A differential switch accepts a binary control signal and its complement (which may be skewed with respect to the control signal) and latches both signals simultaneously. The latched output signals drive the control terminals of a differential switch pair which connects one of two terminals to a third terminal, depending upon the state of the control terminals. The differential switch may optionally include an inverter which complements the binary control signal, thus eliminating the need for external inversion of the control signal. The switch is particularly applicable for use in a digital to analog converter.
|
17. A differential switch, comprising:
a control input for receiving a single binary control signal, an inverter that is coupled to said control input to produce a complement of said binary control signal which is skewed with respect to said binary control signal, a latch which latches said binary control signal thereby introducing a delay between the control signal and its complement and its complement and then simultaneously transfers the binary control signal and its complement through a pair of transfer switches into a plurality of storage elements thereby eliminating the skew between the signals, and a pair of differentially connected switches with two control terminals that are directly connected to the storage elements and to respective transfer switches so that said pair of differentially connected switches are controlled by the single binary control signal without skew.
0. 21. A skewless differential switch, comprising:
complementary signal sources, a differential switch pair having complementary control inputs, a pair of transfer switches, each of said switches completing a direct transmission path between a respective one of said complementary signal sources and a respective one of said complementary control inputs when closed in response to a common clock signal, and a plurality of storage elements connected to said complementary control inputs, said common clock signal closing said transfer switches substantially simultaneously such that said switches transfer said complementary signal sources to said complementary control inputs de-skewed, said storage elements arranged to maintain the binary values of said complementary signal sources on said complementary control inputs when said transfer switches are open.
18. A digital to analog converter comprising:
an analog output section, a digital section having a binary output and an enable output connected to provide control of said analog output section, said analog output section comprising a differential switch which connects a first or second conducting terminal to a third conducting terminal thereby producing an analog output , said differential switch further comprising, : an inverter that is coupled to said binary output to produce a complement of said binary output which is skewed with respect to said binary output, control and complementary inputs for receiving a control signal said binary output and its complement, a latch having control and complementary inputs having two outputs which latches said control binary output and its complementary signals and simultaneously , said latch having two outputs, and transfers the binary output and its complement through a pair of transfer switches into a plurality of storage elements thereby eliminating the skew between the signals, and a pair of differentially connected switches with two control terminals, said differentially connected switches connecting one of two conducting terminals to a third conducting terminal, depending upon the state of the control terminals, said control terminals being directly connected to respective ones of said latch outputs transfer switches. 0. 22. A skewless differential switch, comprising:
first and second transfer switches, each of said switches having first and second switch terminals and arranged to provide a conductive path between said first and said second switch terminals when closed in response to a common clock signal, a differential switch pair having complementary control inputs, said first terminals of said first and second transfer switches connected to receive a control bit and its complement, respectively, and said second terminals of said first and second transfer switches directly connected to respective ones of said complementary control inputs via first and second transmission paths, and a plurality of storage elements connected to said second terminals of said first and second transfer switches in parallel with said first and second transmission paths, said transfer switches simultaneously transferring said control bit and its complement through their respective switches to said storage elements and said complementary control inputs in response to said common clock signal, said storage elements arranged to maintain the binary values of said transferred control bit and its complement on said complementary control inputs when said transfer switches are open.
1. A skewless differential switch, comprising:
a control input for receiving a control signal, an inverter that is coupled to said control input to produce a complement of said control signal which is skewed with respect to said control signal, an enable input for receiving a clock signal, a plurality of storage elements, a differential switch pair having complementary control inputs, a pair of first and second transfer switches responsive to said clock signal that are , each of said transfer switches having first and second switch terminals, said first switch terminals connected between to said control input signal and said inverter complement of said control signal, respectively, and said second switch terminals directly connected to respective ones of said complementary control inputs, and storage elements to isolate a plurality of storage elements connected to said second switch terminals in parallel with said direct connections between said second switch terminals and said differential switch pair, said transfer switches isolating said control input signal and its complement from said storage elements and the complementary control inputs and, once per clock period, simultaneously transferring the control signal and its complement through their respective switches to the storage elements and the complementary control inputs, said storage elements also connected to store said signals transferred control signal and its complement and to provide de-skewed complementary output signals to said complementary control inputs having the same binary values as the control signal and its complement stored within said storage elements, and a differential switch pair having complementary control inputs that are connected to receive said pair of de-skewed complementary output signals from said storage elements so that said differential switch pair is controlled by said control input without skew.
