the plaque or tissue buildup.
12. The device of claim 1 wherein said hollow tubular body is made of silicone rubber.
13. The device of claim 1 wherein said hollow tubular body is made of polyurethane.
14. The device of claim 1 wherein said hollow tubular body is made of polytetrafluoroethylene.
15. The device of claim 1 wherein said hollow tubular body is made of a polymeric substance capable of resisting softening during resolving.
16. The device of claim 1 wherein said hollow tip member is made of aluminum.
17. The device of claim 1 wherein said hollow tip member is made of tantalum.
18. The device of claim 1 wherein said hollow tip member is made of platinum.
19. The device of claim 1 wherein said high-voltage, high-frequency current supply means is capable of generating a pulsed current waveform having an intermittent group of pulses separated by periods of no current and being adapted for use in a coagulation mode of operation of said device.
20. The device of claim 19 wherein said pulsed current waveform has high voltage peaks and a low duty cycle.
21. The device of claim 1 wherein said high-voltage, high-frequency, current supply means is capable of generating a current waveform having a pure sine waveform.
22. The device of claim 1 wherein said high-voltage is several hundred volts.
23. The device of claim 1 wherein said high frequency is between 0.5 l and 20 8 megahertz.
24. The device of claim 1 wherein said sensing means further includes radio-opaque dye and X-ray viewing means, said radio-opaque dye being injected into the blood vessel at the site and the X-ray image showing the amount of plaque remaining being displayed on said viewing means.
25. The device of claim 1 further including a third passage means for carrying at least one conductor.
26. The device of claim 25 wherein said passage means are arranged with their axes contained within the diameter of said tubular body.
27. The device of claim 21 25 wherein said passage means are arranged with their axes eccentric of the axis of said tubular body.
28. The device of claim 25 wherein said first passage means opens onto a cylindrical side wall surface of said tubular body at a location adjacent said tip member.
29. The device of claim 25 wherein said first passage means extends through said tip memeber member and opens onto a front end surface of said tip member.
30. The device of claim 25 including a second electrode at the distal end of said tubular body.
31. The device of claim 30 wherein said tip member is made of a relatively high temperature resistance insulative material, said first electrode is mounted in said tip member and has an electrode surface on the distal end thereof, and said second electrode is a ring or sleeve electrode on said tubular body and located adjacent but rearwardly of said tip member.
32. The device of claim 30 wherein said tip member is made of a relatively high temperature resistance insulative material, and said first and second electrodes are semi-cylindrical in shape and are positioned with said tip member facing each other across the axis of said tip member.
33. The device of claim 30 including a fourth passage means for carrying a second wire conductor therein for connection to said second electrode.
34. The device of claim 25 including a trident structure at the proximal end of said tubular body, said trident structure having three legs each of which has a passageway communicating individually with a respective one of said passage means in said tubular body.
35. The device of claim 25 including a stiffening wire which extends through said first passageway for stiffening said tubular body.
36. The device of claim 1 including a collar at said distal end of said device, said collar having a bore therein and a countersunk formation in said bore, a front flat surface and an outer generally cylindrical surface, said electrode being fully received within said countersunk formation, having a bore therethrough which mates with and is flush with said bore of said collar, and having an annular front surface which is flush with said front surface of said collar, and said collar being beveled or rounded between the front surface and the outer surface.
37. The device of claim 1 wherein said sensing means includes means coupled to said electrode for measuring the impedance between said electrode through the plaque or tissue buildup and a current return path, the impedance measured being directly related to the amount of plaque or tissue buildup at the site.
38. The device of claim 37 wherein said impedance measuring means include means for supplying a low voltage DC current to said electrode for making the impedance measurement.
39. A cardiovascular thermal ablation device having a distal portion which is insertable into and along a lumen of a blood vessel to a desired position against an area of atherosclerotic plaque buildup or like obstruction within the lumen of the vessel without undue trauma, said device having means for thermally resolving the area of obstruction within the vessel and having means for removing resolved tissue from the area of thermal ablation, said device further comprising an elongate flexible hollow tubular body having a distal end and a proximal end; a hollow tip member mounted at said distal end of said flexible hollow tubular body; at least one electrode adjacent to and in operative association with said hollow tip member for resolving plaque or eroding tissue; said tip member being beveled or rounded at said distal end of said device; means for supplying electrical current to said electrode; means for sensing, between periods of application of electrical current to said electrode, the amount of plaque or tissue remaining to obstruct the site in the blood vessel by measuring the impedance of the plaque of or tissue; means for supplying fluid to, or for supplying suction from, the site including at least one channel extending through said flexible hollow tubular body and tip member, and said device having at least one further channel, at least one wire conductor in said further channel extending proximally from said at least one electrode to said proximal end of said device and means for connecting said conductor to a source of high frequency electrical current. 40. An electrosurgical plaque-eroding device having a distal end which is insertable within and along the lumen of a blood vessel and manipulatable therethrough without causing undue trauma to a desired position where the device is operated to thermally erode atherosclerotic plaque buildup in the blood vessel to reestablish desired blood flow through the blood vessel, said device comprising: an elongate flexible hollow tubular body having an inner lumen, a distal end, a proximal end, and an outer diameter smaller than the diameter of the vessel into which said device is inserted; a hollow tip member mounted at said distal end of said flexible hollow tubular body, having a distal end and a proximal end, and having an axial passageway therethrough communicating said tip member distal end with said lumen of said hollow tubular body; means for withdrawing material which collects at said tip member distal end; means for supplying flushing fluid to said tip member distal end; an electrode assembly adjacent to and in operative association with said hollow tip member and including first and second electrodes for thermally eroding plaque, said tip member being beveled or rounded at the distal end of said device to facilitate insertion thereof into a blood vessel, and means for supplying a high-frequency electrical current to said electrodes for cutting plaque,
which high frequency can extend up to 20 megahertz. 41. The electrosurgical plaque-eroding device of claim 40 wherein said means for withdrawing material which collects at said tip member distal end and said means for supplying flushing fluid to said tip member distal end are both defined by the inner lumen of the tubular body and the axial passageway through the hollow tip member which provide passage means for withdrawing material which collects at said tip member distal end and for supplying flushing fluid to said tip member distal end.
A cardiovascular thermal ablation device having a distal portion which is insertable into and along a lumen of a blood vessel without causing undue trauma to a desired position against an area of atherosclerotic plaque buildup or like obstruction within the lumen of the vessel, said device having means for thermally resolving the area of obstruction within the vessel, said device further comprising an elongate flexible hollow tubular body having an inner lumen, a distal end and a proximal end; a hollow tip member mounted to said distal end of said flexible hollow tubular body having a distal end and a proximal end, and having an axial passageway therethrough communicating said tip member distal end with said lumen of said hollow tubular body; means for withdrawing material which collects at said tip member distal end; means for supplying flushing fluid to said tip member distal end; said means for thermally eroding plaque including an electrode assembly adjacent to and in operative association with said hollow tip member and including two electrodes for eroding plaque; said tip member being beveled or rounded at said distal end of said device; means for supplying high frequency electrical current to said electrodes, which high frequency can extend up to 20 megahertz; and means for sensing, between periods of application of electrical current to said electrodes, the amount of plaque remaining at said position by measuring the impedance through the plaque between said
two electrodes. 43. The electrosurgical plaque-eroding device of claim 42 wherein said means for withdrawing material which collects at said tip member distal end and said means for supplying flushing fluid to said tip member distal end are both defined by the inner lumen of the tubular body and the axial passageway through the hollow tip member which provide passage means for withdrawing material which collects at said tip member distal end and for supplying flushing fluid to said tip
member distal end. 44. An elongate electrosurgical plaque-eroding device having a distal end which is insertable within, through and long the lumen of a blood vessel without causing undue trauma to the blood vessel to a desired position where the device is operated to thermally erode atherosclerotic plaque buildup in the blood vessel to re-establish desired blood flow through the blood vessel, said device comprising: an elongate flexible body having an inner lumen, a distal end, a proximal end, and an outer diameter smaller than the diameter of the vessel into which said device is inserted; a tip section at said distal end of said elongate flexible body having a distal end and a proximal end, and having an axial passageway therethrough communicating said tip section distal end with said lumen of said hollow tubular body; means for withdrawing material which collects at said tip section distal end; means for supplying flushing fluid to said tip section distal end; an electrode assembly adjacent to and in operative association with said tip section and including first and second electrodes for thermally eroding plaque, said tip section being rounded at the distal end of said device to facilitate insertion thereof into a blood vessel, and means coupled to said electrodes for supplying a high-frequency electrical current to said electrodes for cutting through said plaque, which high frequency can
extend up to 20 megahertz. 45. The electrosurgical plaque-eroding device of claim 44 wherein said means for withdrawing material which collects at said tip section distal end and said means for supplying flushing fluid to said tip section distal end are both defined by the inner lumen of the tubular body and the axial passageway through the hollow tip section which provide passage means for withdrawing material which collects at said tip section distal end and for supplying
flushing fluid to said tip section distal end. 46. A cardiovascular thermal ablation device having a distal portion which is insertable into and along a lumen of a blood vessel without causing undue trauma to a desired position against an area of atherosclerotic plaque buildup or like obstruction within the lumen of the vessel, said device having means for thermally resolving the area of obstruction within the vessel, said device further comprising an elongate flexible body having an inner lumen, a distal end and a proximal end; a tip section at said distal end of said elongate flexible body having a distal end and a proximal end, and having an axial passageway therethrough communicating said tip section distal end with said lumen of said hollow tubular body; means for withdrawing material which collects at said tip section distal end; means for supplying flushing fluid to said tip section distal end; said means for thermally eroding plaque including an electrode assembly adjacent to and in operative association with said distal end of said device; means coupled to said electrodes for supplying high frequency electrical current to said electrodes, which high frequency can be up to 20 megahertz; and means for sensing, between periods of application of electrical current to said electrodes, the amount of plaque remaining at said position by measuring the impedance through the plaque between said two electrodes. 47. The electrosurgical plaque-eroding device of claim 46 wherein said means for withdrawing material which collects at said tip section distal end and said means for supplying flushing fluid to said tip section distal end are both defined by the inner lumen of the tubular body and the axial passageway through the hollow tip section which provide passage means for withdrawing material which collects at said tip section distal end and for supplying flushing fluid to said tip section distal end.

