A method of An apparatus and method for preparing molecular adsorbates for scanning probe microscopy by potentiostatic methods. Negatively charged molecules are deposited upon and held to a substrate with an electrochemical cell having a gold substrate, a platinum wire counter electrode and a silver wire reference electrode. The polymer to be observed is dissolved into a buffer solution which is non-reactive with the substrate which is gold (111).
|
1. A method of preparing molecular adsorbates for scanning probe microscopy comprising: loading a substrate into a cell; placing the cell on a scanning probe microscope; placing a clean reference electrode in said cell; placing a clean counter electrode in said cell in spaced relationship to said reference electrode; dissolving a polymer containing negatively charged molecules into a buffer solution that is inert relative to said substrate; filling said cell with said polymer contained containing buffer solution; activating said reference electrode and said counter electrode and applying a potential to said substrate to deposit and secure said polymer onto said substrate for examination by said microscope.
6. A method according to
7. A method according to
11. A method according to
12. A method of preparing molecular adsorbates for scanning probe microscopy comprising:
loading a substrate into a cell; placing the cell on a scanning probe microscope; placing a clean reference electrode in said cell; placing a clean counter electrode in said cell in spaced relationship to said reference electrode; dissolving a polymer containing charged molecules into a buffer solution that is inert relative to said substrate; filling said cell with said polymer containing buffer solution; activating said reference electrode and said counter electrode; and applying a potential between said substrate and said counter electrode to deposit and secure said polymer onto said substrate for examination by said microscope.13. A method according to
counter electrode is platinum wire.16. A method according to claim 12 in which said buffer solution is NaH2 PO4 at a pH of 6. 17. A method according to claim 13 in which said substrate is activated to a voltage in a range of about -1.2 volts up to about +1.3 volts with respect to said reference electrode by application of a suitable voltage to said counter electrode.18. A method according to claim 14 in which said substrate is activated to a voltage in a range of about -1.2 volts up to about +1.3 volts with respect to said reference electrode by application of a suitable voltage to said counter electrode.19. A method according to claim 15 in which said substrate is activated to a voltage in a range of about -1.2 volts UP to about +1.3 volts with respect to said reference electrode by application of a suitable voltage to said counter electrode.20. A method according to claim 16 in which said substrate is activated to a voltage in a range of about -1.2 volts up to about +1.3 volts with respect to said reference electrode by application of a suitable voltage to said counter electrode.21. A method according to claim 13 in which said reference electrode is silver wire.22. A method according to claim 15 in which said reference electrode is silver wire.23. A method according to claim 13 in which said counter electrode is platinum wire.24. A method according to claim 16 in which said counter electrode is platinum wire.25. A method according to claim 23 in which said buffer solution is NaH2 PO4 at a pH of 6. 26. A method according to claim 25 in which said substrate is activated to a voltage in a range of about -1.2 volts up to about +1.3 volts with respect to said reference electrode by application of a suitable voltage to said counter electrode.27. An electrochemical fluid cell and substrate assembly for use in studying molecular adsorbates with a scanning probe microscope, said cell comprising: an electrically conductive substrate; an electrically insulating cell wall having an inner boundary defining a fluid container open at its top, said fluid container having a bottom boundary defined by said substrate; said substrate having a portion extending under and beyond said inner boundary; a reference electrode extending from beyond said fluid container into said fluid container through said top; a counter electrode extending from beyond said fluid container into said fluid container through said top and maintained in spaced relationship to said reference electrode; a voltage potential capable of being applied to said substrate by connecting said voltage potential to said electrically conductive substrate at said portion extending under and beyond said inner boundary.28. An electrochemical fluid cell and substrate assembly according to claim 27 wherein said substrate comprises gold.29. An electrochemical fluid cell and substrate assembly according to claim 27 wherein said reference electrode is silver wire.30. An electrochemical fluid cell and substrate assembly according to claim 27 wherein said counter electrode is platinum wire.31. An electrochemical fluid cell and substrate assembly according to claim 28 wherein said reference electrode is silver wire.32. An electrochemical fluid cell and substrate assembly according to claim 28 wherein said counter electrode is platinum wire.33. An electrochemical fluid cell and substrate assembly according to claim 28 wherein said reference electrode is silver wire and said counter electrode is platinum wire.34. An electrochemical fluid cell and substrate assembly for use in studying molecular adsorbates with