11. A digital to analog converter, comprising:
an analog output section, and a digital section having a binary output and an enable output connected to provide control over said analog output section, said analog output section comprising a differential switch which connects a first or second conducting terminal to a third conducting terminal thereby producing an analog output, said differential switch further having a control input connected to said binary output and an enable input connected to said enable output , said differential switch further comprising, an inverter connected to receive a signal from said control input and to produce a complement of said control signal, control and complement inputs for receiving a control signal and a complement of said control signal which may be skewed with respect to said control signal, an enable input, storage elements, switches connected to provide transmission paths under control of said enable input from each of said control and complement inputs to said storage elements, said storage elements also connected to store said signals and to provide de-skewed output signals having the same binary value as the respective signal stored within said storage elements, and a differentially connected switches having complementary control inputs, one of said differentially connected switch control inputs being connected to receive said control signal, and the other differentially connected switch control input being connected to receive said complement signal from another of said storage elements : a control input connected to said binary output, an inverter that is coupled to said control input to produce a complement of said binary output which is skewed with respect to said binary output, an enable input connected to said enable output, a differential switch pair having complementary switch control inputs, said differential switch pair connecting one of two conducting terminals to a third conducting terminal depending upon the state of said complementary switch control inputs, first and second transfer switches responsive to said enable input, each of said transfer switches having first and second switch terminals, said first switch terminals connected to said binary output and said complement of said binary output, respectively, and said second switch terminals directly connected to respective ones of said complementary switch control inputs, and a plurality of storage elements connected to said second switch terminals in parallel with said direct connections between said second switch terminals and said differential switch pair, said transfer switches isolating said binary output and its complement from said storage elements and, once per clock period, simultaneously transferring the binary output and its complement through their respective switches to the storage elements and the complementary switch control inputs, said storage elements connected to store said transferred binary output and its complement and to provide de-skewed complementary output signals to said complementary switch control inputs having the same binary values as the binary output and its complement stored within said storage elements so that said differential switch pair is controlled by said binary output without skew. 2. The switch of
said intermediate switch pair provides a transmission path from said control input and said inverter to different ones of said intermediate storage elements in response to said clock signal, and said intermediate storage elements are connected to receive said control and complement signals through said intermediate switches, store said signals and provide output signals to said pair first and second transfer switches having the same values as the respective signals stored within said intermediate storage elements.
3. The switch of
4. The switch of
5. The switch of
6. The switch of
8. The switch of
9. The switch of
said control input being connected to receive a signal which is a non-overlapping complement of said clock signal.
10. The switch of
12. The digital to analog converter of
13. The digital to analog converter of
14. The digital to analog converter of
said intermediate switch pair provides a respective transmission paths from each of said inputs to one of said said control input and said inverter to respective ones of said intermediate storage elements under control of said enable input, and said intermediate storage elements receive said control binary output and binary output complement signals from said inputs through said intermediate switches, store said signals and provide output signals to said first switch pair and second transfer switches having the same values as the respective signals stored within said intermediate storage elements.
15. The digital to analog converter of
16. The switch digital to analog converter of
19. The digital to analog converter of
said intermediate latch connected to simultaneously latch said control and complement inputs under control of an enable input, and to provide latched control and complementary signals to said control and complementary inputs of said latch.
20. The digital to analog converter of
0. 23. The switch of
0. 24. The switch of
0. 25. The switch of
|
1. Field of the Invention
The invention relates to the field of differential switches and, in particular, to differential switches operated under control of a single binary signal, as in the case of digital to analog converters (DACs).
2. Description of the Related Art
Binary-control differential switches operate as single-pole double-throw switches and are employed in many applications such as DACs. Within such a switch, a single control terminal effects contact between a first conducting terminal and a second conducting terminal while breaking contact between the first conducting terminal and a third conducting terminal. Although the utility of such switches will be described in reference to their application within DACs, they may be used for many other applications.