manipulated therethrough to a position of atherosclerotic plaque or tissue buildup. The device 10 also can be referred to as a unipolar multilumen electrosurgical catheter 10.

The device 10 includes an elongate hollow tubular body or catheter 14 made of a flexible insulating material such as polyurethane and a hollow metal tip member 16, made of stainless steel, platinum, titanium or similar metal, mounted to a distal end 18 of the elongate tubular body 14. The metal tip member 16 is a monopolar electrode which supplies the electric current to a plaque buildup.

The return path for the current is through a large area, remote plate type, dispersive electrode typically placed onto a large, flat skin area on the patient, such as the thigh or belly.

The device 10 further is supplied by a high-frequency, high-voltage power supply coupled to proximal end 20 of the tubular body 14, and more particularly to a proximal end 21 of a wire conductor 22 that is connected to the hollow metal tip member 16 at its distal end 23. The wire conductor 22 extends through a hollow center passage 24 of the catheter body 14 between the tip member 16 and the high voltage power supply.

The tubular body 14 can be made of polyurethane, polyethylene or other biocompatible material which is suitable for intravascular use and which provides maximum flexibility to permit manipulation of the device 10 through a blood vessel to a desired position therein such as to a site of plaque buildup. The external and internal diameters of the tubular body 14 are sufficient to permit flexibility and adequate strength. Typically the tubular body 14 has a diameter approximately one third (1/3) the diameter of the blood vessel in which it is inserted.

The tip member 16 has a shaped distal end portion to facilitate insertion of the catheter 14 into and through a blood vessel. Moreover, there is a rounded, bevelled or chamferred nose 25 on tip member 16. The tip member 16 has a slightly smaller diameter than the body 14 whereby the distal end 18 extends over the outside of the tip member 16.

Also, an annular groove 26 is provided on tip member 16 for receiving a mating annular rib 27 on the inside of the distal end 18 of the tubular body 14 for holding the tip member 16 to the body 14. As shown, the tip member 16 has a central bore 28 which extends therethrough to communicate with the central passage 24 in the tubular body 14.

At the proximal end 20 there is a "Y" shaped fitting 29 made of polycarbonate or other suitable biocompatible material and having a straight through passage 30 and a branch passage 31. The wire conductor 22 passes through central passage 24 into the fitting 29 and through branch passage 31. A grommet 32 is located in passage 31 for positioning wire 22 and for preventing flow of fluid through branch passage 31.

At both ends of the fitting 29 there are counterbored recesses to receive therein the proximal end 20 of the catheter 14 near to proximal end 20. Similarly, a tube 34 fits inside and extends from the opposite end of fitting 29(away from the catheter 14) to deliver flushing fluid to or carry resolved debris away from the distal end 18.

A Bovie "Specialist" 75 watt E-S, Electro-Surgery Unit or similar Valleylabs unit can be used for the power supply.

The device 10 is used for ablating arteriosclerotic plaques, clots, etc. from viscera by supplying, to a site of plaque buildup, for example, a high-frequency, high-voltage current. Suction or irrigation can be applied to the straight passage 30 of the fitting 29 for removing debris during the ablating procedure.

In FIG. 2 is illustrated another embodiment of the plaque resolving or tissue eroding device of the present invention which is generally identified by the reference numeral 40. The device 40 also is adapted to e inserted along the lumen of a blood vessel and manipulatable therethrough to a position of atherosclerotic plaque or tissue buildup.

The device 40 includes an elongate hollow tubular body or catheter 44 made of an insulating material such as polytetrafluoroethylene sold under the trademark TFE TEFLON™ and a tip member 46 made of a modified stainless steel hypodermic tubing and mounted to distal end 48 of the elongate tubular body 44. The tip member could also be made from platinum, tantalum, aluminum or any other bio-compatible metal. Similarly some ultra thin insulating layers can be used, such as ceramic metal oxides or plastic over metal, for capacitively coupling electrical energy to tissue. The metal tip member 46 is a monopolar electrode which supplies the electric current to the plaque or tissue buildup.

The device 40 further includes a high-frequency, high-voltage electrical power supply (not shown) coupled to proximal end 50 of the tubular body 44 and more specifically to proximal end 51 of wire conductor 52.

Preferably, the wire conductor 52 is welded at its distal end 53 to the hollow metal tip member 46. The wire conductor 52 extends within a lumen 54 between the power supply and the tip member 46.

The tubular body 44 is made of a plastic, such as TEFLON™, a material which is suitable for intravascular use, which provides maximum flexibility so as to permit manipulation of the device 40 through a blood vessel to a desired position therein and which can withstand the high temperatures and voltage gradients briefly generated during the flow of the high-frequency, high-voltage cutting currents.

The external and internal diameters of the tubular body 44 are sufficient to provide flexibility and adequate strength. Typically the tubular body 44 has a diameter approximately one third (1/3) the diameter of the blood vessel within which it is inserted.

As shown, the tip member 46 has an annular end edge 56 designed for coring. The tip member 46 is of smaller diameter than the catheter 44 whereby the distal end 48 of the catheter 44 extends over part of the outside of the tip member 46. Two circumferential grooves 58,60 are formed on the inside wall of catheter 44 for receiving mating annular ribs 62,64 on the outside of the tip member 46 for connecting the tip member 46 to the body 44.

The tip member 46 has a central bore 66 which extends therethrough to communicate with the central lumen 54 in tubular body/catheter 44.

At the proximal end 50 of the catheter 44, a "Y" shaped fitting 68 having a straight through passage 70 and a branch passage 72 is bonded onto the proximal end of the catheter 44. The wire conductor 52 passes through central lumen 54 into the fitting 68 and through branch passage 72. Suction applied to a tube 78 connected to the proximal end of fitting 68 will draw off debris resolved by the tip member 46.