a scanning probe microscope, said cell comprising: an electrically conductive substrate; an electrically insulating cell wall having an inner boundary defining a fluid container open at its top, said fluid container having a bottom boundary defined by said substrate; said substrate in electrical contact with a conductor having a portion extending under and beyond said inner boundary; a reference electrode extending from beyond said fluid container into said fluid container through said top; a counter electrode extending from beyond said fluid container into said fluid container through said top and maintained in spaced relationship to said reference electrode; a voltage potential capable of being applied to said substrate by connecting said voltage potential to said electrically conductive substrate at said portion of said conductor extending under and beyond said inner boundary.35. An electrochemical fluid cell and substrate assembly according to claim 34 wherein said substrate comprises gold.36. An electrochemical fluid cell and substrate assembly according to claim 34 wherein said reference electrode is silver wire.37. An electrochemical fluid cell and substrate assembly according to claim 34 wherein said counter electrode is platinum wire.38. An electrochemical fluid cell and substrate assembly according to claim 35 wherein said reference electrode is silver wire.39. An electrochemical fluid cell and substrate assembly according to claim 35 wherein said counter electrode is platinum wire.40. An electrochemical fluid cell and substrate assembly according to claim 35 wherein said reference electrode is silver wire and said counter electrode is platinum wire. |
in which like parts bear like numerals throughout the several views., and a glass cell 12, having a polished bottom that forms a seal against the gold substrate. A platinum (Pt) wire counter electrode 13 and a silver (Ag) wire reference electrode 14 extend into cell 12. Each of these wires are longer than needed and a fresh cut surface is introduced into the cell for each experiment by advancing the electrode electrodes 13, 14 in its their respective electrode holder holders 15, 15. A stainless steel plate 16 is glued to the lower exterior surface of glass cell 12 to hold down the substrate 11 and make electrical contact with the gold.
Cleanliness is critical. As will appear, an excess length of wire is used for each wire electrode. Before starting the next run, the used portion of the wire is cut away and a portion of the fresh wire is advanced into the cell. A fresh gold substrate is also used for each run.
In one practice of the present invention, a substrate is loaded onto the SPM. Clean reference and counter electrodes are placed into a clean glass cell on the substrate as shown in FIG. 1. The polymer is dissolved into a buffer solution that does not react with the gold over the appropriate range of substrate potentials. One suitable buffer solution for use with Au (111) between -1.2 and = + 1.3 V (vs. the Ag reference) is NaH2 PO4 . (10 mM adjusted to pH6 with NaOH). A cyclic voltammogram taken in situ is shown in FIG. 2. For sparse coverage of the electrode, a solution that, at full adsorption, gives less that than a monolayer coverage of the macromolecule is used. For example, in a 50 microliter cell (0.5 cm2 electrode area) less than 5 micrograms of DNA per mL of solution are required.
The solution is placed onto the substrate as quickly as possible (to minimize contamination) and, once the cell is full, the reference and counter electrodes are connected. Any positive potential (in case of DNA) between the potentials at which reactions occur (from -0.2 V vs. Ag to +0.6 V vs. Ag; the DNA bases oxidize at higher voltage) may be applied to the substrate. There are some small reversible phosphate absorptions adsorptions at lower potentials, but in the double-layer region macromolecules can be seen in stable arrangements all the way up to about 1 volt. The voltage employed in any given reading is correlated to the reference electrode. The voltage required for deposition is dependant upon the salt solution used. The values reported herein are for the phosphate buffer solution.
If the solutions are free of contamination and, in the case of the STM, the tip is well insulated, a very stable layer of absorbate adsorbate is formed on the gold electrode. It may be scanned in situ repeatedly with no sign of sample movement or degradation. Indeed this is the salient feature of this invention, namely that the an adsorbate, when under potentiostatic control, is remarkably stable. Furthermore, the adsorbate layer may be lifted on and off off and placed back on the electrode surface at will simply by cycling the substrate potential between a positive value and -0.2 V (vs. Ag). Of course, these conditions represent a much diminished disruption of the solvated structure of the polymers compared to methods where the adsorbate is chemically reacted onto the substrate.
The coverage of the substrate, even with the simple layout shown in FIG. 1, is remarkably homogeneous. The whole problem of molecular microscopy is now reduced to scanning an area large enough to contain a few molecules (as calculated from the expected coverage, given the cell geometry and sample concentration) and then applying a suitable potential. Furthermore, reactions and various dynamic processes may be studied simply by allowing them to proceed in the cell (using components and a potential that avoid irreversible reactions) and then applying and an attractive charge to the substrate.
