An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum wire and/or tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.
|
1. A wire for use in the formation of an occlusion within a vascular cavity in conjunction with a microcatheter having an interior lumen, said wire comprising:
a metal coil having a first shape which conforms to said microcatheter lumen when within the microcatheter, and said metal coil forming an unbiased, regular cylindrical or unbiased single regular conical envelope when disposed out of said microcatheter.
|
This application is a divisional of application Ser. No. 08/485,821 filed Jun. 6, 1995, now abandoned, which is a divisional of application Ser. No. 08/311,508, filed on Sep. 23, 1994, issued as U.S. Pat. No. 5,540,680, which in turn was is a continuation of application Ser. No. 07/840,211, filed on Feb. 24, 1992, now issued as U.S. Pat. No. 5,354,295, and which in its turn was is a continuation-in-part application of application Ser. No. 07/492,717, filed Mar. 13, 1990, issued as U.S. Pat. No. 5,122,136.
1. Field of the Invention
The invention relates to a method and apparatus for endovascular electrothrombic formation of thrombi in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas.
2. Description of the Prior Art
Approximately 25,000 intracranial aneurysms rupture every year in North America. The primary purpose of treatment for ruptured intracranial aneurysm is to prevent rebleeding. At the present time, three general methods of treatment exist, namely an extravascular, endovascular and extra-endovascular approach.
The extravascular approach is comprised of surgery or microsurgery of the aneurysm or treatment site for the purpose of preserving the parent artery. This treatment is common with intracranial berry aneurysms. The methodology comprises the step of clipping the neck of the aneurysm, performing a sutureligation of the neck, or wrapping the entire aneurysm. Each of these surgical procedures is performed by intrusive invasion into the body and performed from outside the aneurysm or target site. General anesthesia, craniotomy, brain retraction and arachnoid dissection around the neck of the aneurysm and placement of a clip are typically required in these surgical procedures. Surgical treatment of vascular intracranial aneurysm can expect a mortality rate of 4-8% with a morbidity rate of 18-20%. Because of the mortality and morbidity rate expected, the surgical procedure is often delayed while waiting for the best surgical time with the result that an additional percentage of patients will die from the underlying disease or defect prior to surgery. For this reason the prior art has sought alternative means of treatment.
In the endovascular approach, the interior of the aneurysm is entered through the use of a microcatheter. Recently developed microcatheters, such as those shown by Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 and as described in Engelson, “Catheter for Guidewire Tracking”, U.S. Pat. No. 4,739,768 (1988), allow navigation into the cerebral arteries and entry into a cranial aneurysm.
In such procedures a balloon is typically attached to the end of the microcatheter and it is possible to introduce the balloon into the aneurysm, inflate it, and detach it, leaving it to occlude the sac and neck with preservation of the parent artery. While endovascular balloon embolization of berry aneurysms is an attractive method in situations where an extravascular surgical approach is difficult, inflation of a balloon into the aneurysm carries some risk of aneurysm rupture due to possible over-distention of portions of the sac and due to the traction produced while detaching the balloon.
While remedial procedures exist for treating a ruptured aneurysm during classical extravascular surgery, no satisfactory methodology exists if the aneurysm breaks during an endovascular balloon embolization.
Furthermore, an ideal embolizing agent should adapt itself to the irregular shape of the internal walls of the aneurysm. On the contrary, in a balloon embolization the aneurysmal wall must conform to the shape of the balloon. This may not lead to a satisfactory result and further increases the risk of rupture.
Still further, balloon embolization is not always possible. If the diameter of the deflated balloon is too great to enter the intracerebral arteries, especially in the cases where there is a vasospasm, complications with ruptured intracranial aneurysms may occur. The procedure then must be deferred until the spasm is resolved and this then incurs a risk of rebleeding.
In the extra-intravascular approach, an aneurysm is surgically exposed or stereotaxically reached with a probe. The wall of the aneurysm is then perforated from the outside and various techniques are used to occlude the interior in order to prevent it from rebleeding. These prior art techniques include electrothrombosis, isobutyl-cyanoacrylate embolization, hog-hair embolization and ferromagnetic thrombosis.
In the use of electrothrombosis for extra-intravascular treatment the tip of a positively charged electrode is inserted surgically into the interior of the aneurysm An application of the positive charge attracts white blood cells, red blood cells, platelets and fibrinogen which are typically negatively charged at the normal pH of the blood. The thrombic mass is then formed in the aneurysm about the tip. Thereafter, the tip is removed. See Mullan, “Experiences with Sugical Thrombosis of Intracranial Berry Aneurysms and Carotid Cavemous Fistulas”, J. Neurosurg., Vol. 41, December 1974; Hosobuchi, “Electrothrombosis Carotid-Cavemous Fistula”, J. Neurosurg., Vol. 42, January 1975; Araki et al., “Electrically Induced Thrombosis for the Treatment of Intracranial Aneurysms and Angiomas”, Excerpta Medica International Congress Series, Amsterdam 1965, Vol. 110, 651-654; Sawyer et al., “Bio-Electric Phenomena as an Etiological Factor in Intravascular Thrombosis”, Am. J. Physiol., Vol. 175, 103-107 (1953); J. Piton et al., “Selective Vascular Thrombosis Induced by a Direct Electrical Current; Animal Experiments”, J. Neuroradiology, Vol. 5, pages 139-152 (1978). However, each of these techniques involves some type of intrusive procedure to approach the aneurysm from the exterior of the body.
The prior art has also devised the use of a liquid adhesive, isobutylcyanoacrylate (IBCA) which polymerizes rapidly on contact with blood to form a firm mass. The liquid adhesive is injected into the aneurysm by puncturing the sac with a small needle. In order to avoid spillage into the parent artery during IBCA injection, blood flow through the parent artery must be momentarily reduced or interrupted. Alternatively, an inflated balloon may be placed in the artery at the level of the neck of the aneurysm for injection. In addition to the risks caused by temporary blockage of the parent artery, the risks of seepage of such a polymerizing adhesive into the parent artery exists, if it is not completely blocked with consequent occlusion of the artery.
Still further, the prior art has utilized an air gun to inject hog hair through the aneurysm wall to induce internal thrombosis. The success of this procedure involves exposing the aneurysm sufficiently to allow air gun injection and has not been convincingly shown as successful for thrombic formations.