The operation of device 40 is similar to that described in connection with device 10 of FIG. 1 in terms of the power supply used and the procedure for use. It should be appreciated, however, that the construction of FIG. 2 can function at high power levels because of the use of a TEFLON™ catheter 44.

The inside diameters of lumen 54 and fitting passage 70 are substantially the same in the device 40 so that accumulation of debris therein is minimized. Also, the suction tube 78, which can be made of TGGON™ plastic tubing, is of larger inside diameter and is received over the proximal end of fitting 68, either directly or by means of a quick-connecting fitting.

The passage 72 can be closed with a seal grommet, if desired, or can be used for delivering flushing fluid to the tip member 46 in between applications of suction to fitting 68.

Referring now to FIG. 3, there is illustrated another plaque and tissue resolving device constructed according to the teachings of the present invention and generally identified by reference numeral 80. The device 80 is adapted to be inserted in and along the lumen of a blood vessel and is manipulatable therethrough to a position of atherosclerotic plaque or tissue buildup. The device 80 includes an elongated hollow tubular body or catheter 84 made of an insulating material such as RTV silicone rubber or thermoplastic material which is resistant to the effects of high temperature and is very flexible. A first electrode forming hollow metal tip member 86 is mounted to the distal end of an insulative sleeve or spool 88 made from a relatively high temperature dielectric material, such as alumina, ceramic or polyimide polymer. This insulating sleeve 88 is bonded inside a secondary sleeve electrode 90. The conductive hollow tip member 86 is separated from the secondary sleeve electrode 90 by the insulating spool 88. In use, electric current is applied to the plaque or tissue buildup across or between the electrodes 86 and 90.

The device 80 further includes a high-frequency, high-voltage electric current power supply (not shown) similar to power supplies referred to above.

Wire conductors 92 and 94 are connected respectively to electrodes 86 and 90 through openings in the insulating spool 88 and the catheter 84 and extend therefrom through a hollow center lumen 96 of the catheter 84 to the high-frequency, high-voltage power supply. Alternatively, the conductors 92 and 94 can be contained within subsidiary lumens in the catheter body 84. These subsidiary lumens are not shown for clarity, but their incorporation may be preferable when it is desired to increase the separation of the two conductors 92,94. In order to provide the subsidiary lumens for the two conductors 92 and 94, it is, of course, necessary to reduce the diameter of the primary lumen 96. Thus, a compromise is established between electrical characteristics and flushing efficacy which must be optimized for each specific application of the device 80. Even though the device 80 includes bipolar electrodes 86 and 90, the operation of the device 80 is substantially the same as the operation of the devices 10 and 40.

The tubular body 84 is preferably made of a silicone rubber, a material which is suitable for intravascular use and which provides extreme flexibility so as to permit manipulation of the device 80 through a blood vessel along for instance a guide wire (not shown) to a desired position.

Alternative materials, such as high-temperature thermoplastic fluorocarbon polymers (e.g. ethylene-chlorinated tetrafluoroethylene or fluorinated ethylene-propylene) may also be used for the catheter body 84. The external and internal diameters of the catheter tubular body 84 are sufficient to allow extreme flexibility and yet have adequate strength. The guide wire would be non-conductive and of small diameter to prevent interference with the electrodes.

The tip member 86 may be positioned against an area of atherosclerotic plaque or tissue buildup during the insertion process of the device 60. The tip member 86 has a curved or bevelled forward edge 98. The electrodes 86 and 90 are insulated from each other by insulative spool 88. As shown, the tip member 86 is generally cup-shaped and has a central distal opening 99 which extends beyond the insulating spool 88 and communicates with a central passage 102 within spool 88. The passage 102 communicates through spool 88 to the lumen 96 of catheter 84.

A "Y" or trident shaped fitting can be connected to a proximal end (not shown) of catheter 84. The wire conductors 92 and 94 extend from electrodes 86 and 90 through central lumen 96 for connection to a high-frequency, high-voltage power supply (not shown).

In operation, the bipolar electrodes 86 and 90 of the device 80 will conduct current to and from an area of plaque or tissue buildup which is eroded by the current. Any debris from this procedure then can be removed along lumen 96 by means of suction applied to the proximal end of the catheter 84. In use, the catheter might be introduced into the vessel and directed past the area of atherosclerotic plaque; the catheter would then be withdrawn through the plaque while suction is applied to the lumen 96 of the catheter and while high-voltage, high-frequency current is applied to the electrodes 86 and 90 to reduce and resolve the narrowing of the artery caused by the presence of the plaque. Alternatively, the catheter may be advanced through the plaque while suction and high-voltage, high-frequency current are applied, as described above for device 10.

In FIG. 4 there is illustrated another embodiment of the device of the present invention which is generally identified by reference numeral 110 and which includes an elongate hollow tubular body or catheter 114 made of a flexible insulating material, such as described above, and a hollow metal tip member 116 mounted to a support 118 which in turn, is mounted to a distal end 120 of the elongate tubular body 114. The metal tip member 116 is a monopolar electrode which supplies electric current to an area of plaque or tissue buildup. The device 110 is powered by a high-frequency, high-voltage power supply coupled to a proximal end (not shown) of the tubular body 114.

At least one insulated wire conductor (not shown) is connected to and extends from the hollow metal tip member 116 through a hollow center lumen 122 of the catheter 114 to the high-frequency, high-voltage power supply (not shown).

Alternatively, the wire conductor may extend from the proximal end of the catheter to the distal electrode tip member 116 by means of a secondary small lumen in the body or catheter 114, thus preventing fouling of the central lumen 122 by the conductor and protecting the conductor. The support 118 is an insulator and preferably is constructed of glass or ceramic to withstand any heat generated at the electrode tip member 116.

The catheter/tubular body 114 is made of polymeric material which is suitable for intravascular use and which provides maximum flexibility so as to permit manipulation of the device 110 through a blood vessel to a desired position in the blood vessel. The external and internal diameters of the tubular body 114 are sufficient to permit flexibility and strength and also permit adequate flow.

The tip member 116 is hollow mushroom-shaped, or a hollow stove pipe hat shaped with a bore 124 therethrough. A cap portion 126 is rounded or bevelled at its outer radius as indicated at 128, and a stem portion 130 129 extends into the interior of the tubular insulator/support 118. The bore 124 communicates with the central lumen 122 in the tubular body 114.

A "A" or trident-shaped fitting can be connected to the proximal end (not shown) of the catheter body 114.

In use, the device 110 functions as a monopolar electrode similar to the electrodes 16 and 46 in the devices 10 and 40. The glass or ceramic support 118 is advantageous because of its high insulative properties and heat resistance.

Also, it provides a structure on the end of the flexible thin-walled hollow polymeric tubular body 114 for mounting and carrying the tip member 116.

One preferred embodiment of a device constructed according to the teachings of the present invention is illustrated in FIGS. 5-9 and is generally identified therein by reference numeral 130. The device 130 includes a catheter or elongate tubular body 131 having a distal end 132, a proximal end 133, a central lumen 134 and first and second radially outwardly located lumens 135 and 136. The catheter 131 is preferably made of polyurethane. The distal end 132 has an isolation collar 137 made of a high-melting point plastic such as, but not limited to, silicone, TFE (tetrafluoroethylene), polyphenylenesulfide, or ceramic or glass, mounted thereto. Mounted to and within the collar 137 is a hollow metal tip member or electrode 138 made of stainless steel, platinum, titanium or similar electrode material.

As shown, the metal tip member 138 is fully received within a countersunk cavity 139 in the collar 137 and has a bore 140 which mates with, and is flush with, a bore 141 in the collar 137. An annular front surface 142 of tip member 138 is flush with a front surface 143 of the collar 137 which surface 143 has a bevel or round 144 at its largest radius. The bore 141 mates with and is flush with the central lumen 134.

The lumen 135 opens onto outer cylindrical surface 145 of body 131 at a port 146 in the distal end 132 just behind collar 137. Flushing fluid, such as deionized water, is supplied to the lumen 135 through a connector fitting 147 made of polycarbonate and a tube 148 made of polyurethane coupled at an angle to the proximal end 133 of the tubular body 131 as shown. The coupling of tube 148 to the catheter body 131 may also be accomplished by means of a bonded or molded-on plastic connector, not shown.