Finally it should be noted that the problem of contamination is greatly reduced. Only those molecules that satisfy conditions for physical adsorption appear in the image. In contrast a vacuum or ambient image would show all contaminants.
This method can also be used to hold positively charged molecules providing the reaction current due to dissolved oxygen is eliminated. This may be done by using degassed solutions and by operating in an inert gas enviroment environment.
Experiments demonstrate that this method yields excellent high resolution images of macromolecular absorbates adsorbates in both the STM and the AFM. The electrodes and buffers herein disclosed are intended as representative preferred materials and not by way of limitation thereon.
From the foregoing, it is readily apparent that a useful embodiment of the present invention has been herein described and illustrated which fulfills all of the aforestated aforementioned objectives in a remarkably unexpected fashion. It is of course understood that such modifications, alterations and adaptations as may readily occur to the artisan confronted with this disclosure are intended within the spirit of this disclosure which is limited only by the scope of the claims appended hereto.
Patent | Priority | Assignee | Title |
6326215, | May 14 1997 | Keensense, Inc. | Molecular wire injection sensors |
6635311, | Jan 07 1999 | Northwestern University | Methods utilizing scanning probe microscope tips and products therefor or products thereby |
6699667, | Jul 30 1999 | Keensense, Inc. | Molecular wire injection sensors |
6762056, | Nov 12 1997 | PROTECH INVESTMENTS III LLC | Rapid method for determining potential binding sites of a protein |
6827979, | Jan 07 1999 | Northwestern University | Methods utilizing scanning probe microscope tips and products therefor or produced thereby |
6979544, | May 14 1997 | Keensense, Inc. | Molecular wire injection sensors |
7220550, | May 14 1997 | KEENSENSE, INC | Molecular wire injection sensors |
7569252, | Jan 07 1999 | Northwestern University | Methods utilizing scanning probe microscope tips and products therefor or produced thereby |
8247032, | Jan 07 1999 | Northwestern University | Methods utilizing scanning probe microscope tips and products therefor or produced thereby |
Patent | Priority | Assignee | Title |
4343993, | Sep 20 1979 | International Business Machines Corporation | Scanning tunneling microscope |
4422002, | Aug 10 1981 | International Business Machines Corporation | Piezo-electric travelling support |
4520570, | Dec 30 1983 | International Business Machines Corporation | Piezoelectric x-y-positioner |
4668865, | Mar 07 1985 | INTERNATIONAL BUSINESS MACHINES CORPORATION,A CORP OF NEW YORK | Scanning tunneling microscope |
4724318, | Nov 26 1985 | International Business Machines Corporation | Atomic force microscope and method for imaging surfaces with atomic resolution |
4785177, | Mar 27 1986 | Kernforschungsanlage Julich Gesellschaft mit beschrankter Haftung | Kinematic arrangement for the micro-movements of objects |
4800274, | Feb 02 1987 | The Regents of the University of California | High resolution atomic force microscope |
4806755, | Oct 03 1986 | INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NEW YORK | Micromechanical atomic force sensor head |
4823004, | Nov 24 1987 | California Institute of Technology; CALIFORNIA INSTITUTE OF TECHNOLOGY, 1201 E CALIFORNIA BLVD , PASADENA, CA 91125 A CA CORP | Tunnel and field effect carrier ballistics |
4837435, | Jun 25 1987 | SII NANOTECHNOLOGY INC | Tunneling scanning microscope having light source |
4866271, | Jul 11 1986 | SII NANOTECHNOLOGY INC | Relative displacement control apparatus |
4868396, | Oct 13 1987 | Agilent Technologies, Inc | Cell and substrate for electrochemical STM studies |
4871938, | Jun 13 1988 | VEECO METROLOGY INC | Positioning device for a scanning tunneling microscope |
4877957, | Jul 14 1986 | Olympus Optical Co., Ltd. | Scanning type tunnel microscope |
4889988, | Jul 06 1988 | VEECO METROLOGY INC | Feedback control for scanning tunnel microscopes |
4902892, | Oct 15 1987 | SII NANOTECHNOLOGY INC | Method of measurement by scanning tunneling microscope |