There are a number of conventional DAC architectures which employ differential switches. Some are current output, some are voltage output. For examples of both see, Analog-Digital Conversion Handbook, Daniel H. Sheingold ed., Prentice Hall, Englewood Cliffs, N.J., 1986, pages 191-206. A current output DAC is illustrated in
More specifically, in the design of
As the binary values at the control inputs LSB-MSB vary, the switches S1-Sn route currents corresponding to the varying binary values of the control inputs to the output terminal, where the total current may be converted into a voltage. The switches are generally switched "simultaneously" to provide valid current levels at the output terminal 12. However, as will be explained in greater detail in relation to
The mid-scale glitch, produced by the transition of the control codes appearing at terminals 18-14 between 1000 . . . 0 and 0111 . . . 1, is usually the worst glitch because all the switches S1-Sn are switching at this transition. Glitches will also occur at other transition points, but they will generally be of lesser magnitude. Glitches are particularly onerous in waveform reconstruction applications such as direct digital synthesis systems.
Code-dependent glitches, such as those just discussed, will produce both out-of-band and in-band harmonics of the desired signal. For example, in reconstructing a sine wave, the midscale glitch occurs twice during each sine wave period, at each mid-scale crossing. In this manner the midscale glitches produce a second harmonic of the sinewave. Although filtering may eliminate or reduce to a tolerable level the contribution from some of the glitches, higher order harmonics, which alias back into the Nyquist bandwidth, cannot be filtered. To avoid filtering and to eliminate spurious signals that cannot be filtered, it would therefore be desirable to avoid introducing the glitches whenever possible.
The block diagram of
The control input MSB provides a digital signal path for control inputs to the switch S1. An MSB signal enters the latch L1 and, under control of enable signals ck and ckb, is transferred through an analog switch ASW1. It is then inverted, or complemented, by an inverter INV1 to produce a control signal INVERTED which is applied to the control terminal of the switch swb. Analog switches are known in the art. A description of them may be found in, Paul Horowitz, and Winfield Hill, The Art of Electronics, Cambridge University Press, N. Y., 1989, pages 142-143. The output of the inverter INV1 is connected to the input of a second inverter INV2 which inverts the signal INVERTED to produce a control signal TRUE which is applied to the control input 24 of the switch swb, the other switch of the differential pair. Note that inversion of the INVERTED signal by inverter INV2 produces a delay between the control signals applied to the differential pair. That is, the INVERTED signal will arrive at the control terminal 22 of switch swb one inverter's delay before the TRUE signal arrives at the control terminal 24 of switch swa. Consequently, a glitch impulse will be created at the S1 output terminal c.
Returning to the operation of the latch L1, the enable signals ck and ckb are assumed to be complementary and non-overlapping. That is, more circuitry than a simple inverter is required to produce ckb from ck. During a first phase of the enable signals ck and ckb, the input signal from MSB is "clocked" through the analog switch ASW1. At the same time, because the control inputs to analog switch ASW2 are connected opposite to the connection of ASW1, ASW2 will be "off", thus isolating the output of ASW1 from the output of the inverter INV2.
However, during the second phase of the enable signals, analog switch ASW1 is off and ASW2 is on. With ASW1 off, the MSB terminal is isolated from the circuit beyond the analog switch ASW1. With analog switch ASW2 on, inverters INV1 and INV2 are "cross-coupled". That is, the output of INV1 feeds the input of INV2 and the output of INV2 feeds the input of INV1. In this conventional configuration, there are two stable states which the inverters may assume, i.e., INV1=1, INV2=0 or INV1=0, INV2=1 and, by feedback, they will remain in whichever state to which they are forced. In this way the cross-coupled inverters, coupled through the switches ASW1 and ASW2, form a latch which provides TRUE(delayed) and INVERTED control signals for a differential switch pair from a single binary control signal i.e., that from the MSB terminal.