Ferromagnetic thrombosis in the prior art in extraintravascular treatments comprises the stereotactic placement of a magnetic probe against the sac of the aneurysm followed by injection into the aneurysm by an injecting needle of iron microspheres. Aggregation of the microspheres through the extravascular magnet is followed by interneuysmatic thrombus. This treatment has not been entirely successful because of the risk of fragmentation of the metallic thrombus when the extravascular magnet is removed. Suspension of the iron powder in methyl methymethacrylate has been used to prevent fragmentation. The treatment has not been favored, because of the need to puncture the aneurysm, the risk of occlusion of the parent artery, the use of unusual and expensive equipment, the need for a craniectomy and general anesthesia, and the necessity to penetrate cerebral tissue to reach the aneurysm.
Endovascular coagulation of blood is also well known in the art and a device using laser optically generated heat is shown by O'Reilly, “Optical Fiber with Attachable Metallic Tip for Intravascular Laser Coagulation of Arteies, Veins, Aneurysms, Vascular Malformation and Arteriovenous Fistulas”, U.S. Pat. No. 4,735,201 (1988). See also, O'Reilly et al., “Laser Induced Thermal Occlusion of Berry Aneurysms: Initial Experimental Results”, Radiology, Vol. 171, No. 2, pages 471-74 (1989). O'Reilly places a tip into an aneurysm by means of an endovascular microcatheter. The tip is adhesively bonded to a optic fiber disposed through the microcatheter. Optical energy is transmitted along the optic fiber from a remote laser at the proximal end of the microcatheter. The optical energy heats the tip to cauterize the tissue surrounding the neck of the aneurysm or other vascular opening to be occluded. The catheter is provided with a balloon located on or adjacent to its distal end to cut off blood flow to the site to be cauterized and occluded. Normally, the blood flow would carry away the heat at the catheter tip, thereby preventing cauterization. The heat in the tip also serves to melt the adhesive used to secure the tip to the distal end of the optical fiber. If all goes well, the tip can be separated from the optical fiber and left in place in the neck of the aneurysm, provided that the cauterization is complete at the same time as the hot melt adhesive melts.
A thrombus is not formed from the heated tip. Instead, blood tissue surrounding the tip is coagulated. Coagulation is a denaturation of protein to form a connective-like tissue similar to that which occurs when the albumen of an egg is heated and coagulates from a clear running liquid to an opaque white solid. The tissue characteristics and composition of the coagulated tissue is therefore substantially distinct from the thrombosis which is formed by the thrombotic aggregation of white and red blood cells, platelets and fibrinogen. The coagulative tissue is substantially softer than a thrombic mass and can therefore more easily be dislodged.
O'Reilly's device depends at least in part upon the successful cauterization timed to occur no later than the detachment of the heat tip from the optic fiber. The heated tip must also be proportionally sized to the neck of the aneurysm in order to effectively coagulate the tissue surrounding it to form a blockage at the neck. It is believed that the tissue in the interior of the aneurysm remains substantially uncoagulated. In addition, the hot melt adhesive attaching the tip to the optic fiber melts and is dispersed into the adjacent blood tissue where it resolidifies to form free particles within the intracranial blood stream with much the same disadvantages which result from fragmentation of a ferromagnetic electrothrombosis.
Therefore, what is needed is an apparatus and methodology which avoids each of the shortcomings and limitations of the prior art discussed above.
The invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire and/or tip near an endovascular opening into the vascular cavity. The wire may include a distinguishable structure at its distal end, which is termed a tip, in which case the remaining portion of the wire may be termed a guidewire. The term “wire” should be understood to collectively include both guidewires and tips and simply wires without distinct tip structures. However, the tip may also simply be the extension of the wire itself without substantial distinction in its nature. A distal tip of the wire is disposed into the vascular cavity to pack the cavity to mechanically form the occlusion within the vascular cavity about the distal tip. The distal tip is detached from the guidewire (or wire) to leave the distal tip within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.
In one embodiment, the step of detaching the distal tip from the guidewire (or wire) comprises the step of mechanically detaching the distal tip from the guidewire (or wire).
In another embodiment, the guidewire and tip (or wire) are used within a microcatheter and in the step of detaching the distal tip from the guidewire (or wire), the guidewire and tip (or wire) are longitudinally displaced within the microcatheter. The microcatheter has radio-opaque proximal and tip markers. The guidewire and tip (or wire) have collectively a single radio-opaque marker. The displacement of the guidewire and tip (or wire) moves the single radio-opaque marker to the proximity of the proximal marker on the microcatheter. At this point the tip will be fully deployed in the vascular cavity and tip separation may proceed. It is not necessary then in this embodiment to be able to see actual deployment of the tip before separation. The tip marker allows and enhances direct observation of the correct placement of the catheter tip into the opening of the vascular cavity.
In one embodiment the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a tip (or wire) having a plurality of filaments extending therefrom to pack the cavity.
In another embodiment the step of disposing the tip (or wire) into the vascular cavity to pack the cavity comprises the step of disposing a long flexible tip (or wire) folded upon itself a multiple number of times to pack the cavity.
The invention can also be characterized as a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of endovascularly disposing a wire within a microcatheter near an endovascular opening into the vascular cavity. The microcatheter has a distal tip electrode. The distal tip of the wire is disposed into the vascular cavity to pack the cavity to form the occlusion within the vascular cavity about the distal tip of the wire by applying a current between the distal tip electrode and the distal end of the wire packed into the cavity. The distal tip of the wire is detached from the wire to leave the distal tip of the wire within the vascular cavity. As a result, the vascular cavity is occluded by the distal tip, and by any thrombus formed by use of the tip.
The invention is also a wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter comprising a core wire, and a detachable elongate tip portion extending the core wire for a predetermined lineal extent. The tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity and coupled to the distal portion of the core wire. As a result, endovascular occlusion of the vascular cavity can be performed.
In one embodiment, the elongate tip portion is a long and substantially pliable segment adapted to be multiply folded upon itself to substantially pack said vascular cavity.