4914293, | Mar 04 1988 | Kabushiki Kaisha Toshiba | Microscope apparatus |
4924091, | Feb 01 1989 | The Regents of the University of California | Scanning ion conductance microscope |
4935634, | Mar 13 1989 | The Regents of the University of California | Atomic force microscope with optional replaceable fluid cell |
4947042, | Dec 13 1988 | Mitsubishi Denki Kabushiki Kaisha | Tunnel unit and scanning head for scanning tunneling microscope |
4952857, | Mar 24 1989 | AT&T VENTURE COMPANY, L P | Scanning micromechanical probe control system |
4954704, | Dec 04 1989 | VEECO METROLOGY INC | Method to increase the speed of a scanning probe microscope |
4956817, | May 26 1988 | AT&T VENTURE COMPANY, L P | High density data storage and retrieval system |
4962480, | Sep 12 1988 | SEIKO INSTRUMENTS INC , A CORP OF JAPAN | Memory reading apparatus |
4968390, | Nov 03 1988 | UNIVERSITY OF TEXAS SYSTEM, THE | High resolution deposition and etching in polymer films |
4968914, | Mar 24 1989 | AT&T VENTURE COMPANY, L P | High resolution electromechanical translation device |
4969978, | Nov 27 1987 | SII NANOTECHNOLOGY INC | Apparatus and method for tunnel current measurement observed simultaneously with electrochemical measurement |
4992659, | Jul 27 1989 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NEW YORK 10504 A CORP OF NY | Near-field lorentz force microscopy |
4992728, | Dec 21 1989 | International Business Machines Corporation | Electrical probe incorporating scanning proximity microscope |
4999494, | Sep 11 1989 | VEECO METROLOGY INC | System for scanning large sample areas with a scanning probe microscope |
4999495, | Aug 31 1988 | SII NANOTECHNOLOGY INC | Scanning tunneling microscope |
5003815, | Oct 20 1989 | International Business Machines Corporation | Atomic photo-absorption force microscope |
5009111, | Aug 31 1988 | AT&T VENTURE COMPANY, L P | Differential force balance apparatus |
5017010, | May 16 1989 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NEW YORK | High sensitivity position sensor and method |
5018865, | Oct 21 1988 | SPIRAL RECHERCHE ET DEVELOPPEMENT S A R L | Photon scanning tunneling microscopy |
5025658, | Nov 28 1989 | VEECO METROLOGY INC | Compact atomic force microscope |
5047633, | May 08 1989 | Amersham International plc | Imaging apparatus and method |
5051646, | Apr 28 1989 | VEECO METROLOGY INC | Method of driving a piezoelectric scanner linearly with time |
5066858, | Apr 18 1990 | Veeco Instruments INC | Scanning tunneling microscopes with correction for coupling effects |
5077473, | Jul 26 1990 | VEECO METROLOGY INC | Drift compensation for scanning probe microscopes using an enhanced probe positioning system |
5081390, | Aug 13 1990 | VEECO METROLOGY INC | Method of operating a scanning probe microscope to improve drift characteristics |
5103095, | May 23 1990 | VEECO METROLOGY INC | Scanning probe microscope employing adjustable tilt and unitary head |
5107113, | Dec 26 1990 | BELL COMMUNICATIONS RESEARCH, INC , A CORP OF DE | Method and apparatus for correcting distortions in scanning tunneling microscope images |
5107114, | Sep 14 1990 | Mitsubish Denki Kabushiki Kaisha | Fine scanning mechanism for atomic force microscope |
5117110, | Jul 05 1989 | SII NANO TECHNOLOGY INC | Composite scanning tunnelling microscope with a positioning function |
5120959, | Jan 31 1989 | SII NANOTECHNOLOGY INC | Apparatus for simultaneously effecting electrochemical measurement and measurement of tunneling current and tunnel probe therefor |
5141319, | Nov 22 1990 | Olympus Optical Co., Ltd. | Displacement detection device with adjacent semiconductor diode lasers |
5142145, | Jul 05 1989 | SII NANO TECHNOLOGY INC | Composite scanning tunneling microscope |
5144833, | Sep 27 1990 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY | Atomic force microscopy |
5155361, | Jul 26 1991 | Agilent Technologies, Inc | Potentiostatic preparation of molecular adsorbates for scanning probe microscopy |
5155715, | Jan 13 1989 | SHARP KABUSHIKI KAISHA, A JOINT-STOCK CO OF JAPAN | Reproducing apparatus |
5157251, | Mar 13 1991 | VEECO METROLOGY INC | Scanning force microscope having aligning and adjusting means |