The switches swa and swb which comprise the differential pair may be any type of switch, including p-channel or n-channel MOSFETs, NPN or PNP bipolar transistor or analog switches. Employing analog switches for switches swa and swb provides some flexibility in choosing between current output or voltage output DACs. An implementation which employs PNP transistors as switches swa and swb is illustrated in
An analog switch implementation of the differential switch pair, illustrated in
The advantage of employing analog switches for switches swa and swb lies in the fact that they conduct bidirectionally; therefore a voltage output may be produced by substituting voltage references at the return 10 and output 12 terminals and taking the output from the terminal 14 which, in the current output configuration, provides the reference current I1.
Another latch may be added "in front of" L1 to produce a conventional master/slave latch which provides added isolation between input and output. This additional level of isolation may be used, for example, to update a binary input value by shifting a desired binary value into position at the inputs to a set of master latches, keeping the slave latches isolated, then shifting the updated value into the slave latches simultaneously.
As just described, conventional switches require a somewhat elaborate scheme to produce non-overlapping complementary enable signals to drive the control inputs of analog switches which, along with a pair of inverters, form a binary to differential control latch. Not only is an elaborate enable signal required, glitches, which may create unfilterable spurious signals, are produced by the delay between the generation of TRUE and INVERTED control signals for the differential switch pair.
The invention is directed to a differential switch that minimizes the complexity of a switch controller's clock generation circuitry and reduces spurious switching, thereby reducing the occurrence and duration of undesirable switch outputs, or glitches. These goals are achieved by a latched differential switch which inverts the control input and then simultaneously transfers the control input and its complement through transfer switches into storage elements. Although inverting the control signal introduces a delay between the control signal and its complement (referred to as the "TRUE" and "INVERTED" signals hereinafter), simultaneously transferring them into storage elements eliminates this skew. The storage elements' outputs are connected to the control inputs of a differential switch pair, thus providing "de-skewed" control for a differential switch pair from a single binary control input.
In one implementation, the novel switch includes a n intermediate set of transfer switches, operated from the same "enable" signal as the first set of transfer switches, and an intermediate set of storage elements. The intermediate sets of switches and storage elements are interposed between the TRUE and INVERTED inputs and the first set of transfer switches. During the first cycle of the enable signal, the TRUE and INVERTED signals are simultaneously transferred into the intermediate set of storage elements. As described above, this simultaneous transfer eliminates the skew between the TRUE and INVERTED signals. The TRUE and INVERTED signals are then transferred into the first storage element, which is isolated from the intermediate storage element, during the second cycle of the enable signal.
The isolation between the first and second storage elements prevents transitions at the input to the second storage element from appearing at the first storage element. The TRUE and INVERTED signals are therefore available from the second storage element without the skew between them that had been introduced by inverting the control signal. The outputs of the first storage element are connected, as described above, to the control inputs of a differential switch pair, thus providing "de-skewed" control for the switch pair. The novel switch may be used, for example, within a DAC to reduce the DAC's glitch energy output.
These and other features, aspects and advantages of the invention will be apparent to those skilled in the art from the following detailed description, take together with the accompanying drawings.
The new switch 30 of
The latch 32 accepts a binary signal at the input MSB, inverts the signal with an inverter INV3 and, under control of transfer switches TSW1 and TSW2, transfers the TRUE and INVERTED signals thus produced into storage elements 40 and 42. Outputs from the storage elements 40 and 42 are connected to the control inputs 34 and 36 of a differential switch pair comprising switches swa and swb. The enable signal ck controls the simultaneous transfer of TRUE and INVERTED control signals into storage elements 40 and 42, respectively. Although the inverter INV3 introduces a skew between the TRUE and INVERTED signals as it produces the INVERTED signal from the TRUE signal, the simultaneous transfer of these signals into the storage elements eliminates this skew. In some applications, TRUE and INVERTED signals may be available as inputs to the novel switch(with an inverter's delay between them). In those cases, the inverter INV3 could be eliminated from the switch 30.