In another embodiment, the elongate tip portion is a segment adapted to be disposed in said vascular cavity and having a plurality of filaments extending therefrom to substantially pack said vascular cavity when disposed therein.
In still another embodiment, the microcatheter has a pair of radioopaque markers disposed thereon and the core wire has a radioopaque marker disposed thereon. The marker on the core wire is positioned in the proximity of one of the pair of markers on the microcatheter when the core wire is fully deployed. The other marker on the core wire marks the position of the catheter tip.
The invention is still further characterized as a microcatheter system for use in formation of an occlusion within a vascular cavity comprising a microcatheter having a distal end adapted for disposition in the proximity of the vascular cavity. The distal end has an electrode disposed thereon. A conductive guidewire is disposed in the microcatheter and longitudinally displaceable therein. The guidewire comprises a core wire, and an elongate tip portion extending the core wire for a predetermined lineal extent. The tip portion is adapted to be packed into the vascular cavity to form the occlusion in the vascular cavity. The tip portion is coupled to the distal portion of the core wire. The occlusion is formed by means of applying a current between the tip portion and the electrode on the microcatheter when the tip portion is disposed into the vascular cavity. As a result, endovascular occlusion of the vascular cavity can be performed.
More generally speaking, the invention is a method for forming an occlusion within a vascular cavity having blood disposed therein comprising the steps of disposing a body into the cavity to substantially impede movement of blood in the cavity. The body is employed in the cavity to form the occlusion within the vascular cavity. As a result, the vascular cavity is occluded by the body.
The step of disposing the body in the vascular cavity comprises the step of packing the body to substantially obstruct the cavity.
In one embodiment the step of packing the cavity with the body comprises the step of obstructing the cavity with a detachable elongate wire tip multiply folded upon itself in the cavity.
The step of disposing the body into the vascular cavity comprises disposing in the vascular cavity means for slowing blood movement in the cavity to initiate formation of the occlusion in the cavity.
In another embodiment the step of packing the cavity with the body comprises the step of obstructing the cavity with a body having a compound filamentary shape.
The step of employing the body in the vascular cavity to form the occlusion comprises the step of applying an electrical current to the body or mechanically forming the occlusion in the body or both simultaneously.
The invention is also wire for use in formation of an occlusion within a vascular cavity used in combination with a microcatheter. The invention comprises a core wire and a detachable elongate tip portion extending the core wire for a predetermined lineal extent. The core wire is adapted to being packed into the vascular cavity to form the occlusion in the vascular cavity and is coupled to the distal portion of the core wire. The tip portion includes a first segment for disposition into the cavity and a second segment for coupling the first portion to the core wire. The second segment is adapted to be electrolysized upon application of current. An insulating coating is disposed on the first segment. The second segment is left exposed to permit selective electrolysis thereof As a result, endovascular occlusion of the vascular cavity can be performed.
The invention can better be visualized by now turning to the following drawings wherein like elements are referenced by like numerals.
The invention and its various embodiments are best understood by now turning to the following detailed description.
An artery, vein, aneurysm, vascular malformation or arterial fistula is occluded through endovascular occlusion by the endovascular insertion of a platinum tip into the vascular cavity. The vascular cavity is packed with the tip to obstruct blood flow or access of blood in the cavity such that the blood clots in the cavity and an occlusion if formed. The tip may be elongate and flexible so that it packs the cavity by being folded upon itself a multiple number of times, or may pack the cavity by virtue of a filamentary or fuzzy structure of the tip. The tip is then separated from the wire mechanically or by electrolytic separation of the tip from the wire. The wire and the microcatheter are thereafter removed leaving the tip embedded in the thrombus formed within the vascular cavity. Movement of wire in the microcatheter is more easily tracked by providing a radioopaque proximal marker on the microcatheter and a corresponding indicator marker on the wire. Electrothrombosis is facilitate by placing the ground electrode on the distal end of the microcatheter and flowing current between the microcatheter electrode and the tip.
When the tip is separated from the wire by electrolytic separation of the tip from the wire, a portion of the wire connected between the tip and the body of the wire is comprised of stainless steel and exposed to the bloodstream so that upon continued application of a positive current to the exposed portion, the exposed portion is corroded away at least at one location and the tip is separated from the body of the wire.
The stainless steel wire 10, comprised of that portion disposed within the microcatheter body, tapered section 12, reduced diameter section 16 and threadlike section 18, is collectively referred to as a core wire which typically is 50-300 cm. in length.
In the illustrated embodiment the portion of the core wire extending from tapered section 12 to second bonding location 22 is collectively referred to as the grinding length and may typically be between 20 and 50 cm. in length.
Reduced diameter portion 14 and at least part of sections 12 and first bonding location 20 may be covered with an insulating Teflon laminate 24 which encapsulates the underlying portion of wire 10 to prevent contact with the blood.
A stainless steel coil 26 is soldered to the proximate end of threadlike portion 18 of wire 10 at first bonding location 20. Stainless steel coil 26 is typically 3 to 10 cm. in length and like wire 10 has a diameter typically between 0.010 to 0.020 inch (0.254-0.508 mm).
The distal end of stainless steel coil 26 is soldered to the distal end of threadlike portion 18 of wire 10 and to the proximal end of a platinum secondary coil 28 at second bonding location 22. Secondary coil 28 itself forms a spiral or helix typically between 2 to 10 mm. in diameter. The helical envelope formed by secondary coil 28 may be cylindrical or conical. Like wire 10 and stainless steel coil 26, secondary coil 28 is between approximately 0.010 and 0.020 inch (0.254-0.508 mm) in diameter. The diameter of the wire itself forming stainless steel coil 26 and coil 28 is approximately between 0.001-0.005 inch.
The distal end of secondary coil 28 is provided with a platinum soldered tip 30 to form a rounded and smooth termination to avoid puncturing the aneurysm or tearing tissue.