5166516, | Oct 26 1990 | Olympus Optical Co., Ltd. | Scanning probe microscope with slant detection and compensation |
5168159, | Nov 19 1990 | Olympus Optical Co., Ltd. | Barrier height measuring apparatus including a conductive cantilever functioning as a tunnelling probe |
5189906, | Nov 28 1989 | VEECO METROLOGY INC | Compact atomic force microscope |
5196713, | Aug 22 1991 | Wyko Corporation | Optical position sensor with corner-cube and servo-feedback for scanning microscopes |
5198715, | May 23 1990 | BRUKER NANO, INC | Scanner for scanning probe microscopes having reduced Z-axis non-linearity |
5202004, | Dec 20 1989 | VEECO METROLOGY INC | Scanning electrochemical microscopy |
5204531, | Feb 14 1992 | BRUKER NANO, INC | Method of adjusting the size of the area scanned by a scanning probe |
5206702, | Oct 09 1989 | Olympus Optical Co., Ltd. | Technique for canceling the effect of external vibration on an atomic force microscope |
5210410, | Sep 26 1991 | The Board of Trustees of the Leland Stanford Junior University | Scanning probe microscope having scan correction |
5224376, | May 30 1991 | BRUKER NANO, INC | Atomic force microscope |
5229606, | Jun 05 1989 | VEECO METROLOGY INC | Jumping probe microscope |
5231286, | Aug 31 1990 | Olympus Optical Co., Ltd. | Scanning probe microscope utilizing an optical element in a waveguide for dividing the center part of the laser beam perpendicular to the waveguide |
5237859, | Dec 08 1989 | VEECO METROLOGY INC | Atomic force microscope |
5245863, | Jul 11 1990 | Olympus Optical Co., Ltd. | Atomic probe microscope |
5247186, | May 14 1991 | Olympus Optical Co., Ltd. | Integrated optical displacement sensor |
5253516, | May 23 1990 | BRUKER NANO, INC | Atomic force microscope for small samples having dual-mode operating capability |
5257024, | May 26 1988 | AT&T VENTURE COMPANY, L P | Search position encoder |
5258107, | May 28 1991 | Seiko Instruments Inc | Method for manufacturing a cantilever with sharpened metal needle |
5260567, | Apr 10 1991 | Canon Kabushiki Kaisha | Cantilever unit and atomic force microscope, magnetic force microscope, reproducing apparatus and information processing apparatus using the cantilever unit |
5260622, | Mar 24 1989 | AT&T VENTURE COMPANY, L P | High resolution electromechanical translation device |
5260824, | Apr 24 1989 | Olympus Optical Co., Ltd. | Atomic force microscope |
5262643, | Jun 12 1992 | INTERNATIONAL BUSINESS MACHINES CORPORATION A CORPORATION OF NEW YORK | Automatic tip approach method and apparatus for scanning probe microscope |
5266801, | Jun 05 1989 | BRUKER NANO, INC | Jumping probe microscope |
5266896, | Jun 09 1992 | GLOBALFOUNDRIES Inc | Mechanical detection and imaging of magnetic resonance by magnetic moment modulation |
5266897, | Sep 05 1990 | International Business Machines Corporation | Magnetic field observation with tunneling microscopy |
5267471, | Apr 30 1992 | IBM Corporation | Double cantilever sensor for atomic force microscope |
5274230, | Aug 31 1990 | Olympus Optical Co., Ltd. | Scanning probe microscope having first and second optical waveguides |
5276324, | Aug 08 1991 | Nikon Corporation | Composite scanning tunneling microscope |
5280341, | Feb 27 1992 | International Business Machines Corporation | Feedback controlled differential fiber interferometer |
5283437, | Dec 21 1990 | International Business Machines Corporation | Pneumatically and electrostatically driven scanning tunneling microscope |
5283442, | Feb 04 1992 | GLOBALFOUNDRIES Inc | Surface profiling using scanning force microscopy |
5286977, | Jan 23 1992 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Positioning device |
5289004, | Mar 27 1990 | Olympus Optical Co., Ltd. | Scanning probe microscope having cantilever and detecting sample characteristics by means of reflected sample examination light |
5291775, | Mar 04 1992 | AT&T VENTURE COMPANY, L P | Scanning force microscope with integrated optics and cantilever mount |
5293042, | May 10 1991 | Olympus Optical Co., Ltd. | Servo circuit of scanning probe microscope |
5294804, | Mar 11 1992 | Olympus Optical Co., Ltd. | Cantilever displacement detection apparatus |