Another fitting 149 and tubing 150 are coupled at an angle to the proximal end 133 of the tubular body 131 and communicate with lumen 136 which together form a passageway for a wire or ribbon conductor 151 made of copper, silver, nickel or other suitable electrically conductive material.

The conductor 151 extends to and into the collar 137 and is soldered or welded at 152 to the tip member 138. The tubing 150 may alternatively be connected to the body 131 by a separate part as described for tube 148.

A connector 154 made of polycarbonate is coupled axially to the proximal end 133 of the tubular body 131 which is received in a cavity 155 in the connector 154. The connector 154 has a central lumen 156 mating with and flush with the lumen 134. The proximal end of connector 154 may contain a tapered connection opening such as a standard Luer taper socket.

In use, a negative pressure or suction is applied to the connector 154 for withdrawing debris from a blood vessel while an electric current is applied to plaque or tissue by the device 130, which can be referred to as an electrosurgical catheter.

Also in use, a heavily insulated guidewire or stylet 157 is passed through the lumen 134 which has a diameter approximately one-half (1/2) the diameter of tubular body 131 for stiffening the device 130 and for guiding the tip member 138 to a desired site in a blood vessel. The guidewire 157 may have a metal core 158 surrounded by a thick layer of insulating material 159 such as silicone or polytetrafluoroethylene.

The device 130 is a unipolar device, and the return current path for this device is provided by a plate-like, dispersing electrode (not shown) which is usually placed onto a large, flat skin area on the patient, such as the thigh or belly.

In FIG. 10 is illustrated an axial cross-sectional view of another device 160 constructed according to the teachings of the present invention. More particularly, a distal end portion of the device 160 is shown in FIG. 10. Here, a tubular body 161 having a distal end 162, a central lumen 163, a flushing lumen 164 with an outlet port 165 and a conductor-carrying lumen 166 has a collar 167 mounted to the distal end 162 with a tip electrode 168 mounted in the collar 167 and a second ring electrode 170 mounted around the distal end 162 of the body 161 and spaced between the port 165 and the collar 167. Preferably, as shown, the ring or band electrode 170 is recessed in the body 161 so that outer surface 171 thereof is flush with outer surface 172 of the body 161.

For this bipolar device 160, two insulated wire conductors 173 and 174 are received in the lumen 166 and welded or soldered respectively, to electrodes 168 and 170 at 175 and 176. It may be more desirable, however, to provide separate conductor-carrying lumens to better insulate the conductors 173 and 174 from each other to minimize the possibility of a short circuit between them.

It will be understood that, in use of the device 160, current will flow between the electrodes 168 and 170 through plaque or tissue buildup that it is desired to remove. Owing to the smaller tissue-contact area of the tip electrode 168 compared to that of the band electrode 170, the electrosurgical action will be concentrated at the tip electrode, resulting in a coring or ablative removal of tissue or plaque.

Other electrosurgical catheter embodiments are shown in FIGS. 11, 12 and 13. In FIG. 11, a radial cross-section of one electrosurgical catheter device 180 is shown. Here, two semi-cylindrical tip electrodes 181 and 182 are mounted within an insulative collar 183 and face each other across a central lumen 184 in the collar 183. Insulated wire conductors 185 and 186, welded or soldered to the respective electrodes 181 and 182, extend rearwardly into a wire-carrying lumen 187. Again, if desired, separate wire-carrying lumens can be provided. The cross-section shown in FIG. 11 is similar to, and is, taken along a similar section line as is, the cross-section shown in FIG. 8. Through the use of this configuration, bipolar electrosurgical currents can be created directly at the catheter distal tip without the need for a secondary band electrode, and eliminating the need for a patient dispersive plate.

FIG. 12 is an end view, similar to the end view shown in FIG. 9, of another electrosurgical catheter device 190 which has a flushing lumen 191 extending in a tubular body and end collar 192 straight through to, and opening onto, a front surface 193 of the collar 192 radially outwardly from a front surface 194 of tip electrode 195 and a central lumen 196. The flushing lumen 191 then opens closer to the opening of the central suction lumen 196 at the very tip of the device 190. Alternatively, the single flushing lumen 191 may branch to several outlet openings at several circumferential positions at the tip of the catheter, resulting in a more uniform supply of flushing liquid.

FIG. 13 is a sectional view, similar to the view shown in FIG. 7, of still another electrosurgical device 200 which has eccentrically located lumens 201, 202 and 203 in a tubular body 204, lumen 201 being a suction lumen 201, lumen 202 being a flushing lumen 202, and lumen 203 being a wire carrying lumen 203 which carries a wire conductor 205.

The eccentric locating of the lumens 201-203 provides a more compact tubular body 204 with a smaller diameter than if the lumens 201-203 were located in the manner shown in FIG. 7.

FIGS. 14,15 and 16 illustrate three waveforms 21, 212 and 213 of the high-frequency, high-voltage electrical current that is applied by the device 10,40,80,110,130,160, 180,190 or 200. A pure cut sine waveform is shown in FIG. 14 and two coagulation mode waveforms having high power pulses are shown in FIGS. 15 and 16. The Bovie "specialist" ElectroSurgery power supply unit can be used and has 75 watt capability but higher voltage power supplies may be necessary in certain circumstances. An oscillator circuit is used to generate the high-frequency waveforms.

As shown in FIG. 14, the sine waveform 21 is used for cutting and is symmetrical about its center and relative to its peaks. This form of electrical power is effective to resolve material buildup by achieving a clean cutting action.

The coagulation mode waveforms 212 and 213 have spurts of high sinusoidal power pulses separated by no pulses and are generated by an oscillator including a solid state switching device. The coagulation mode waveforms 212 and 213, having definite pulses of high power, allow higher peak electrical power to be applied while limiting the average electrical power; by so doing, it is possible to apply the high power levels necessary to ablate insulative plaque deposits without causing excessive heating to nearby tissues or to the catheter itself. The waveform 213 differs from waveform 212 by having high amplitude current peaks with a smaller duty cycle, i.e., a longer time period between each spurt of pulses. The high-frequency, high-voltage, low-duty-cycle waveform 213 includes shorter spurts of pulses of high power at high-frequency separated by longer periods of no power. As explained, this type of power output is particularly useful in creating localized, superficial ablation while reducing the damage to underlying tissue. Electrical waveforms of this very low-duty-cycle type cannot be produced by standard electrosurgical generators. A specialized generator of similar design is needed for the production of this type of electrical current.

In use, one of the electrosurgical catheter devices 10,40,80,110,130,160,180,190 or 200 is inserted into the appropriate blood vessel. Under fluoroscopic control, the catheter 10 or 40,80,110,130,160,180,190,200 is advanced over the guidewire 157 to the lesion or area of atherosclerotic plaque buildup which has caused stenosis of the blood vessel.

As the catheter is advanced, deionized water or a non-conducting solution is flushed through one of the flushing lumens. This lumen is also used for injecting a radio-opaque dye into the blood vessel at the site of stenotic buildup to confirm proper catheter placement.

In addition, or alternatively, impedance measurements across the electrodes of the device can be made using a low-voltage DC current to determine, by the magnitude of the impedance, the amount of plaque buildup between the electrodes.

The catheter is then advanced while a high-frequency, high-voltage current, either pure sine wave (211) or periodic pulses (212 or 213), is supplied intermittently to the electrodes. Typically, the frequency will be between 0.5 and 20 megahertz and the voltage will have a magnitude or several hundred volts.

Preferably, alternating "coring" and "measuring" is performed. In this respect, the "coring" high voltage, high-frequency current is applied for a short time period followed by application of low-voltage DC current for measuring impedance related to the amount of buildup remaining.

It will be appreciated that by simultaneous controlled movement of the catheter and controlled intermittent application of high-voltage, high-frequency and alternate impedance measuring, the catheter, in effect, "cores" through the stenotic area to create a lumen of known diameter. At the same time, flushing fluid as well as suction is supplied to the site of coring to wash away and then evacuate any debris.