As indicated in
An implementation of the novel switch 30 is illustrated in
Alternatively, a pair of cross-coupled inverters INV6 and INV7, one of which (INV7) is a gated inverter, may be employed, as a storage element, as illustrated in
A signal ck is asserted to transfer a single-bit signal MSB through a transfer switch TSW1, when MSB is valid, to the input of inverter INV6. A signal ckb, the non-over-lapping inverse of ck, opens switch SWI1 when ck closes TSW1. The switch SWI1 is connected between the output of the inverter INV7 and the input of the inverter INV6. Consequently the output of the inverter INV7 is isolated from the device driving the input of the inverter INV6 and, because there is no contention between the output of INV7 and the device driving the input of inverter INV6, inverters INV6 and INV7 needn't be "weak" inverters. When the ck input is "de-asserted", transfer switch TSW1 opens and switch SWI1 closes. During the short time that neither switch is closed, stray capacitance maintains the state of inverter INV6 until the switch SWI1 closes. With switch SWI1 closed, the inverter INV7 provides positive feedback to the inverter INV6, thereby "latching" the inverters and providing the TRUE and INVERTED control signals for the differential switch control terminals 34 and 36 (not shown). In some applications, the differential switch pair requires more drive current than "weak" inverters may provide. Employing standard inverters and the additional switch SWI1 as illustrated in
Similarly,
The gated inverter 46 shown in
When ck is de-asserted, after the binary value from MSB has been transferred to the input of the inverter INV6, FETs n1 and p2 are turned on, thereby providing supply voltages to the inverter 46. At this point the input 50 to the gated inverter 46 will be driven to the updated level by the output of inverter INV6, and the output 48 of the gated inverter 46 will drive the input of the inverter INV6 to the same level transferred to it by the transfer switch TSW1. In this way an updated value of MSB is transferred to the input of the inverter INV6 without contention from the output of the gated inverter 46. This value is then latched, through positive feedback from the gated inverter 46, at the output of the storage element 40.
In some applications, notably those employing a DAC in waveform reconstruction, the DAC's differential switches' data inputs, LSB 14-MSB 18, are rapidly updated. As illustrated in
In a preferred embodiment, the novel switch 30 employs a master/slave architecture, as illustrated by the schematic of FIG. 6. All the inverters employed within this preferred embodiment are CMOS inverters, the relative strengths of which will be discussed below. A master latch 50 latches control signals during a first phase of the enable input ck. Then, during the second phase of ck, these signals are transferred to a slave latch 52. As described in relation to
The switch 30 accepts an enable signal at an input ck and data at an input MSB. Within a DAC, the data appearing at the input MSB would represent one bit of a digital code which is to be converted into an analog output. Data appearing at the MSB input is inverted by a CMOS inverter INV9 and the true and complement signals thus formed are passed through switches P5 and P4, respectively, when the signal ck goes low. In this embodiment, switches P5 and P4 are p-channel FETs. Inverters INV10 and INV11 form a cross-coupled weak inverter "master" latch that accepts signals passed through the switches P5 and P4. A pair of inverters INV12 and INV13 buffer the outputs from the latch.
When the enable signal ck goes high, n-channel MOSFET switches N4 and N5 pass the outputs from the buffers INV12 and INV13 to a "slave" latch formed by cross-coupled weak inverters INV14 and INV15. At the same time switches P4 and P5 turn off, thereby isolating the master latch from the MSB signal and its complement. The INVERTED and TRUE outputs from the slave latch are buffered by inverters INV16 and INV18 connected in series and INV17 and INV19 connected in series, respectively. The buffer inverters INV18 and INV19 drive the control terminals 34 and 36 of the differential switch pair 38. In the preferred embodiment, switches swa and swb are p-channel MOSFETs. Since the signal at the MSB input is complemented before being latched, the skew created by the delay of inverter INV9 is eliminated during the latching process. Consequently, a single binary signal is converted into de-skewed differential switch pair control signals available to drive inputs 34 and 36.
To accommodate the difference in mobility between holes and electrons, the size (i.e., channel width to length ratio) of the p-channel FET within each inverter INV9-INV17 is preferably about 3.2 times that of the corresponding n-channel FET, and the p-channel FETs of inverters INV18 and INV19 are about twice the size of their corresponding n-channel FETs. Additionally, the channel widths of the weak inverters, (INV10, INV11, INV14 and INV15) are approximately 0.4 that of the other inverters. This allows the devices which drive the weak inverters to do so with little contention from the weak inverters.