5296704, | Oct 02 1989 | Olympus Optical Co., Ltd. | Scanning tunneling microscope |
5298975, | Sep 27 1991 | GLOBALFOUNDRIES Inc | Combined scanning force microscope and optical metrology tool |
5304924, | Mar 29 1989 | Canon Kabushiki Kaisha | Edge detector |
5306919, | Sep 21 1992 | BRUKER NANO, INC | Positioning device for scanning probe microscopes |
5307693, | Jan 21 1993 | AT&T Bell Laboratories; American Telephone and Telegraph Company | Force-sensing system, including a magnetically mounted rocking element |
5308974, | Nov 30 1992 | BRUKER NANO, INC | Scanning probe microscope using stored data for vertical probe positioning |
5314254, | Nov 03 1992 | BRUKER NANO, INC | Stiffness enhancer for movable stage assembly |
5314829, | Dec 18 1992 | California Institute of Technology | Method for imaging informational biological molecules on a semiconductor substrate |
5317153, | Aug 08 1991 | Nikon Corporation | Scanning probe microscope |
5319960, | Mar 06 1992 | VEECO METROLOGY, LLC | Scanning force microscope |
5321977, | Dec 31 1992 | GLOBALFOUNDRIES Inc | Integrated tip strain sensor for use in combination with a single axis atomic force microscope |
5323003, | Sep 03 1991 | Canon Kabushiki Kaisha | Scanning probe microscope and method of observing sample by using such a microscope |
5324935, | May 08 1992 | SII NANO TECHNOLOGY INC | Scanning probe microscope having a directional coupler and a Z-direction distance adjusting piezoelectric element |
5325010, | Jul 03 1988 | Forschungszentrum Julich GmbH | Micromanipulator |
RE33387, | Nov 26 1985 | International Business Machines Corporation | Atomic force microscope and method for imaging surfaces with atomic resolution |
RE34331, | Aug 30 1991 | BRUKER NANO, INC | Feedback control for scanning tunnel microscopes |
RE34489, | Jun 04 1992 | Regents of the University of California, The | Atomic force microscope with optional replaceable fluid cell |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 11 1994 | The Arizona Board of Regents | (assignment on the face of the patent) | / | |||
Jan 04 2006 | MOLECULAR IMAGING CORP | Agilent Technologies, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 017519 | /0904 | |
Jan 04 2006 | MOLECULAR IMAGING CORP | MOLECULAR IMAGING CORP, A WHOLLY OWNED SUBSIDIARY OF AGILENT TECHNOLOGIES, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 017519 | /0904 | |
Jan 04 2006 | MOLECULAR IMAGING CORP | MOLECULAR IMAGING CORP, A WHOLLY OWNED SUBSIDIARY OF AGILENT TECHNOLOGIES, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME CORRECTION: MOLECULAR IMAGINING CORP , A WHOLLEY OWNED SUBSIDIARY OF AGILENT TECHNOLOGIES, INC PREVIOUSLY RECORDED ON REEL 017527 FRAME 0255 ASSIGNOR S HEREBY CONFIRMS THE ORIGINAL ASSIGNEE NAME LISTED AS AGILENT TECHNOLOGIES, INC | 017537 | /0032 | |
Apr 25 2006 | MOLECULAR IMAGING CORP, A WHOLLY OWNED SUBSIDIARY OF AGILENT TECHNOLOGIES, INC | Agilent Technologies, Inc | CORRECTIVE ASSIGNMENT TO CORRECT THE THE STATE IN THE ADDRESS OF THE NEW ASSIGNEE SHOULD BE COLORADO PREVIOUSLY RECORDED ON REEL 017519 FRAME 0904 ASSIGNOR S HEREBY CONFIRMS THE ON THE ORIGINAL THE STATE IN THE ADDRESS WAS LISTED AS OHIO | 017527 | /0255 |
Date | Maintenance Fee Events |
Apr 12 2000 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 21 2000 | LSM2: Pat Hldr no Longer Claims Small Ent Stat as Small Business. |
Jul 08 2002 | LTOS: Pat Holder Claims Small Entity Status. |
Apr 13 2004 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Apr 05 2007 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Date | Maintenance Schedule |
Aug 27 1999 | 4 years fee payment window open |
Feb 27 2000 | 6 months grace period start (w surcharge) |
Aug 27 2000 | patent expiry (for year 4) |
Aug 27 2002 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 27 2003 | 8 years fee payment window open |
Feb 27 2004 | 6 months grace period start (w surcharge) |
Aug 27 2004 | patent expiry (for year 8) |
Aug 27 2006 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 27 2007 | 12 years fee payment window open |
Feb 27 2008 | 6 months grace period start (w surcharge) |
Aug 27 2008 | patent expiry (for year 12) |
Aug 27 2010 | 2 years to revive unintentionally abandoned end. (for year 12) |