Although prebiased to form a cylindrical or conical envelope, secondary coil 28 is extremely soft and its overall shape is easily deformed. When inserted within the microcatheter (not shown), secondary coil 28 is easily straightened to lie axially within the microcatheter. Once disposed out of the tip of the microcatheter, secondary coil 28 forms the shape shown in
As will be described below in greater detail in connection with the third embodiment of
The embodiment of
It is expressly understood that the helical secondary coil tip of the embodiment of
Thinned and threadlike portion guidewires disposed concentrically within coiled portions are well known and are shown in Antoshkiw, “Disposable Guidewire”, U.S. Pat. No. 3,789,841 (1974); Sepetka et al., “Guidewire Device”, U.S. Pat. No. 4,832,047 (1989); Engelson, “Catheter Guidewire”, U.S. Pat. No. 4,884,579 (1989); Samson et al., “Guidewire for Catheters”, U.S. Pat. No. 4,538,622 (1985); and Samson et al., “Catheter Guidewire with Short Spring Tip and Method of Using the Same”, U.S. Pat. No. 4,554,929 (1985).
Turn now to the third embodiment of the invention as shown in
However, platinum coil 56 is particularly distinguished by its length of approximately 1 to 50 cm. and by its flexibility. The platinum or platinum alloy used is particularly pliable and the diameter of the wire used to form platinum coil 56 is approximately 0.001-0.005 inch in diameter. The distal end of platinum coil 56 is provided with a smooth and rounded platinum tip 58 similar in that respect to tips 30 and 40 of
When coil 56 is disposed within microcatheter 44, it lies along the longitudinal lumen 60 defined by microcatheter 44. The distal end 62 of microcatheter 60 is then placed into the neck of the aneurysm and the wire 42 is advanced, thereby feeding tip 58 in platinum coil 56 into aneurysm 64 until bonding location 50 resides in the neck of the aneurysm as best depicted in the diagrammatic cross-sectional view of
After the thrombus has been formed and the aneurysm completely occluded, tip 58 and coil 56 are detached from wire 42 by electrolytic disintegration of at least one portion of stainless steel coil 46. In the illustrated embodiment this is accomplished by continued application of current until the total time of current application is almost approximately four minutes.
At least one portion of stainless steel coil 46 will be completely dissolved through by electrolytic action within 3 to 10 minutes, usually about 4 minutes. After separation by electrolytic disintegration, wire 42, microcatheter 44 and the remaining portion of coil 46 still attached to wire 42 are removed from vessel 66, leaving aneurysm 64 completely occluded as diagrammatically depicted in
The process is practiced under fluoroscopic control with local anesthesia at the groin. A transfemoral microcatheter is utilized to treat the cerebral aneurysm. The platinum is not affected by electrolysis and the remaining portions of the microcatheter are insulated either by a Teflon lamination directly on wire 42 and/or by microcatheter 44. Only the exposed portion of the wire 46 is affected by the electrolysis.
It has further been discovered that thrombus 74 continues to form even after detachment from wire 42. It is believed that a positive charge is retained on or near coil 56 which therefore continues to attract platelets, white blood cells, red blood cells and fibrinogen within aneurysm 64.
Although the foregoing embodiment has been described as forming an occlusion within a blood-filled vascular cavity by means of electrothrombosis, the above disclosure must be read to expressly include formation of the occlusion by mechanical mechanisms without resort to the application of electrical current. A mechanical mechanism which can be safely disposed into the vascular cavity to impede, slow or otherwise initiate clotting of the blood or formation of the occlusion is within the scope of the invention. The insertion within the vascular cavity and maintenance therein of an object with an appropriate blood-clotting characteristics can and does in many cases cause the formation of an occlusion by itself. Depicted in
Coil 102 has sufficient length and flexibility that it can be inserted or coiled loosely into the vascular cavity. The length of coil 102 need not be so long that the coil itself is capable of being multiply folded on itself and fill or substantially fill the vascular cavity. Hairs 104 extending from coil 102 serve to substantially pack, fill or at least impede blood flow or access in the vascular cavity. Hairs 104, which are generally inclined backwardly away from extreme tip 106 when delivered, are thus easily able to slide forward with little friction through restrictions in the vessels and aneurysm. Additionally, hairs 104 do not have sufficient length, strength or sharpness to provide any substantial risk or potential for a puncture of the thin vascular wall. The plurality of hairs 104, when coiled within the vascular cavity, provide an extremely large surface for attachment of blood constituents to encourage and enhance the formation of a mechanical occlusion within the vascular opening.
In the preferred embodiment, coil 102 is mechanically coupled to thin tapered portion 104 of wire 10 by means of a small drop of polyester 100. Polyester may be substituted for the gold solder of the previously described embodiments in order to reduce concern or risk of toxic reactions in the body.
Tip portion 104 may also be mechanically separated from wire 10 by means other than electrolysis. One method is make the connection between tip 104 and wire 10 by means of a spring loaded mechanical clasp (not shown). The clasps are retained on tip 104 as long as the clasps remain inside of the catheter, but spring open and release tip 104 when extended from the catheter. The catheter and clasps may then be removed from the insertion site. This type of mechanical connection is described in the copending application entitled, “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,979 which is incorporated herein by reference and assigned to Target Therapeutics Inc. An alternative nonresilient mechanical ball and clasp capturing mechanism is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Interlocking Ball and Keyway Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,912 which is also incorporated herein by reference and assigned to Target Therapeutics Inc.
In another embodiment wire 10 and tip portion 104 screw into each other and can be unscrewed from each other by rotation of the catheter or wire with respect to tip 104. An extendable sheath (not shown) in the microcatheter is advanced to seize tip 104 to prevent its rotation with wire 10 during the unscrewing process. This type of mechanical connection is described in the copending application entitled “Detachable Pusher-Vasoocclusive Coil Assembly with Threaded Coupling”, filed Dec. 12, 1991 with Ser. No. 07/806,898 which is incorporated herein by reference and assigned to Target Therapeutics Inc.
In any case the specific means disclosed here of mechanically detaching tip 104 from wire 10 forms no part of the present invention apart from its combination as a whole with other elements of the invention. Specific disclosure of the mechanical means of detachment have been set forth only for the purposes of providing an enabling disclosure of the best mode presently known for practicing the claimed invention.
Even where the occlusion is not formed by electrothrombosis, separation of tip 104 may be effected by electrolysis. In such situations, the electrolysing current may be concentrated on the sacrificial stainless steel portion of tip 104 by disposition of an insulative coating on the remaining platinum portion. For example, tip 104 may be provided with a polyethylene coating save at least a portion of the stainless steel length. This has the effect of decreasing the time required to electrolytically sufficiently disintegrate the steel portion to allow detachment of the platinum tip, which is an advantageous feature in those cases where a large aneurysm must be treated and a multiple number of coils must be deployed within the aneurysm.