The forgoing description of specific embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teachings. For example, the novel switches may be employed within a DAC which is itself a part of an analog to digital converter, such as a successive approximation converter. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention. It is intended that the scope of the invention be limited only by the claims appended hereto.
Mercer, Douglas A., Reynolds, David, Robertson, David H., Stroud, Ernest T.
Patent | Priority | Assignee | Title |
6462688, | Dec 18 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Direct drive programmable high speed power digital-to-analog converter |
6844837, | Dec 18 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Class B driver |
6903671, | Jan 23 2003 | Samsung Electronics Co., Ltd. | Digital-to-analog converter with low skew and glitch |
7095348, | May 23 2000 | Marvell International Ltd. | Communication driver |
7113121, | May 23 2000 | Marvell International Ltd. | Communication driver |
7194037, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active replica transformer hybrid |
7280060, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Communication driver |
7298173, | Oct 26 2004 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Slew rate control circuit for small computer system interface (SCSI) differential driver |
7312662, | Aug 09 2005 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Cascode gain boosting system and method for a transmitter |
7312739, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Communication driver |
7327995, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistance summer for a transformer hybrid |
7378835, | Jun 07 2006 | National Instruments Corporation | Interleaved differential multiplexer |
7433665, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Apparatus and method for converting single-ended signals to a differential signal, and transceiver employing same |
7466971, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistive summer for a transformer hybrid |
7536162, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistive summer for a transformer hybrid |
7577892, | Aug 25 2005 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | High speed iterative decoder |
7579873, | Oct 26 2004 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Slew rate control circuit for small computer system interface (SCSI) differential driver |
7606547, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistance summer for a transformer hybrid |
7649483, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Communication driver |
7719314, | Oct 26 2004 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Slew rate control circuit for small computer system interface (SCSI) differential driver |
7729429, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active replica transformer hybrid |
7737788, | Aug 09 2005 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Cascode gain boosting system and method for a transmitter |
7761076, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Apparatus and method for converting single-ended signals to a differential signal, and transceiver employing same |
7804904, | May 23 2000 | Marvell International Ltd. | Active replica transformer hybrid |
7853855, | Aug 25 2005 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | High speed iterative decoder |
8009073, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Method and apparatus for generating an analog signal having a pre-determined pattern |
8045946, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistive summer for a transformer hybrid |
8050645, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistive summer for a transformer hybrid |
8503961, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistive summer for a transformer hybrid |
8880017, | Jul 31 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Active resistive summer for a transformer hybrid |
9614542, | Dec 17 2014 | STMicroelectronics, Inc. | DAC with sub-DACs and related methods |
RE40971, | Dec 18 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Direct drive programmable high speed power digital-to-analog converter |
RE41831, | May 23 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Class B driver |
Patent | Priority | Assignee | Title |
4629909, | Oct 19 1984 | AMI Semiconductor, Inc | Flip-flop for storing data on both leading and trailing edges of clock signal |
5105193, | Feb 15 1988 | PLESSY SEMICONDUCTORS LIMITED | Digital to analogue convertors |
5450084, | Aug 12 1993 | Analog Devices, Incorporated | D/A converter with differential switching circuit providing symmetrical switching |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 16 1999 | Analog Devices, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 24 2004 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 18 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 02 2005 | 4 years fee payment window open |
Oct 02 2005 | 6 months grace period start (w surcharge) |
Apr 02 2006 | patent expiry (for year 4) |
Apr 02 2008 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 02 2009 | 8 years fee payment window open |
Oct 02 2009 | 6 months grace period start (w surcharge) |
Apr 02 2010 | patent expiry (for year 8) |
Apr 02 2012 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 02 2013 | 12 years fee payment window open |
Oct 02 2013 | 6 months grace period start (w surcharge) |
Apr 02 2014 | patent expiry (for year 12) |
Apr 02 2016 | 2 years to revive unintentionally abandoned end. (for year 12) |