Confirmation of complete plaque or tissue removal is determined by injection of radio-opaque dye into the vessel at the site during X-ray visualization of the "cored" vessel; or it is determined by impedance measurements.

A variety of devices, 10,40,80,110,130,160,180,190 and 200 have been described and explained herein for use in resolving plaque or eroding tissue in blood vessels. These devices 10,40,80,110,130,160,180,190 and 200 have application in connection with not only resolving plaque, but also in connection with clearing hepatic and bile ducts and liver tissue in general where hepatic flow must be corrected. Similarly, such devices 10,40,80,110,130,160,180,190 and 200 can be used to revascularize and smooth muscle coring in cardiac revascularization, and in other procedures such as, for example, the ablation of: a) ectopic foci, in treatment of tachycardia, or b) removal of tissue in the central nervous system of carcinomas, without damage to surrounding tissue. Skilled artisans will know that any of the devices 10,40,80,110,130,160,180,190 and 200 described above can be modified by combining portions thereof with other structural arrangements as disclosed herein.

Accordingly, the devices 10,40,80,110,130,160,180, 190 and 200 can be modified without departing from the teachings of the present invention and it is to be understood that the scope of the invention is only to be limited as necessitated by the accompanying claims.

Smith, Kevin W., Bales, Thomas O.

Patent Priority Assignee Title
10064609, Aug 05 2005 SenoRx, Inc. Method of collecting one or more tissue specimens
10105125, Dec 16 2004 SenoRx, Inc. Biopsy device with aperture orientation and improved tip
10172595, Feb 24 2003 Senorx, Inc Biopsy device with selectable tissue receiving aperture orientation and site illumination
10188457, Sep 12 2003 VESSIX VASCULAR, INC Selectable eccentric remodeling and/or ablation
10213252, Oct 18 2006 Boston Scientific Scimed, Inc Inducing desirable temperature effects on body tissue
10231715, Feb 24 2003 SenoRx, Inc. Biopsy device with inner cutting member
10335127, Feb 24 2003 SenoRx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
10405913, Oct 06 2014 US Patent Innovations, LLC Cold plasma scalpel
10413356, Oct 18 2006 Boston Scientific Scimed, Inc System for inducing desirable temperature effects on body tissue
10420607, Feb 14 2014 Arthrocare Corporation Methods and systems related to an electrosurgical controller
10448992, Oct 22 2010 Arthrocare Corporation Electrosurgical system with device specific operational parameters
10478161, May 23 2005 SenoRx, Inc. Tissue cutting member for a biopsy device
10537385, Dec 31 2008 MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L. Intravascular, thermally-induced renal neuromodulation for treatment of polycystic ovary syndrome or infertility
10561460, Dec 31 2008 MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L. Neuromodulation systems and methods for treatment of sexual dysfunction
10874381, Aug 05 2005 SenoRx, Inc. Biopsy device with fluid delivery to tissue specimens
11246574, Dec 16 2004 SenoRx, Inc. Biopsy device with aperture orientation and improved tip
11426149, May 23 2005 SenoRx., Inc. Tissue cutting member for a biopsy device
11464558, Oct 06 2014 U.S. Patent Innovations LLC Plasma accessory
11534147, Feb 24 2003 SenoRx, Inc. Biopsy device with a removable sample recieving cartridge
11589849, Feb 24 2003 SenoRx, Inc. Biopsy device with selectable tissue receiving aperature orientation and site illumination
5507744, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5509411, Jan 29 1993 Medtronic, Inc Intravascular sensing device
5520685, Aug 04 1994 Alto Development Corporation Thermally-insulated anti-clog tip for electrocautery suction tubes
5549109, Oct 01 1993 TRANSAMERICA BUSINESS CREDIT CORP Sheathed multipolar catheter and multipolar guidewire for sensing cardiac electrical activity
5584872, Nov 13 1992 SciMed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
5645082, Jan 29 1993 SICHUAN JINJIANG ELECTRONIC SCIENCE AND TECHNOLOGY CO , LTD Intravascular method and system for treating arrhythmia
5676693, Nov 13 1992 Boston Scientific Scimed, Inc Electrophysiology device
5685322, Apr 05 1993 SICHUAN JINJIANG ELECTRONIC SCIENCE AND TECHNOLOGY CO , LTD Intravascular system for treating arrhythmia
5699796, Jan 29 1993 Medtronic, Inc High resolution intravascular signal detection
5706809, Jan 29 1993 Medtronic, Inc Method and system for using multiple intravascular sensing devices to detect electrical activity
5711298, May 18 1995 Medtronic, Inc High resolution intravascular signal detection
5720745, Nov 24 1992 Unisys Corporation Electrosurgical unit and method for achieving coagulation of biological tissue
5810810, Apr 30 1993 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5881732, Jan 29 1993 RUI XING LIMITED Intravascular method and system for treating arrhythmia
5895386, Dec 20 1996 Kirwan Surgical Products LLC Bipolar coagulation apparatus and method for arthroscopy
5902328, Nov 13 1992 SciMed Life Systems, Inc. Electrophysiology energy treatment device and method of use
5925040, Jun 18 1997 Medical Scientific, Inc. Electrosurgical instrument having a segmented roller electrode
5944715, Jun 29 1996 Gyrus Medical Limited Electrosurgical instrument
5957842, Jan 27 1994 Medtronic, Inc High resolution intravascular signal detection
5957922, Jun 10 1993 Vidamed, Inc. Transurethral radio frequency apparatus for ablation of the prostate gland and method
5960796, Jan 29 1993 SICHUAN JINJIANG ELECTRONIC SCIENCE AND TECHNOLOGY CO , LTD Intravascular method and device for occluding a body lumen
5967978, Jan 29 1993 Medtronic, Inc Intravascular sensing device
5989249, Apr 29 1996 Kirwan Surgical Products LLC Bipolar suction coagulator
6004319, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6013076, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6015406, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6027501, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6029946, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6056746, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6063085, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
6066139, May 14 1996 Covidien AG; TYCO HEALTHCARE GROUP AG Apparatus and method for sterilization and embolization
6066489, Aug 30 1996 SAVE THE CHILDREN INC Method for treating blood borne viral pathogens such as immunodeficiency virus
6068653, Nov 13 1992 Boston Scientific Scimed, Inc Electrophysiology catheter device
6071283, Jun 06 1997 BAYER ESSURE INC Selectively coated electrosurgical instrument
6080152, Jun 05 1998 Bayer HealthCare LLC Electrosurgical instrument
6088610, Jan 29 1993 Medtronic, Inc Method and system for using multiple intravascular sensing devices to detect electrical activity
6090106, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6093186, Dec 20 1996 Gyrus Medical Limited Electrosurgical generator and system
6099524, Jan 28 1994 Cardiac Pacemakers, Inc Electrophysiological mapping and ablation catheter and method
6141576, Jan 29 1993 Medtronic, Inc Intravascular sensing device
6168594, Nov 13 1992 SciMed Life Systems, Inc. Electrophysiology RF energy treatment device
6174308, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6201991, May 07 1999 Heart Care Associates, LLC Method of prevention and treatment of atherosclerosis and article of manufacture therefor
6210405, Jun 20 1996 Gyrus Medical Limited Under water treatment
6234178, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6261286, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6277114, Apr 03 1998 Gyrus Medical Limited Electrode assembly for an electrosurical instrument
6290206, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6293942, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator method
6306134, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6312429, Sep 01 1998 SenoRx, Inc.; Senorx, Inc Electrosurgical lesion location device
6358273, Apr 09 1999 Oratec Interventions, Inc Soft tissue heating apparatus with independent, cooperative heating sources
6364877, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6379350, Oct 05 1999 Oratec Interventions, Inc Surgical instrument for ablation and aspiration
6398782, Oct 13 1992 Edwards Lifesciences Corporation Bipolar vascular sealing apparatus and methods
6416509, Jun 23 1995 Gyrus Medical Limited Electrosurgical generator and system