Notwithstanding the fact that wire 10 and platinum coil 102 in the embodiment
Further, in the previous embodiments, such as that shown in
Many alterations and modifications may be made by those having ordinary skill in the art without departing from the spirit and scope of the invention. Therefore, it must be understood that the shape of the tip or distal platinum coil used in combination with the wire according to the invention may be provided with a variety of shapes and envelopes. In addition thereto, the composition of the micro-guidewire tip may be made of elements other than platinum including stainless steel, beryllium, copper and various alloys of the same with or without platinum. Still further, the diameter of the wire, various of the wire described above and the stainless steel coil immediately proximal to the detachable tip may be provided with differing diameters or cross sections to vary the times and current magnitudes necessary in order to effectuate electrolytic detachment from the tip. Still further, the invention may include conventional electronics connected to the proximal end of the wire for determining the exact instant of detachment of the distal tip from the wire.
Therefore, the illustrated embodiment has been set forth only for the purposes of clarity and example and should not be taken as limiting the invention as defined by the following claims, which include all equivalent means whether now known or later devised.
Guglielmi, Guido, Sepetka, Ivan
Patent | Priority | Assignee | Title |
10980544, | Apr 11 2014 | MicroVention, Inc. | Implant delivery system |
9867622, | Apr 11 2014 | MICROVENTION, INC | Implant delivery system |
Patent | Priority | Assignee | Title |
2839049, | |||
3334629, | |||
3452742, | |||
3521620, | |||
3547103, | |||
3605750, | |||
3773034, | |||
3789841, | |||
3868956, | |||
3952747, | Mar 28 1974 | BOSTON SCIENTIFIC CORPORATION, A CORP OF DE | Filter and filter insertion instrument |
3996938, | Jul 10 1975 | Expanding mesh catheter | |
4003369, | Apr 22 1975 | SCHNEIDER USA PITTSBURGH, INC | Angiographic guidewire with safety core wire |
4080706, | Apr 22 1975 | SCHNEIDER USA PITTSBURGH, INC | Method of manufacturing catheter guidewire |
4114603, | Aug 06 1976 | NMT MEDICAL, INC | Intracranial pressure monitoring catheter |
4147169, | May 02 1977 | The Kendall Company | Balloon catheter with balloon retaining sleeves |
4190057, | Dec 27 1977 | Crocker National Bank | Device for determining the patentcy of a blood vessel |
4213461, | Apr 29 1976 | Miniature balloon catheter | |
4323071, | Apr 24 1978 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , | Vascular guiding catheter assembly and vascular dilating catheter assembly and a combination thereof and methods of making the same |
4327734, | Jan 24 1979 | BECTON, DICKINSON AND COMPANY, A CORP OF NJ | Therapeutic method of use for miniature detachable balloon catheter |
4341218, | May 30 1978 | University of California | Detachable balloon catheter |
4346712, | Apr 06 1979 | Kuraray Company, Ltd. | Releasable balloon catheter |
4402319, | Sep 14 1977 | Kuraray Co., Ltd. | Releasable balloon catheter |
4411648, | Jun 11 1981 | Board of Regents, The University of Texas System | Iontophoretic catheter device |
4413989, | Jun 11 1979 | SCHNEIDER U S A INC , A PFIZER COMPANY | Expandable occlusion apparatus |
4512338, | Jan 25 1983 | World Medical Manufacturing Corporation | Process for restoring patency to body vessels |
4517979, | Jul 14 1983 | Cordis Corporation | Detachable balloon catheter |
4522205, | Sep 03 1980 | Bard Limited | Therapeutic device and method of inducing thrombosis in a blood vessel |
4538622, | Nov 10 1983 | Advanced Cardiovascular Systems, Inc. | Guide wire for catheters |
4545367, | Jul 16 1982 | Cordis Corporation | Detachable balloon catheter and method of use |
4545390, | Sep 22 1982 | C. R. Bard, Inc. | Steerable guide wire for balloon dilatation procedure |
4554929, | Jul 13 1983 | Advanced Cardiovascular Systems, Inc. | Catheter guide wire with short spring tip and method of using the same |
4576174, | Jul 08 1982 | Shionogi & Company, Ltd. | Micro electrode |
4597389, | Sep 30 1982 | Device for removing objects from tubular body passages | |
4613324, | Jun 17 1985 | Method and apparatus for guiding catheter into ventricular system of human brain | |
4619274, | Apr 18 1985 | Advanced Cardiovascular Systems, Inc. | Torsional guide wire with attenuated diameter |
4641654, | Jul 30 1985 | Advanced Cardiovascular Systems, Inc. | Steerable balloon dilatation catheter assembly having dye injection and pressure measurement capabilities |
4655746, | Dec 02 1985 | STRYKER EUROPEAN HOLDINGS III, LLC | Catheter device |
4660571, | Jul 18 1985 | DESAI, JAWAHAR M , M D | Percutaneous lead having radially adjustable electrode |
4669465, | Dec 10 1984 | GV Medical, Inc. | Laser catheter control and connecting apparatus |
4682596, | May 22 1984 | CORDIS WEBSTER, INC | Electrosurgical catheter and method for vascular applications |
4723556, | Apr 14 1986 | NMT NEUROSCIENCES IP , INC | Intracranial ventricular catheter assembly |
4729914, | Dec 30 1985 | Tyndale Plains-Hunter Ltd. | Hydrophilic coating and substrate coated therewith |
4735201, | Jan 30 1986 | BETH ISRAEL HOSPITAL ASSOCIATION THE, A CORP OF MA | Optical fiber with detachable metallic tip for intravascular laser coagulation of arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
4739768, | Jun 02 1986 | STRYKER EUROPEAN HOLDINGS III, LLC | Catheter for guide-wire tracking |
4748986, | Dec 12 1983 | Advanced Cardiovascular Systems, Inc. | Floppy guide wire with opaque tip |
4782834, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc.; ADVANCED CARDIOVASCULAR SYSTEMS, INC , A CORP OF CA | Dual lumen dilatation catheter and method of manufacturing the same |
4787899, | Dec 09 1983 | LIFEPORT SCIENCES LLC | Intraluminal graft device, system and method |
4793359, | Apr 24 1987 | Hitachi, LTD | Centering balloon structure for transluminal angioplasty catheter |
4800882, | Mar 13 1987 | Cook Incorporated | Endovascular stent and delivery system |
4813934, | Aug 07 1987 | STRYKER EUROPEAN HOLDINGS III, LLC | Valved catheter device and method |
4820298, | Nov 20 1987 | DEVICE DEVELOPMENTS, INC | Internal vascular prosthesis |
4821722, | Jan 06 1987 | Advanced Cardiovascular Systems, Inc. | Self-venting balloon dilatation catheter and method |
4830003, | Jun 17 1988 | Medtronic Ave, Inc | Compressive stent and delivery system |
4832047, | Dec 15 1987 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Guide wire device |
4838268, | Mar 07 1988 | Boston Scientific Scimed, Inc | Non-over-the wire balloon catheter |
4838879, | May 08 1986 | Terumo Kabushiki Kaisha | Catheter |
4878906, | Mar 25 1986 | Servetus Partnership | Endoprosthesis for repairing a damaged vessel |
4884579, | Apr 18 1988 | STRYKER EUROPEAN HOLDINGS III, LLC | Catheter guide wire |
4907336, | Mar 13 1987 | Cook Incorporated | Method of making an endovascular stent and delivery system |
4917088, | May 02 1985 | Medtronic Ave, Inc | Balloon dilation probe |
4943278, | Feb 29 1988 | Boston Scientific Scimed, Inc | Dilatation balloon catheter |
4944746, | Mar 18 1988 | Kabushiki-Kaisha Tokai-Rika-Denki-Seisakusho | Method of and apparatus for separating a balloon in a balloon catheter |
4950239, | Aug 09 1988 | WORLDWIDE MEDICAL PLASTICS INC , 53 NORTHEASTERN BLVD , NASHUA, NH 03062, A CORP OF NH | Angioplasty balloons and balloon catheters |
4968306, | Jul 07 1989 | Advanced Cardiovascular Systems, INC | Intravascular catheter having an adjustable length infusion section to delivery therapeutic fluid |
4969458, | Jul 06 1987 | Medtronic, Inc | Intracoronary stent and method of simultaneous angioplasty and stent implant |
4986830, | Sep 22 1989 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Valvuloplasty catheter with balloon which remains stable during inflation |
4989608, | Jul 02 1987 | RATNER, ADAM V | Device construction and method facilitating magnetic resonance imaging of foreign objects in a body |
4991069, | May 21 1990 | Welch Allyn, Inc. | End cap for rechargeable battery instrument handle |
4994069, | Nov 02 1988 | STRYKER EUROPEAN HOLDINGS III, LLC | Vaso-occlusion coil and method |
4998933, | Jun 10 1988 | Arthrocare Corporation | Thermal angioplasty catheter and method |
5002556, | Nov 29 1986 | Terumo Kabushiki Kaisha | Balloon catheter assembly |
5011482, | Jan 17 1989 | MEDICAL ENGINEERING AND DEVELOPMENT INSTITUTE, INC | Apparatus for removing an elongated structure implanted in biological tissue |
5019075, | Oct 24 1984 | The Beth Israel Hospital | Method and apparatus for angioplasty |
5021043, | Sep 11 1989 | ATRION MEDICAL PRODUCTS, INC | Method and catheter for dilatation of the lacrimal system |
5041090, | Jan 12 1988 | KLEVSKY NAUCHNO-ISSLEDOVATELSKY INSTITUT NEIROKHIRUGII | Occluding device |
5055101, | Oct 31 1983 | BRIAN GLASGOW MEMORIAL FOUNDATION, THE, A CHARITABLE TRUST; CATHETER RESEARCH, INC , AN IN CORP | Variable shape guide apparatus |
5061914, | Jun 27 1989 | TiNi Alloy Company | Shape-memory alloy micro-actuator |
5102390, | May 02 1985 | Medtronic Ave, Inc | Microdilatation probe and system for performing angioplasty in highly stenosed blood vessels |
5104376, | May 02 1985 | Medtronic Ave, Inc | Torsionally rigid balloon dilatation probe |
5108407, | Jun 08 1990 | Rush-Presbyterian St. Luke's Medical Center | Method and apparatus for placement of an embolic coil |
5108416, | Feb 13 1990 | Medtronic Ave, Inc | Stent introducer system |
5109867, | Apr 19 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Extendable guidewire assembly |
5116652, | Oct 13 1989 | Abbott Laboratories | Kink-resistant medical tubing and catheters |
5122136, | Mar 13 1990 | BLOSSOM FLOWER INC | Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5133731, | Nov 09 1990 | CATHETER RESEARCH, INC , A CORP OF IN | Embolus supply system and method |
5135516, | Dec 15 1989 | Boston Scientific Scimed, Inc | Lubricious antithrombogenic catheters, guidewires and coatings |
5143085, | May 13 1987 | ABBOTT LABORATORIES VASCULAR ENTITLES LIMITED; Abbott Laboratories Vascular Enterprises Limited | Steerable memory alloy guide wires |
5154179, | Jul 02 1987 | RATNER, ADAM V | Device construction and method facilitating magnetic resonance imaging of foreign objects in a body |
5167624, | Nov 09 1990 | CATHETER RESEARCH, INC , A CORP OF INDIANA | Embolus delivery system and method |
5169386, | Sep 11 1989 | ATRION MEDICAL PRODUCTS, INC | Method and catheter for dilatation of the lacrimal system |
5171233, | Apr 25 1990 | EV3 INC | Snare-type probe |
5171297, | Mar 17 1989 | Angeion Corporation | Balloon catheter |
5178618, | Jan 16 1991 | Brigham and Womens Hospital | Method and device for recanalization of a body passageway |
5180368, | Apr 08 1991 | Advanced Cardiovascular Systems, Inc. | Rapidly exchangeable and expandable cage catheter for repairing damaged blood vessels |
5188621, | Aug 26 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Extendable guidewire assembly |
5191297, | Jul 25 1991 | EMC Corporation | Transconductance amplifier having sensfets which drive a load with linearly proportional current |
5201323, | Feb 20 1991 | Brigham & Women's Hospital | Wire-guided cytology brush |
5201754, | May 02 1985 | Medtronic Ave, Inc | Balloon dilatation catheter with varying radiopacity |
5209730, | Dec 19 1989 | Boston Scientific Scimed, Inc | Method for placement of a balloon dilatation catheter across a stenosis and apparatus therefor |
5217484, | Jun 07 1991 | Retractable-wire catheter device and method | |