6419674, Nov 27 1996 Cook Medical Technologies LLC Radio frequency dilator sheath
6454727, Mar 03 1998 Senorx, Inc Tissue acquisition system and method of use
6482202, Jun 20 1996 Cyrus Medical Limited Under water treatment
6497706, Mar 03 1998 Senorx, Inc Biopsy device and method of use
6517498, Mar 03 1998 Senorx, Inc Apparatus and method for tissue capture
6540695, Apr 08 1998 Senorx, Inc Biopsy anchor device with cutter
6565561, Jun 20 1996 Gyrus Medical Limited Electrosurgical instrument
6638234, Mar 03 1998 SenoRx, Inc. Sentinel node location and biopsy
6659105, Apr 03 1998 SenoRx, Inc. Tissue specimen isolating and damaging device and method
6666865, Oct 05 1999 Covidien AG; TYCO HEALTHCARE GROUP AG Swirling system for ionizable gas coagulator
6676658, Apr 08 1998 Senorx, Inc Tissue specimen isolating and damaging device and method
6679851, Sep 01 1998 Senorx, Inc Tissue accessing and anchoring device and method
6712775, Mar 03 1998 SenoRx, Inc. Tissue acquisition system and method of use
6716179, Mar 03 1998 SenoRx, Inc. Sentinel node location and biopsy
6758848, Mar 03 1998 Senorx, Inc Apparatus and method for accessing a body site
6780180, Jun 23 1995 Gyrus Medical Limited Electrosurgical instrument
6840501, Sep 15 1997 CAREFUSION 303, INC Needleless valve
6852112, Oct 05 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Multi-port side-fire coagulator
6855143, Jun 13 1997 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
6875182, Apr 08 1998 SenoRx, Inc. Electrosurgical specimen-collection system
6911029, Oct 05 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Articulating ionizable gas coagulator
6915806, May 10 1993 Arthrocare Corporation Method for harvesting graft vessel
6923805, Nov 13 1992 SciMed Life Systems, Inc. Electrophysiology energy treatment devices and methods of use
6955676, Jun 22 1999 Senorx, Inc Shaped scalpel
6958044, Mar 03 1998 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
6997885, Jul 27 2001 Senorx, Inc Dilation devices and methods for removing tissue specimens
6997941, Oct 23 1996 NEUROTHERM, INC Method and apparatus for treating annular fissures in intervertebral discs
7165552, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for treatment of patent foramen ovale
7186251, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
7229439, Nov 16 2000 Senorx, Inc Apparatus and method for accessing a body site
7241293, Nov 20 1998 Arthrocare Corporation Electrode screen enhanced electrosurgical apparatus and methods for ablating tissue
7261712, Sep 01 1998 Senorx, Inc Electrosurgical lesion location device
7264596, Mar 03 1998 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
7267683, Aug 13 1996 NEUROTHERM, INC Method for treating intervertebral discs
7270661, Nov 22 1995 ArthoCare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
7282034, Sep 01 1998 Senorx, Inc Tissue accessing and anchoring device and method
7282061, Aug 13 1996 NEUROTHERM, INC Method of treating intervertebral disc
7291146, Sep 12 2003 Boston Scientific Scimed, Inc Selectable eccentric remodeling and/or ablation of atherosclerotic material
7293562, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
7297143, Feb 05 2003 Arthrocare Corporation Temperature indicating electrosurgical apparatus and methods
7297145, Apr 20 2001 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
7318823, Jun 07 1995 Arthrocare Corporation Methods for repairing damaged intervertebral discs
7329228, Mar 03 1998 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
7331956, Sep 28 2000 Arthrocare Corporation Methods and apparatus for treating back pain
7331957, May 10 1993 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
7357798, May 13 2003 Arthrocare Corporation Systems and methods for electrosurgical prevention of disc herniations
7357801, Jan 27 1999 Senorx, Inc Tissue specimen isolating and damaging device and method
7367975, Sep 27 2004 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
7377902, Apr 08 1998 Senorx, Inc Biopsy anchor device with cutter
7387625, Jun 07 1995 Arthrocare Corporation Methods and apparatus for treating intervertebral discs
7393351, Jun 07 1995 Arthro Care Corporation Apparatus and methods for treating cervical inter-vertebral discs
7400930, Aug 13 1996 NEUROTHERM, INC Method for treating intervertebral discs
7419488, Feb 09 2001 Arthrocare Corporation Electrosurgical probe with movable return electrode and methods related thereto
7422585, Jan 07 1992 Arthrocare Corporation System for electrosurgical myocardial revascularization
7429260, Jul 16 1996 Arthrocare Corporation Systems and methods for electrosurgical tissue contraction within the spine
7429262, Jan 07 1992 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
7435247, Aug 11 1998 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
7442191, Jun 07 1995 Arthrocare Corporation Systems and methods for electrosurgical treatment of turbinates
7445618, May 10 1993 Arthrocare Corporation Methods for tissue ablation using pulsed energy
7449021, Jul 16 1996 Arthrocare Corporation Systems and methods for electrosurgical tissue contraction within the spine
7458974, Jul 25 2000 Abbott Laboratories Apparatus and method for electrically induced thrombosis
7462178, May 12 2000 Arthrocare Corporation Systems and methods for electrosurgical spine surgery
7468059, Jun 07 1995 Arthrocare Corporation System and method for epidermal tissue ablation
7488295, Apr 08 1998 Senorx, Inc Tissue acquisition system and method of use
7491200, Mar 26 2004 Arthrocare Corporation Method for treating obstructive sleep disorder includes removing tissue from base of tongue
7505812, Jun 13 1997 Arthrocare Corporation Electrosurgical system for treating restenosis of body lumens
7507236, Jan 07 1992 Arthrocare Corporation System and method for electrosurgical cutting and ablation
7572236, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
7572251, Jun 07 1995 Arthrocare Corporation Systems and methods for electrosurgical tissue treatment
7572255, Feb 03 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Gas-enhanced surgical instrument
7572256, Jun 22 1999 Senorx, Inc Shaped scalpel
7578818, Oct 05 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Articulating ionizable gas coagulator
7628787, Feb 03 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Self contained, gas-enhanced surgical instrument
7632267, Jul 06 2005 Arthrocare Corporation Fuse-electrode electrosurgical apparatus
7637924, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for treatment of patent foramen ovale
7648503, Mar 08 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Tissue coagulation method and device using inert gas
7651467, Jul 27 2001 Senorx, Inc Dilation devices and methods for removing tissue specimens
7678069, Nov 22 1995 Arthrocare Corporation System for electrosurgical tissue treatment in the presence of electrically conductive fluid
7691101, Jan 06 2006 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
7691102, Mar 03 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Manifold for gas enhanced surgical instruments
7699829, Mar 25 2004 Boston Scientific Scimed, Inc Catheter with sensor tip and method of use of same
7704249, May 07 2004 Arthrocare Corporation Apparatus and methods for electrosurgical ablation and resection of target tissue
7708733, Oct 20 2003 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
7717912, Feb 09 2001 Arthrocare Corporation Bipolar electrosurgical clamp for removing and modifying tissue
7738953, May 10 2001 Cardiac Pacemakers, Inc. Method and device for preventing plaque formation in coronary arteries
7742795, Mar 28 2005 Boston Scientific Scimed, Inc Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
7758537, Nov 22 1995 Arthrocare Corporation Systems and methods for electrosurgical removal of the stratum corneum
7794456, May 13 2003 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
7794474, Aug 22 1996 Terumo Kabushiki Kaisha Endovascular flexible stapling device
7819819, Feb 24 2003 Senorx, Inc Biopsy device with inner cutting member
7819863, Jan 07 1992 Arthrocare Corporation System and method for electrosurgical cutting and ablation
7824398, Nov 22 1995 Arthrocare Corporation Electrosurgical systems and methods for removing and modifying tissue
7824405, Jan 07 1992 Arthrocare Corporation Electrosurgical apparatus and methods for laparoscopy
7833222, Feb 03 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Gas-enhanced surgical instrument with pressure safety feature
7862560, Mar 23 2007 Arthrocare Corporation Ablation apparatus having reduced nerve stimulation and related methods
7879034, Mar 02 2006 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
7892230, Jun 24 2004 Arthrocare Corporation Electrosurgical device having planar vertical electrode and related methods
7901403, Mar 02 2006 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
7914527, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
7922716, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
7927330, Aug 17 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Multi-port side-fire coagulator
7951141, May 13 2003 Arthrocare Corporation Systems and methods for electrosurgical intervertebral disc replacement
7955330, Oct 05 1999 TYCO HEALTHCARE GROUP AG; Covidien AG Multi-port side-fire coagulator
7972330, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
7981051, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
7988689, Aug 11 1998 Arthrocare Corporation Electrosurgical apparatus and methods for treatment and removal of tissue
8007494, Apr 27 2006 ENCISION, INC Device and method to prevent surgical burns
8012153, Jul 16 2003 Arthrocare Corporation Rotary electrosurgical apparatus and methods thereof
8021362, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for closing a layered tissue defect
8038669, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038671, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038672, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8038673, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8043286, May 03 2002 The Board of Trustees of the Leland Stanford Junior University Method and apparatus for plasma-mediated thermo-electrical ablation
8048110, Aug 22 1996 The Trustees of Columbia University in the City of New York Endovascular flexible stapling device
8052678, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8057469, Mar 27 2003 Terumo Kabushiki Kaisha Methods and apparatus for treatment of patent foramen ovale
8066701, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8070747, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8075554, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8109274, Apr 11 2005 Terumo Kabushiki Kaisha Methods and electrode apparatus to achieve a closure of a layered tissue defect
8114071, May 30 2006 Arthrocare Corporation Hard tissue ablation system
8123744, Aug 29 2006 TYCO HEALTHCARE GROUP AG; Covidien AG Wound mediating device
8133221, Sep 27 2004 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
8137346, Sep 01 1998 Senorx, Inc Electrosurgical lesion location device
8147487, Nov 16 2000 Senorx, Inc Apparatus and method for accessing a body site
8157795, Feb 03 2004 TYCO HEALTHCARE GROUP AG; Covidien AG Portable argon system
8167905, Aug 22 1996 The Trustees of Columbia University in the City of New York Endovascular flexible stapling device
8177783, Nov 02 2006 Medtronic Advanced Energy LLC Electric plasma-mediated cutting and coagulation of tissue and surgical apparatus
8187312, Oct 23 1996 NEUROTHERM, INC Method for treating intervertebral disc
8192424, Jan 05 2007 Arthrocare Corporation Electrosurgical system with suction control apparatus, system and method
8197478, Jul 25 2000 Abbott Laboratories Apparatus and method for electrically induced thrombosis
8226642, Aug 14 2008 Covidien LP Surgical gas plasma ignition apparatus and method
8226643, Feb 03 2004 Covidien AG Gas-enhanced surgical instrument with pressure safety feature
8226644, Feb 03 2004 Covidien AG Gas-enhanced surgical instrument
8226697, Oct 23 1996 NEUROTHERM, INC Method for treating intervertebral disc
8229553, Sep 01 1998 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
8251989, Jun 13 2006 ENCISION, INC Combined bipolar and monopolar electrosurgical instrument and method
8251995, Oct 05 1999 Covidien AG Articulating ionizable gas coagulator
8257350, Jun 17 2009 Arthrocare Corporation Method and system of an electrosurgical controller with wave-shaping
8282573, Feb 24 2003 Senorx, Inc Biopsy device with selectable tissue receiving aperture orientation and site illumination
8292887, Mar 02 2007 Arthrocare Corporation Internally located return electrode electrosurgical apparatus, system and method
8317725, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
8317786, Sep 25 2009 AthroCare Corporation System, method and apparatus for electrosurgical instrument with movable suction sheath
8323276, Apr 06 2007 The Board of Trustees of the Leland Stanford Junior University Method for plasma-mediated thermo-electrical ablation with low temperature electrode
8323279, Sep 25 2009 ArthoCare Corporation System, method and apparatus for electrosurgical instrument with movable fluid delivery sheath
8343071, Dec 16 2004 Senorx, Inc Biopsy device with aperture orientation and improved tip
8353907, Dec 21 2007 Atricure, Inc Ablation device with internally cooled electrodes
8355799, Dec 12 2008 Arthrocare Corporation Systems and methods for limiting joint temperature
8360990, Dec 16 2004 Senorx, Inc Biopsy device with aperture orientation and improved tip
8364237, Mar 28 2005 Boston Scientific Scimed, Inc Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures
8366706, Aug 15 2007 CARDIODEX LTD Systems and methods for puncture closure
8372067, Dec 09 2009 Arthrocare Corporation Electrosurgery irrigation primer systems and methods
8372072, Feb 04 2003 Cardiodex Ltd. Methods and apparatus for hemostasis following arterial catheterization
8396548, Nov 14 2008 Boston Scientific Scimed, Inc Selective drug delivery in a lumen
8401667, Nov 17 2008 Boston Scientific Scimed, Inc Selective accumulation of energy with or without knowledge of tissue topography
8414572, Nov 02 2006 Medtronic Advanced Energy LLC Electrosurgery apparatus with partially insulated electrode and exposed edge
8414578, Feb 03 2004 Covidien AG Self contained, gas-enhanced surgical instrument
8435236, Nov 22 2004 CARDIODEX LTD Techniques for heat-treating varicose veins
8444638, May 30 2006 Arthrocare Corporation Hard tissue ablation system
8460204, Feb 24 2003 Senorx, Inc Biopsy device with inner cutting member
8460290, Mar 08 2006 Covidien AG Tissue coagulation method and device using inert gas
8465485, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of patent foramen ovale
8496653, Apr 23 2007 Boston Scientific Scimed, Inc Thrombus removal
8551096, May 13 2009 Boston Scientific Scimed, Inc Directional delivery of energy and bioactives
8568405, Oct 15 2010 Arthrocare Corporation Electrosurgical wand and related method and system
8574187, Mar 09 2009 Arthrocare Corporation System and method of an electrosurgical controller with output RF energy control
8632537, Jan 05 2009 Medtronic Advanced Energy LLC Electrosurgical devices for tonsillectomy and adenoidectomy
8636685, Jan 06 2006 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
8636734, Jan 27 1999 Senorx, Inc Tissue specimen isolating and damaging device and method
8641640, May 23 2005 Senorx, Inc Tissue cutting member for a biopsy device
8663152, Jan 06 2006 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
8663153, Jan 06 2006 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
8663154, Jan 06 2006 Arthrocare Corporation Electrosurgical method and system for treating foot ulcer
8663216, Aug 11 1998 Arthrocare Corporation Instrument for electrosurgical tissue treatment
8685018, Oct 15 2010 Arthrocare Corporation Electrosurgical wand and related method and system
8696659, Apr 30 2010 Arthrocare Corporation Electrosurgical system and method having enhanced temperature measurement
8747399, Apr 06 2010 Arthrocare Corporation Method and system of reduction of low frequency muscle stimulation during electrosurgical procedures
8747400, Aug 13 2008 Arthrocare Corporation Systems and methods for screen electrode securement
8747401, Jan 20 2011 Arthrocare Corporation Systems and methods for turbinate reduction
8758336, Aug 17 2004 Encision, Inc. System and method for monitoring electrosurgical systems
8801705, Oct 20 2003 Arthrocare Corporation Electrosurgical method and apparatus for removing tissue within a bone body
8852181, Mar 27 2003 Terumo Kabushiki Kaisha Energy based devices and methods for treatment of anatomic tissue defects
8870866, Jan 05 2007 Arthrocare Corporation Electrosurgical system with suction control apparatus, system and method
8876746, Jan 06 2006 Arthrocare Corporation Electrosurgical system and method for treating chronic wound tissue
8915864, Aug 05 2005 SenoRx, Inc. Biopsy device with fluid delivery to tissue specimens
8915878, Dec 21 2007 Atricure, Inc Ablation device with internally cooled electrodes
8920414, Oct 18 2006 Boston Scientific Scimed, Inc Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
8939970, Oct 18 2006 Boston Scientific Scimed, Inc Tuned RF energy and electrical tissue characterization for selective treatment of target tissues
8979838, May 24 2010 Arthrocare Corporation Symmetric switching electrode method and related system
8979842, Jun 10 2011 Medtronic Advanced Energy LLC Wire electrode devices for tonsillectomy and adenoidectomy
8998892, Dec 21 2007 Atricure, Inc Ablation device with cooled electrodes and methods of use
9011428, Mar 02 2011 Arthrocare Corporation Electrosurgical device with internal digestor electrode
9044215, Feb 24 2003 Senorx, Inc Biopsy device with selectable tissue receiving aperature orientation and site illumination
9095325, May 23 2005 Senorx, Inc Tissue cutting member for a biopsy device
9095358, Dec 09 2009 Arthrocare Corporation Electrosurgery irrigation primer systems and methods
9125666, Sep 12 2003 Boston Scientific Scimed, Inc Selectable eccentric remodeling and/or ablation of atherosclerotic material
9125667, Oct 18 2006 Boston Scientific Scimed, Inc System for inducing desirable temperature effects on body tissue
9131597, Feb 02 2011 Arthrocare Corporation Electrosurgical system and method for treating hard body tissue
9138282, Jun 17 2009 Arthrocare Corporation Method and system of an electrosurgical controller with wave-shaping
9168082, Feb 09 2011 Arthrocare Corporation Fine dissection electrosurgical device
9168087, Jan 06 2006 Arthrocare Corporation Electrosurgical system and method for sterilizing chronic wound tissue
9204866, Feb 24 2003 Senorx, Inc Biopsy device with selectable tissue receiving aperture orientation and site illumination
9216012, Sep 01 1998 Senorx, Inc Methods and apparatus for securing medical instruments to desired locations in a patient's body
9254164, Jan 05 2007 Arthrocare Corporation Electrosurgical system with suction control apparatus, system and method
9254166, Jan 17 2013 Arthrocare Corporation Systems and methods for turbinate reduction
9254167, Jan 06 2006 Arthrocare Corporation Electrosurgical system and method for sterilizing chronic wound tissue
9271784, Feb 09 2011 Arthrocare Corporation Fine dissection electrosurgical device
9277955, Apr 09 2010 Boston Scientific Scimed, Inc Power generating and control apparatus for the treatment of tissue
9314294, Aug 18 2008 ENCISION, INC Enhanced control systems including flexible shielding and support systems for electrosurgical applications
9327100, Nov 14 2008 Vessix Vascular, Inc. Selective drug delivery in a lumen
9358063, Feb 14 2008 Arthrocare Corporation Ablation performance indicator for electrosurgical devices
9408592, Dec 16 2004 Senorx, Inc Biopsy device with aperture orientation and improved tip
9452008, Dec 12 2008 Arthrocare Corporation Systems and methods for limiting joint temperature
9468437, Aug 22 1996 The Trustees of Columbia University in the City of New York Endovascular flexible stapling device
9486355, Nov 17 2008 Vessix Vascular, Inc. Selective accumulation of energy with or without knowledge of tissue topography
9510809, Jan 27 1999 SenoRx, Inc. Tissue specimen isolating and damaging device and method
9510901, Sep 12 2003 Vessix Vascular, Inc. Selectable eccentric remodeling and/or ablation
9526556, Feb 28 2014 Arthrocare Corporation Systems and methods systems related to electrosurgical wands with screen electrodes
9649144, Jan 17 2013 Arthrocare Corporation Systems and methods for turbinate reduction
9693818, Mar 07 2013 Arthrocare Corporation Methods and systems related to electrosurgical wands
9713489, Mar 07 2013 Arthrocare Corporation Electrosurgical methods and systems
9750487, May 23 2005 SenoRx, Inc. Tissue cutting member for a biopsy device
9788882, Sep 08 2011 Arthrocare Corporation Plasma bipolar forceps
9801678, Mar 13 2013 Arthrocare Corporation Method and system of controlling conductive fluid flow during an electrosurgical procedure
9833281, Aug 18 2008 ENCISION INC Enhanced control systems including flexible shielding and support systems for electrosurgical applications
9962150, Dec 20 2013 Arthrocare Corporation Knotless all suture tissue repair
9974607, Oct 18 2006 Boston Scientific Scimed, Inc Inducing desirable temperature effects on body tissue
D658760, Oct 15 2010 Arthrocare Corporation Wound care electrosurgical wand
RE40156, Jun 07 1995 Arthrocare Corporation Methods for repairing damaged intervertebral discs
RE40863, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
RE42625, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
RE42662, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
RE42756, Mar 13 1990 The Regents of the University of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
Patent Priority Assignee Title
1677642,
3301258,
3348548,
3494364,
3532095,
3595239,
3698394,
3798967,
3920021,
4030508, Feb 04 1976 MEDTRONIC PUERTO RICO, INC Low output electrode for cardiac pacing
4038519, Nov 15 1973 Rhone-Poulenc S.A. Electrically heated flexible tube having temperature measuring probe
4043342, Aug 28 1974 Valleylab, Inc. Electrosurgical devices having sesquipolar electrode structures incorporated therein
4060086, May 24 1976 Endoscope with an operating device
4116198, May 15 1975 DELMA, elektro und medizinische Apparatebaugesellschaft m.b.H. Electro - surgical device
4132227, Aug 08 1974 Winter & Ibe Urological endoscope particularly resectoscope
4142529, Jun 20 1977 Bio-Tronics, Inc. Process and device for the therapeutic treatment of hemorrhoids
4146019, Sep 30 1976 University of Southern California Multichannel endoscope
4176659, Jul 21 1976 Catheter with measurement electrodes
4207874, Mar 27 1978 Laser tunnelling device
4217910, Oct 10 1978 The United States of America as represented by the Secretary of the Navy Internal jugular and left ventricular thermodilution catheter
4227535, Apr 02 1979 Bio-Tronics, Inc. Proctologic device for the therapeutic treatment of hemorrhoids
4240441, Oct 10 1978 The United States of America as represented by the Secretary of the Navy Carotid thermodilution catheter
4347842, Feb 15 1980 Disposable electrical surgical suction tube and instrument
4423727, Apr 10 1981 Continuous flow urological endoscopic apparatus and method of using same
4429694, Jul 06 1981 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Electrosurgical generator
4438766, Sep 03 1981 WELLS FARGO BANK, NATIONAL ASSOCIATION FLAIR INDUSTRIAL PARK RCBO Electrosurgical generator
4449528, Mar 20 1980 University of Washington Fast pulse thermal cautery probe and method
4517975, Jun 06 1983 Ellman International, Inc Electrosurgical electrode for matrisectomy
452220,
4524770, Jan 25 1983 Endoscope injection needle
4532924, May 13 1980 Baxter International Inc Multipolar electrosurgical device and method
4534366, Aug 03 1983 Pacesetter AB Carbon fiber pacing electrode
552832,
623022,
DE2315075,
DE2535341,
GB2060397,
GB2071500,
27569,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 08 1988Cordis Corporation(assignment on the face of the patent)
Nov 30 1998Cordis CorporationCORDIS WEBSTER, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0097030792 pdf
Date Maintenance Fee Events
Dec 23 1994M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 02 1995ASPN: Payor Number Assigned.
Dec 17 1998M185: Payment of Maintenance Fee, 12th Year, Large Entity.
Aug 24 1999ASPN: Payor Number Assigned.
Aug 24 1999RMPN: Payer Number De-assigned.


Date Maintenance Schedule
May 12 19954 years fee payment window open
Nov 12 19956 months grace period start (w surcharge)
May 12 1996patent expiry (for year 4)
May 12 19982 years to revive unintentionally abandoned end. (for year 4)
May 12 19998 years fee payment window open
Nov 12 19996 months grace period start (w surcharge)
May 12 2000patent expiry (for year 8)
May 12 20022 years to revive unintentionally abandoned end. (for year 8)
May 12 200312 years fee payment window open
Nov 12 20036 months grace period start (w surcharge)
May 12 2004patent expiry (for year 12)
May 12 20062 years to revive unintentionally abandoned end. (for year 12)