5226911, | Oct 02 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Vasoocclusion coil with attached fibrous element(s) |
5234437, | Dec 12 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Detachable pusher-vasoocclusion coil assembly with threaded coupling |
5242396, | Dec 19 1991 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter with reinforcing mandrel |
5246421, | Feb 12 1992 | VENTION MEDICAL ADVANCED COMPONENTS, INC | Method of treating obstructed regions of bodily passages |
5250071, | Sep 22 1992 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Detachable embolic coil assembly using interlocking clasps and method of use |
5254130, | Apr 13 1992 | Medtronic, Inc | Surgical device |
5261916, | Dec 12 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling |
5263964, | May 06 1992 | Board of Regents, The University of Texas System | Coaxial traction detachment apparatus and method |
5264421, | Jul 18 1990 | Nippon Hypox Laboratories, Incorporated | Food composition |
5275594, | Nov 09 1990 | RARE EARTH MEDICAL, INC | Angioplasty system having means for identification of atherosclerotic plaque |
5304195, | Dec 12 1991 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Detachable pusher-vasoocclusive coil assembly with interlocking coupling |
5306287, | Oct 30 1992 | Heated tissue forceps and method | |
5312415, | Sep 22 1992 | STRYKER EUROPEAN HOLDINGS III, LLC | Assembly for placement of embolic coils using frictional placement |
5334210, | Apr 09 1993 | Cook Medical Technologies LLC | Vascular occlusion assembly |
5342294, | Jul 31 1992 | Gas connection device for insufflation equipment | |
5342387, | Jun 18 1992 | SUMMERS, DAVID P | Artificial support for a blood vessel |
5345927, | Mar 02 1990 | General Surgical Innovations, Inc | Arthroscopic retractors |
5350397, | Nov 13 1992 | TARGET THERAPEUTICS, A DELAWARE CORPORATION | Axially detachable embolic coil assembly |
5354295, | Mar 13 1990 | STRYKER EUROPEAN HOLDINGS III, LLC | In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5360443, | Jun 11 1990 | Aortic graft for repairing an abdominal aortic aneurysm | |
5382261, | Sep 01 1992 | VACTRONIX SCIENTIFIC, LLC | Method and apparatus for occluding vessels |
5423829, | Nov 03 1993 | STRYKER EUROPEAN HOLDINGS III, LLC | Electrolytically severable joint for endovascular embolic devices |
5449372, | Oct 09 1990 | Boston Scientific Scimed, Inc | Temporary stent and methods for use and manufacture |
5454826, | Feb 26 1993 | Mineluba Co., Ltd. | Temporary clip with balloon activation means for controlling blood flow |
5522836, | Jun 27 1994 | STRYKER EUROPEAN HOLDINGS III, LLC | Electrolytically severable coil assembly with movable detachment point |
5540680, | Mar 13 1990 | STRYKER EUROPEAN HOLDINGS III, LLC | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5569245, | Mar 13 1990 | The Regents of the University of California | Detachable endovascular occlusion device activated by alternating electric current |
5609608, | Oct 27 1995 | Lawrence Livermore National Security LLC | Miniature plastic gripper and fabrication method |
5645558, | Apr 20 1995 | Micrus Corporation | Anatomically shaped vasoocclusive device and method of making the same |
5645564, | May 22 1995 | Lawrence Livermore National Security LLC | Microfabricated therapeutic actuator mechanisms |
5690666, | Nov 18 1992 | STRYKER EUROPEAN HOLDINGS III, LLC | Ultrasoft embolism coils and process for using them |
5718711, | Oct 15 1993 | STRYKER EUROPEAN HOLDINGS III, LLC | Ultrasoft embolism devices and process for using them |
5724534, | Jun 30 1993 | U S PHILIPS CORPORATION | Transferring instructions into DSP memory including testing instructions to determine if they are to be processed by an instruction interpreter or a first kernel |
5725552, | Jul 08 1994 | AGA Medical Corporation | Percutaneous catheter directed intravascular occlusion devices |
5733294, | Feb 28 1996 | Scion Medical Limited | Self expanding cardiovascular occlusion device, method of using and method of making the same |
5743905, | Jul 07 1995 | Regents of the University of California, The; Target Therapeutics, Inc | Partially insulated occlusion device |
5766219, | Apr 20 1995 | Micrus Corporation | Anatomically shaped vasoocclusive device and method for deploying same |
5797953, | Mar 18 1994 | Cook Medical Technologies LLC | Helical embolization coil |
5800454, | Mar 17 1997 | PRECISION VASCULAR SYSTEMS, INC | Catheter deliverable coiled wire thromboginic apparatus and method |
5814062, | Dec 22 1994 | STRYKER EUROPEAN HOLDINGS III, LLC | Implant delivery assembly with expandable coupling/decoupling mechanism |
5826587, | Nov 18 1992 | STRYKER EUROPEAN HOLDINGS III, LLC | Ultrasoft embolism coils and process for using them |
5851206, | Mar 13 1990 | The Regents of the University of California | Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment |
5855578, | Mar 13 1990 | Regents of the University of California, The | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5882334, | Dec 04 1995 | TARGET THERAPUETICS, INC | Balloon/delivery catheter assembly with adjustable balloon positioning |
5891128, | Dec 30 1994 | STRYKER EUROPEAN HOLDINGS III, LLC | Solderless electrolytically severable joint for detachable devices placed within the mammalian body |
5891130, | Nov 13 1992 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
5891155, | Jan 27 1995 | SciMed Life Systems, Inc. | Embolizing system |
5895385, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5895391, | Sep 27 1996 | Target Therapeutics, Inc | Ball lock joint and introducer for vaso-occlusive member |
5911717, | Mar 17 1997 | PRECISION VASCULAR SYSTEMS, INC | Catheter deliverable thrombogenic apparatus and method |
5916235, | Aug 13 1997 | The Regents of the University of California | Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities |
5919187, | Mar 13 1990 | The Regents of the University of California | Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment |
5925037, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5925062, | Sep 02 1992 | Board of Regents, The University of Texas System | Intravascular device |
5928226, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5944714, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5944733, | Jul 14 1997 | Target Therapeutics, Inc | Controlled detachable vasoocclusive member using mechanical junction and friction-enhancing member |
5947962, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries veins aneurysms vascular malformations and arteriovenous fistulas |
5947963, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5972019, | Jul 25 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Mechanical clot treatment device |
5976126, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
5976131, | Mar 13 1990 | The Regents of the University at California | Detachable endovascular occlusion device activated by alternating electric current |
5980514, | Jul 26 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Aneurysm closure device assembly |
6010498, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
6063220, | Dec 22 1995 | Tetra Laval Holdings & Finance S.A. | Method and an apparatus using ultrasound for fixedly welding a circular material blank |
6066133, | Mar 13 1990 | The Regents of the University of California | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
6083220, | Mar 13 1990 | CALIFORNIA, UNIVERSITY OF, REGENTS OF THE, THEQ | Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas |
6096034, | Jul 26 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Aneurysm closure device assembly |
6168592, | Jul 26 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Aneurysm closure device assembly |
6168615, | May 04 1998 | Micrus Corporation | Method and apparatus for occlusion and reinforcement of aneurysms |
6238415, | Dec 22 1994 | STRYKER EUROPEAN HOLDINGS III, LLC | Implant delivery assembly with expandable coupling/decoupling mechanism |
6344041, | Jul 26 1996 | STRYKER EUROPEAN HOLDINGS III, LLC | Aneurysm closure device assembly |
6425893, | Mar 13 1990 | The Regents of the University of California | Method and apparatus for fast electrolytic detachment of an implant |
6468266, | Aug 29 1997 | STRYKER EUROPEAN HOLDINGS III, LLC | Fast detaching electrically isolated implant |
6620152, | Mar 13 1990 | The Regents of the University of California | Method and apparatus for fast electrolyitic detachment of an implant |
20020151883, | |||
AT197237, | |||
AU636217, | |||
AU673502, | |||
AU723902, | |||
AU3429195, | |||
AU3934589, | |||
AU5624496, | |||
AU5865286, | |||
AU591906, | |||
AU621923, | |||
AU704583, | |||
AU7447491, | |||
CA1308988, | |||
CA2055492, | |||
CA2160640, | |||
CA2179863, | |||
DD158084, | |||
DD223065, | |||
DE3203410, | |||
DE3334174, | |||
DE3690224, | |||
DE69001759, | |||
DE69131340, | |||
DE69131466, | |||
DE69131467, | |||
DE69133297, | |||
DE69226024, | |||
DE69228134, | |||
DE69231550, | |||
DE69233026, | |||
DE69520186, | |||
DE69627243, | |||
DK803230, | |||
EP58708, | |||
EP117940, | |||
EP119688, | |||
EP212936, | |||
EP220285, | |||
EP249371, | |||
EP253620, | |||
EP255331, | |||
EP296224, | |||
EP366407, | |||
EP375775, | |||
EP397357, | |||
EP422632, | |||
EP442657, | |||
EP471683, | |||
EP471754, | |||
EP484468, | |||
EP484486, | |||
EP493878, | |||
EP494495, | |||
EP495861, | |||
EP516717, | |||
EP587782, | |||
EP629125, | |||
EP707830, | |||
EP750886, | |||
EP800790, | |||
EP803230, | |||
EP804904, | |||
EP804905, | |||
EP804906, | |||
EP914803, | |||
EP1005837, | |||
EP1323385, | |||
EP1329196, | |||
FI941937, | |||
FI9615332, | |||
GB2185190, | |||
GB2208607, | |||
GB2245495, | |||
HU913536, | |||
HU219694, | |||
IL115609, | |||
IL115609, | |||
IT1224838, | |||
JP2501389, | |||
JP3131386, | |||
JP3152399, | |||
JP523153, | |||
JP538366, | |||
JP5500322, | |||
JP62502950, | |||
JP626576, | |||
JP7503165, | |||
JP8196544, | |||
JP998981, | |||
KR100200441, | |||
NO914433, | |||
NO943106, | |||
NO962745, | |||
PT101162, | |||
RE32348, | Dec 31 1979 | Miniature balloon catheter method and apparatus | |
RE33925, | Dec 08 1988 | CORDIS WEBSTER, INC | Electrosurgical catheter aned method for vascular applications |
WO132085, | |||
WO214408, | |||
WO3017852, | |||
WO8200768, | |||
WO8404686, | |||
WO8606285, | |||
WO8700062, | |||
WO8801851, | |||
WO9001840, | |||
WO9002585, | |||
WO9104716, | |||
WO9113592, | |||
WO9201425, | |||
WO9208342, | |||
WO9214408, | |||
WO9221400, | |||
WO9311825, | |||
WO9316650, | |||
WO9406503, | |||
WO9410936, | |||
WO9523558, | |||
WO9525480, | |||
WO9748351, | |||
WO9802100, | |||
WO9804195, | |||
WO9804196, | |||
WO9804198, | |||
WO9804315, | |||
ZA812814, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 15 2006 | The Regents of the University of California | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 13 2012 | REM: Maintenance Fee Reminder Mailed. |
Jul 01 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Aug 16 2017 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Aug 30 2014 | 4 years fee payment window open |
Mar 02 2015 | 6 months grace period start (w surcharge) |
Aug 30 2015 | patent expiry (for year 4) |
Aug 30 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 30 2018 | 8 years fee payment window open |
Mar 02 2019 | 6 months grace period start (w surcharge) |
Aug 30 2019 | patent expiry (for year 8) |
Aug 30 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 30 2022 | 12 years fee payment window open |
Mar 02 2023 | 6 months grace period start (w surcharge) |
Aug 30 2023 | patent expiry (for year 12) |
Aug 30 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |