A current source is provided according to the present invention. The current source includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input. The current source also includes M delay elements. An mth one of the M delay elements includes an input in communication with an m−1th one of the M delay elements. M is equal to N−1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.

Patent
   RE40971
Priority
Dec 18 2000
Filed
Sep 06 2005
Issued
Nov 17 2009
Expiry
Dec 18 2020
Assg.orig
Entity
Large
2
319
all paid
49. digital-to-analog conversion apparatus, comprising:
structure providing a multilevel digital control signal so that each level has a substantially similar bandwidth;
a plurality of parallel digital-to-analog converters, each receiving a level of the provided multilevel digital control signal, each digital-to-analog converter converting the received level of the digital control signal into an analog signal; and
structure combining outputs of said plurality of parallel digital-to-analog converters,
further comprising a plurality of low pass filter respectively coupled to outputs of said plurality of parallel digital-to-analog converters.
53. Apparatus for converting a multilevel digital control signal into an analog signal, comprising:
means for providing the multilevel digital control signal where each level has a substantially similar bandwidth;
a plurality of digital-to-analog conversion means, coupled to said means for providing such that each digital-to-analog conversion means receives a different level of the multilevel digital control signal, each of said plurality of digital-to-analog conversion means converting the received level into an analog signal;
means for combining the converted analog signals from said plurality of digital-to-analog conversion means, to form an analog output signal; and
a plurality of low pass filter means respectively coupled to outputs of said plurality of digital-to-analog conversion means.
56. A direct drive programmable high speed power digital-to-analog converter comprising:
a first digital to analog converter responsive to a first control signal;
a second digital to analog converter response to a second control signal;
a voltage buffer responsive to said first and second digital to analog converters to provide an analog output;
a decoder to provide the first control signal to said first digital to analog converter and the second control signal to the second analog to digital converter,
wherein the first digital to analog converter is activated in response to the first control signal,
wherein the second digital to analog converter is activated in response to the second control signal,
wherein said first and second control signals determine a slew rate of the analog output.
67. A direct drive programmable high speed power digital-to-analog converter comprising:
first digital to analog converter means responsive to a first control signal for generating a first signal having a first output level;
second digital to analog converter means responsive to a second control signal for generating a second signal having a second output level;
a voltage buffer responsive to said first and second signals for providing an analog output;
decoding means for selecting any combination of said first and second digital to analog converter means,
wherein said first and second control signals determine a slew rate of the analog output,
further comprising first and second low pass filter means for low pass filtering said first and second digital to analog converter means, and wherein said voltage buffer is responsive to said first and second low pass filter means.
68. A method for converting a digital signal to an analog signal comprising the steps of:
(a) converting a digital signal to a first analog signal in response to a first control signal, the first analog signal having a first output level;
(b) converting a digital signal to a second analog signal in response to a second control signal, the second analog signal having a second output level;
(c) summing the first and second analog signals for providing an analog output;
(e) decoding an input to generate the first and second control signals;
(e) (f) activating step (a) in response to the first control signal; and
(f) (g) activating step (b) in response to the second control signal;
(h) filtering the analog output to provide a filtered output; and
(i) voltage buffering the filtered output,
wherein said first and second control signals determine a slew rate of the analog output.
61. A direct drive programmable high speed power digital-to-analog converter comprising:
a first digital to analog converter responsive to a first control signal;
a second digital to analog converter response to a second control signal;
a voltage buffer responsive to said first and second digital to analog converters to provide an analog output;
a decoder to select any combination of said first and second digital to analog converters,
wherein said first and second control signals determine a slew rate of the analog output,
further comprising first and second low pass filters, wherein said first low pass filter is responsive to said first digital to analog converter and said voltage buffer is responsive to said first low pass filter, and wherein said second low pass filter is responsive to said second digital to analog converter and said voltage buffer is responsive to said second low pass filter.
62. A direct drive programmable high speed power digital-to-analog converter comprising:
first digital to analog converter means responsive to a first control signal for generating a first signal having a first output level;
second digital to analog converter means responsive to a second control signal for generating a second signal having a second output level;
a voltage buffer responsive to said first and second signals for providing an analog output;
decoding means for providing the first control signal to said first digital to analog converter means and the second control signal to the second analog to digital converter means,
wherein the first digital to analog converter means is activated in response to the first control signal,
wherein the second digital to analog converter means is activated in response to the second control signal,
wherein said first and second control signals determine a slew rate of the analog output.
0. 1. A current source comprising:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources,
wherein the M delay elements comprise at least one delay lock loop.
0. 2. A current source according to claim 1, wherein the mth one of the M delay elements comprises a proportional delay with respect to the m−1th one of the M delay elements.
0. 3. A current source according to claim 1, wherein the M delay elements are controlled with reference to at least one external signal.
0. 4. A current source according to claim 1, wherein a sum of the N current sources provides a linear ramp waveform.
0. 5. A current source according to claim 1, wherein the N current sources each provide a square waveform.
0. 6. A current source according to claim 1, wherein current provided by said current source comprises smooth transition areas.
0. 7. A current source according to claim 1, wherein the mth one of the M delaying means comprises a proportional delay with respect to the m−1th one of the M delaying means.
0. 8. A current source comprising:
N means for providing current configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current providing means includes a respective means for inputting; and
M means for delaying, an mth one of the M delaying means including means for inputting in communication with an
m−1th one of the M delaying means, wherein M is equal to N−1, and wherein means for outputting of the mth one of the M delaying means is arranged in communication with the inputting means of an m+1th one of the N current providing means,
wherein the M delaying means comprise at least one delay lock loop.
0. 9. A current source according to claim 8, wherein the M delaying means are controlled with reference to at least one external signal.
0. 10. A current source according to claim 8, wherein a sum of the N current providing means provides a linear ramp waveform.
0. 11. A current source according to claim 8, wherein the N current providing means each provide a square waveform.
0. 12. A current source according to claim 8, wherein current provided by said current source comprises smooth transition areas.
0. 13. An apparatus comprising:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input and a respective biasing input; and
a biasing generator in communication with each of said biasing inputs of the N current sources;
an apparatus input in communication with the control input of a first one of the N current sources; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources, and wherein the first one of the M delay elements is in communication with the apparatus input,
wherein the M delay elements comprise at least one delay lock loop.
0. 14. An apparatus according to claim 13, wherein the mth one of the M delay elements comprises a proportional delay with respect to the m−1th one of the M delay elements.
0. 15. An apparatus according to claim 13, wherein the apparatus input is in delayed communication, with respect to a first one of the N current sources, with a second one through the m+1 one of the N current sources.
0. 16. An apparatus according to claim 13, wherein the M delay elements are controlled with at least one external signal.
0. 17. An apparatus according to claim 13, wherein the M delay elements comprise a uniform delay with respect to one another.
18. An apparatus according to claim 13, An apparatus comprising:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input and a respective biasing input; and
a biasing generator in communication with each of said biasing inputs of the N current sources;
an apparatus input in communication with the control input of a first one of the N current sources; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources, and wherein the first one of the M delay elements is in communication with the apparatus input,
wherein each of the M delay elements comprise at least one delay element comprising provides a non-uniform different delay than others of said M delay elements.
0. 19. An apparatus according to claim 13, wherein the N current sources each comprises a transistor pair including at least a first transistor in communication with a second transistor.
0. 20. An apparatus according to claim 13, wherein the N current sources each comprises a differential transistor pair including at least a first transistor in communication with a second transistor, and wherein said apparatus further comprises an output to provide a differential current.
0. 21. An apparatus according to claim 13, wherein the apparatus input communicates with a square waveform.
0. 22. An apparatus comprising:
N means for providing current configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current providing means includes respective means for inputting control signals and respective means for inputting biasing signals;
means for biasing in communication with each of said biasing inputting means of the N current providing means;
apparatus means for inputting signals in communication with the means for inputting control signals of a first one of the N current providing means; and
M means for delaying, an mth one of the M delaying means including an input in communication with an m−1th one of the M delaying means, wherein M is equal to N−1, and wherein an output of the mth one of the M delaying means is arranged in communication with the control input of an m+1th one of the N current providing means, and wherein a first one of the M delaying means is in communication with the apparatus means for inputting signals,
wherein the M delaying means comprises at least one delay lock loop.
0. 23. An apparatus according to claim 22, wherein the mth one of the M delaying means comprises a proportional delay with respect to the m−1th one of the M delaying means.
0. 24. An apparatus according to claim 22, wherein the apparatus means for inputting signals is in delayed communication, with respect to the first one of the N current providing means, with a second one through the m+1 one of the N current providing means.
0. 25. An apparatus according to claim 22, wherein the M delaying means are controlled with at least one external signal.
0. 26. An apparatus according to claim 22, wherein the M delaying means comprise a uniform delay with respect to one another.
27. An apparatus according to claim 22, An apparatus comprising:
N means for providing current configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current providing means includes a first transistor with respective means for inputting control signals and a second transistor with respective means for inputting biasing signals;
means for biasing in communication with each of said biasing inputting means of the N current providing means;
apparatus means for inputting signals in communication with the means for inputting control signals of a first one of the N current providing means; and
M means for delaying, an mth one of the M delaying means including an input in communication with an m−1th one of the M delaying means, wherein M is equal to N−1, and wherein an output of the mth one of the M delaying means is arranged in communication with the control input of an m+1th one of the N current providing means, and wherein a first one of the M delaying means is in communication with the apparatus means for inputting signals,
wherein each of the M delaying means comprise at least one delay means comprising a non-uniform delay provides a different delay than others of said M delay elements.
0. 28. An apparatus according to claim 22, wherein the N current providing means each comprises a transistor pair including at least a first transistor in communication with a second transistor.
0. 29. An apparatus according to claim 22, wherein the N current providing means each comprises a differential transistor pair including at least a first transistor in communication with a second transistor, and wherein said apparatus further comprises an output to provide a differential current.
0. 30. An apparatus according to claim 22, wherein the apparatus means for inputting signals communicates with a square waveform.
0. 31. An electrical circuit comprising:
N transistor pairs configured in a parallel arrangement, where N comprises the total number of transistor pairs, wherein each of the transistor pairs comprises a first transistor in communication with a second transistor;
a biasing transistor in communication with each of the first transistors of the N transistor pairs;
a circuit input in communication with the second transistor of a first one of the N transistor pairs;
an output in communication with each of the first transistors of the N transistor pairs; and
M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with an m+1th one of the N transistor pairs, and wherein a first one of the M delay elements is in communication with the circuit input,
wherein the M delay elements comprise at least one delay lock loop.
0. 32. An electrical circuit according to claim 31, wherein each of the M delay elements provides a uniform delay.
0. 33. An electrical circuit according to claim 31, wherein at least one of the M delay elements comprises a non-uniform delay with respect to the first one of the M delay elements.
0. 34. An electrical circuit according to claim 31, wherein the M delay elements are controlled with at least one external signal.
0. 35. An electrical circuit according to claim 31, wherein the circuit input communicates with a square waveform.
0. 36. An electrical circuit according to claim 31, wherein the electrical circuit provides a current comprising smooth transition areas.
0. 37. An electrical circuit comprising:
N means for providing current configured in a parallel arrangement, where N comprises the total number of current providing means, wherein each of the current providing means comprises first means for supplying current in communication with second means for supplying current;
means for biasing in communication with each of the first means for supplying current of the N current providing means;
circuit means for inputting signals in communication with the second means for supplying current of a first one of the N current providing means;
means for outputting signals in communication with each of the first means for supplying current of the N current providing means; and
M means for delaying, an mth one of the M delaying means including means for inputting in communication with an
m−1th one of the M delaying means, wherein M is equal to N−1, and wherein outputting means of the mth one of the M delaying means is arranged in communication with an m+1th one of the N current providing means, and wherein a first one of the M delaying means is in communication with the circuit inputting means,
wherein the M delaying means comprise at least one delay lock loop.
0. 38. An electrical circuit according to claim 37, wherein each of the M delaying means provides a uniform delay.
0. 39. An electrical circuit according to claim 37, wherein at least one of the M delaying means comprises a non-uniform delay with respect to the first one of the M delaying means.
0. 40. An electrical circuit according to claim 37, wherein the M delaying means are controlled with at least one external signal.
0. 41. An electrical circuit according to claim 37, wherein the circuit inputting means communicates with a square waveform.
0. 42. An electrical circuit according to claim 37, wherein the electrical circuit provides a current comprising smooth transition areas.
0. 43. A method comprising the steps of:
providing N transistor pairs configured in a parallel arrangement, where N comprises the total number of transistor pairs, wherein each of the transistor pairs comprises a first transistor in communication with a second transistor;
biasing each of the first transistors of the N transistor pairs;
inputting a signal to the second transistor of a first one of the N transistor pairs;
outputting signals from each of the first transistors of the N transistor pairs; and
providing M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and arranging an output of the mth one of the M delay elements in communication with an m+1th one of the N transistor pairs, and wherein a first one of the M delay elements is in communication with the input signal,
wherein the M delay elements comprise at least one delay lock loop.
0. 44. A method according to claim 43, wherein each of the M delay elements provides a uniform delay.
0. 45. A method according to claim 43, wherein at least one of the M delay elements comprises a non-uniform delay with respect to the first one of the M delay elements.
0. 46. A method according to claim 43, further comprising the step of controlling the M delay elements with at least one external signal.
0. 47. A method according to claim 43, wherein the input signal comprises a square waveform.
0. 48. A method according to claim 43, wherein the electrical circuit provides a current comprising smooth transition areas.
50. Apparatus according to claim 49, further comprising a plurality of transistors supplying the multilevel digital control signal to said structure providing.
51. Apparatus according to claim 49, further comprising a resistor ladder supplying the multilevel control signal to said structure providing.
52. Apparatus according to claim 49, further comprising a voltage buffer connected to said structure combining.
54. Apparatus according to claim 53, wherein said means for providing comprises a transistor array.
55. Apparatus according to claim 53, wherein said means for providing comprises a resistor ladder.
57. A converter of claim 56, wherein to said first and second digital to analog converters provide substantially the same output level.
58. A converter of claim 56, further comprising first and second control signal generators to generate the first and second control signals, respectively.
59. A converter of claim 58, wherein the first and second control signals have a stair step shape.
60. A converter of claim 58, wherein said first and second control signal generators each comprise:
N current sources configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input; and M delay elements, an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements, wherein M is equal to N−1, and wherein an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.
63. A converter of claim 62, wherein the first and second output levels are substantially equal.
64. A converter of claim 62, further comprising first and second control signal generator means for generating the first and second control signals, respectively.
65. A converter of claim 64, wherein the first and second control signals have a stair step shape.
66. A converter of claim 64, wherein said first and second control signal generator means each comprise:
N current sources means each for generating a current and configured in a parallel arrangement, wherein N is at least two, and wherein each of the N current sources includes a respective control input; and
M delay means, an mth one of the M delay means including an input in communication with an m−1th one of the M delay means, wherein M is equal to N−1, and wherein an output of the mth one of the M delay means is arranged in communication with the control input of an m+1th one of the N current sources.
69. A method of claim 68, further comprising the step of
(e) (i) low pass filtering the first and second analog signals, wherein step (c) is responsive step (e) (i).
70. The method of claim 68, wherein the first and second output levels are substantially equal.
71. A method of claim 68, further comprising the step of (f) (i) generating the first and second control signals.
72. A method of claim 71, wherein the first and second control signals have a stair step shape.
73. A converter method of claim 71, wherein step (f) (i) comprises the steps of:
supplying N sources of current, wherein N is at least two;
controlling the supply of current from ach from each of the N sources of current;
delaying current from M of the N sources of current, where M is equal to N−1; and
summing the current supplied from the N source of current.

Field of the Invention

The present invention relates generally to signal processing and signal waveshaping. More particularly, the present invention relates to signal processing and signal waveshaping of digital-to-analog converters.

Digital-to-analog conversion involves the process of converting digital codes into a continuous range of analog signal levels (voltage or current), for example, as discussed in Chapter 31, “D/A and A/D Converters” of The Electrical Engineering Handbook, ed. Richard C. Dorf, CRC Press 1993, the contents of which are hereby incorporated by reference. A digital-to-analog converter (hereinafter a DAC) is generally an electronic circuit that receives an n-bit codeword from an interface and generates an analog voltage or current that is proportional to the codeword.

One example of a DAC is discussed in U.S. Pat. No. 5,663,728, entitled A Digital-To-Analog Converter (DAC) and Method that set Waveform Rise and Fall Times to Produce an Analog Waveform that Approximates a Piecewise Linear Waveform to Reduce Spectral Distortion, issued on Sep. 2, 1997, the contents of which are hereby incorporated by reference. The DAC of the U.S. Pat. No. 5,663,728 patent employs a waveform shaping circuit to control the rise and fall times of each component waveform so that the analog waveform rising and falling edges settle to within a desired error bound of a linear output ramp.

U.S. Pat. No. 5,936,450, entitled A Waveshaping Circuit Using Digitally Controlled Weighted Current Summing, issued on Aug. 10, 1999, the contents of which are hereby incorporated by reference, discloses a waveshaping circuit. The waveshaping circuit of the U.S. Pat. No. 5,936,450 patent includes a controller and a current summing circuit controlled by the controller. The current summing circuitry selectively sinks combinations of component currents in response to a sequence of control signal sets to generate an output current signal having a desired waveform.

Many DACs attempt to generate desired signal waveform in response to a digital signal. For the purposes of this discussion, a signal output may include the output of a DAC and/or the output of one or more signal components within a DAC. For example, a signal component may correspond to an individual bit of a codeword. One conventional method generates a signal output with a slew rate controlled current source, as shown in FIG. 1. The voltage V measured across a resistor R is shown in FIG. 2. The waveform V includes sharp transition areas (e.g., corners) 1, 2 and 3, which may introduce electromagnetic interference. Such interference may inhibit accurate signal processing.

Another circuit which generates an output signal employs a current mirror 10 having an RC filter, as illustrated in FIG. 3. A current source 1 drives the current mirror 10. Current mirror 10 includes a first transistor 11 and a second transistor 12. Transistors 11 and 12 are preferably CMOS transistors. The first transistor 11 includes gate-to-drain feedback, and is coupled to transistors 12 through the RC filter. The RC filter limits rise and fall times of the input signal I. However, the R and C components are typically process and/or temperature dependent. Such dependence causes variation in the output waveform as shown in FIG. 4. The dashed lines in FIG. 4 represent arbitrary output responses due to temperature and/or process variation. A stable output signal is difficult to obtain with such a circuit.

FIG. 5 depicts a D/A circuit employing a DAC32, a low pass filter 34, a voltage buffer 36, a transistor 38, and a resistor 39. Each level of a multilevel input signal is provided to DAC 32 for conversion to an analog signal. The LPF34 then determines the rise time of the output of the DAC 32, and the output is passed to voltage buffer 36. This construction presents two problems. First, the R and C values of LPF34 will vary with temperature and process variations, and the output signal will have a poor waveshape where the rise times are not constant. Second, since all input current is passed through the same DAC, and since bandwidth is a function of current level, each level of the multilevel signal will present a different rise time.

These signal processing problems are not adequately addressed in the art. Accordingly, there is a need for a current source to control an output signal which is independent of temperature and process considerations. There is also a need for a DAC to generate a signal having selectable transition areas (corners). There is a further need of a circuit to generate desirable waveshapes.

The present invention addresses these signal processing problems by providing a circuit to generate a desired output signal. The present invention also provides a DAC for converting a digital signal into an analog signal with a desirable waveshape.

According to a first aspect of the present invention, a current source includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input. The current source includes M delay elements, with an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements. M is equal to N−1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources.

According to another aspect of the present invention, an apparatus includes N current sources configured in a parallel arrangement, wherein N is at least two. Each of the N current sources includes a respective control input and a respective biasing input. The apparatus also includes a biasing generator in communication with each of the biasing inputs of the N current sources, an apparatus input in communication with the control input of a first one of the N current sources, and M delay elements, with an mth one of the M delay elements including an input in communication with an m−1th one of the M delay elements. M is equal to N−1, and an output of the mth one of the M delay elements is arranged in communication with the control input of an m+1th one of the N current sources. The first one of the M delay elements is in communication with the apparatus input.

A method of supplying current is provided according to still another aspect of the present invention. The method includes the steps of: (i) arranging first through n current sources in a parallel arrangement, where n comprises the total number of current sources, and wherein the first current source supplies a first current and the second through n current source respectively supplies second through n currents; and (ii) delaying the second through n currents each with respect the first current.

These and other objects, features and advantages will be apparent from the following description of the preferred embodiments of the present invention.

The present invention will be more readily understood from a detailed description of the preferred embodiments taken in conjunction with the following figures.

FIG. 1 is a diagram of a conventional circuit, which includes a slew rate controlled current source.

FIG. 2 is a graphical depiction of a waveshape corresponding to an output of the FIG. 1 circuit.

FIG. 3 is a view of a conventional circuit including a current mirror having an RC filter.

FIG. 4 is a graphical depiction of a waveshape corresponding to an output of the FIG. 3 circuit.

FIG. 5 is a schematic block diagram of a D/A circuit.

FIG. 6 is a graphical depiction of a waveshape having smooth transition areas.

FIG. 7 is a circuit diagram of a current source according to the present invention.

FIG. 8 is a graphical depiction of current components of the current source illustrated in FIG. 6.

FIG. 9 is a graphical depiction of a resultant output waveshape from the current source illustrated in FIGS. 6 and 7.

FIG. 10 is a graphical depiction of a waveform template, and a waveshape that fits within the template.

FIG. 11 is a circuit diagram of a current source according to the present invention.

FIGS. 12a-12c are graphical depictions of waveshapes generated by the current source of FIG. 10.

FIG. 13 is a circuit diagram of a current source according to the present invention.

FIG. 14 is a circuit diagram of a current source having variable delay elements according to the present invention.

FIG. 15a is a graphical depiction of a waveform generated with uniform delay element.

FIG. 15b is a graphical depiction of a waveform generated with non-uniform delay element.

FIG. 16 is a circuit diagram of a current source including a plurality of differential transistor pairs according to the present invention.

FIG. 17 is a circuit diagram of an alternative embodiment according to the present invention.

The present invention will be described with respect to circuits and methods for shaping waveforms, and in particular, to a digital-to-analog converter (DAC) employing such a waveshaping circuit. However, as will be appreciated by those skilled in the art, the present invention is not limited to applications involving DACs, but also may be applied to other applications, such as signal processing, systems to control signal rise/fall time, signal storage, communications, etc. Moreover, while the present invention is particularly suited to applications in the read channel of a hard disk drive, many other applications will suggest themselves to persons of skill in the electrical engineering arts. Furthermore, the present invention is particularly suitable for use with the structure described in U.S. patent application Ser. No. 09/737743, entitled “Active Replica Transformer Hybrid”, filed concurrently herewith, the contents of which are incorporated herein by reference.

FIG. 6 illustrates a desired signal output 20. The output waveform 20 includes smooth transition areas, which reduce noise such as electromagnetic interference. A preferred rise time (“Tr”) for a DAC is 3-5 nanoseconds (ns).

The present invention generates a signal to approximate the desired signal output 20 with a current source 30. As shown in FIG. 7, current source 30 includes a plurality of current sources. For example, current source 30 may include current sources I1, I2, I3 and I4. Current sources I1, I2, I3 and I4 each preferably generate a respective current In, where n is 1, 2, 3 or so forth. The signals In are preferably equal in magnitude and form, and may include a signal delay. In the FIG. 7 example, current sources In each generate a linear ramp. For example, consider a signal I1, which includes a linearly rising edge starting at time t0. Current I2 mirrors current I1, except that I2 includes a linearly rising edge starting at time t0+Δt. The variable Δt represents an amount of delay time. Current I3 mirrors currents I1 and I2, except that current I3 includes a linearly rising edge starting at time t0+2Δt. Similarly, current I4 mirrors currents I1, I2, and I3, except that its linearly rising edge starts at time t0+3Δt. The relative waveform components for currents I1, I2, I3 and I4 are shown in FIG. 8.

Currents I1, I2, I3 and I4 are summed (or mixed) to produce a resultant waveform I0 as shown in FIG. 9. Waveform I0 approximates the desired output signal shown in FIG. 6. Like the desired output signal of FIG. 6, waveform I0 has many desirable properties. For example, I0 has selectable transition areas (corners). The transition areas can be smooth, or sharp, by selectively adjusting the length of Δt. Also, waveform I0 accommodates arbitrary rise/fall times.

The waveform I0 can also be adjusted by varying Δt to fit within specified requirements. For example, with reference to FIG. 10, waveform I0 can be adjusted to fit within a template 40, for example, as provided by the IEEE standard waveform shape. In this example, I0 has been optimized to produce low electromagnetic interference and to fit within the IEEE template 40.

The delay variable Δt is preferably controlled using a delayed-lock loop or is controlled by reference to an external clock. As such, Δt can be precisely regulated. A waveform which is independent of temperature and/or process considerations can then be generated.

The generation of a linear ramp is explained with reference to FIGS. 11-13. A signal is produced from current source 50, which includes a plurality of current sources I1 through In. Each of the plurality of current sources generates a replica signal I. In this example, input signal I is preferably a square waveform. The signal I is delayed by Δt from each subsequent current source, after the initial current source I1. For example, I2 is delayed by Δt, and In is delayed by n−Δt. The currents are summed (or mixed) in a known manner to produce an output which approximates a linear ramp.

With reference to FIG. 12a, the signal components of the individual current sources are relatively illustrated. FIG. 12b illustrates the resultant waveshape I0, which includes a stair-step pattern. A linear ramp, as shown in FIG. 12c, is approximated as the length of the delay variable Δt is decreased.

A circuit diagram of the current source 50 is shown in FIG. 13. Current source 50 includes a plurality of transistor pairs 52-56, where pair 56 represents the nth transistor pair. With reference to FIG. 13, a current source 51 drives transistor pair 52. Transistor pair 52 includes a transistor 52a communicating with a transistor 52b. Transistor 52a is preferably configured with gate-to-drain feedback. The gate of transistor 52b is biased so as to operate in an “on” state. The gate/drain of transistor 52a communicates with the gates of transistors 53a, 54a, 55a and 56a. The drains of transistors 53a-56a each communicates with an output Io. The gates of transistors 53b-56b each communicates with an input waveform Iin (e.g., a square signal), some through delay elements. For example, the gate of transistor 54b communicates with waveform Iin through delay element d1. The gate of transistor 55b communicates with waveform Iin through delay element d2 and delay element d1. Similarly, the gate of transistor 56b communicates with waveform Iin through each of the delay elements d1 through dn. In the preferred embodiment, each of delay elements d1-dn delays the signal by Δ. Delay elements can be realized via known delay locked loops.

The operational aspects of FIG. 13 are now even further explained. Initially, waveform Iin is communicated to the gate of transistor 53b, which turns on the transistor pair 53. A signal I1, which is proportional to the waveform Iin, is output at Io. Waveform Iin is also communicated to delay element d1, which delays the waveform by Δ seconds. After Δ seconds, delay element d1 communicates the delayed waveform to the gate of 54b, which turns on the transistor pair 54. A signal I2, which is proportional to lin, is output at Io. The resultant waveform Io includes the sum (or mixture) of signals 11 and 12. The input waveform Iin is respectively delayed before communicating with the gates of transistors 55b and 56b. Transistor pairs 55 and 56 are activated (e.g., turned on) and respectively supply current 13 and In, which are added to the resultant waveform I. The current source 50, as shown in FIG. 11, is therefore realized.

There are many advantages of the configurations shown in FIGS. 11 and 13. For example, individual current sources (e.g., In) can be turned on/off on demand, particularly since Vgs is large and constant. Also, the current source 50 will generally consume less power than the current mirror shown in FIG. 3, particularly since a current mirror typically employs a DC bias. An additional advantage is that with a small Iin, the VGS voltage is also small (e.g., close to the threshold voltage VT). In such a case, VGS-VT-VDS equals a small number of current sources with negative VDS.

A further current source 60 is shown in FIG. 14. The current source 60 is configured in the same manner as the current source 50 shown in FIG. 13, except that the delay elements may include variable delays. The same components with respect to FIG. 13 are labeled with their same reference numerals in FIG. 13. In the FIG. 14 embodiment, delay elements Δ are non-uniform throughout the circuit. For example, Δ may involve a longer delay than Δn−1, and so forth. Non-uniform delays may be employed to generate a smooth waveform. Multiple delay-locked-loops are preferably used to achieve different delay times.

To illustrate, an output waveform processed with uniform delay elements is shown in FIG. 15a. Here a stair step waveform is produced, which may approximate a linear ramp, particularly as the variable Δ is decreased in length (e.g., time). In contrast, the amount of delay is varied with respect to individual delay elements as shown in FIG. 15b. The approximated waveshape of FIG. 15b is smooth (e.g., includes smooth transition areas) in comparison to the approximated linear waveshape of FIG. 15b. Seven steps (or corresponding current sources) are employed in a preferred embodiment for a Gigabit channel. Of course, the number of levels may be varied according to need or design without deviating from the scope of the present invention.

A further embodiment of a current source is illustrated in FIG. 16. The illustrated current source 70 includes a plurality of differential transistor pairs 72-74, where 74 represents the nth differential transistor pair. A bias current IB is supplied to the gate of transistors 72c, 73c and 74c. An input waveform Iin is communicated to the gates of 72a, 72b, 73a, 73b, 74a and 74b. In the case of transistor pair 73 and 74, the input waveform Iin is delayed through delay elements d1 and d1+dn, respectively. Buffers B1-BN are optionally included in the circuit 70 to buffer the input signal Iin. A differential output (Io+, Io−) is accordingly produced.

The advantages of the FIG. 16 current source include constant power dissipation. Also, the circuit provides matching capabilities, for example, for use in an Ethernet channel.

One drawback of the differential amplifier in FIG. 16 is that the differential amplifier is a Class A circuit which consumes unnecessary power even when no output is being transmitted. Moreover, a significant number of transistors is required to provide an adequately smoothed output current, thus requiring a large chip area. FIG. 17 depicts a schematic diagram of another embodiment according to the present invention which operates in Class B wherein one DAC is provided for each level of the multilevel input signal. DACs 42, 44, . . . 46 may be provided with corresponding LPFs 43, 45, 4m. Preferably, a circuit according to FIG. 13 supplies each DAC with a control current to provide a stair step output which defines the rise time. In such an embodiment, since each DAC receives control current, and not input current, the transistors which supply each DAC may be smaller than those used in the FIG. 13 embodiment. Additionally, since the control signal determines the rise time of the output of each DAC, the LPFs merely produce a smoother output.

In FIG. 17, multilevel input signal D0, D1, . . . Dn is provided to the parallel DACs 42, 44, . . . 46. The number of DACs may be varied depending on the application. This embodiment solves two problems. First, by providing the FIG. 17 circuit with a staircase waveform , for example, from FIG. 14, an LPF34 merely smoothes the staircase waveform rather than define rise time. Second, since the DACs are disposed in parallel, there will be no variations in rise time because each DAC has substantially the same current passing therethrough; that is there will be no bandwidth variation with resultant differences in rise time. The DACs may also be controlled by any appropriate circuitry, such as a decoder disposed prior to the DACs which would, in effect, select which DACs are activated by proper application of the input signals.

Thus, what has been described are circuits and methods to effectively shape a waveform. Furthermore, digital-to-analog conversion circuits employing such waveshaping circuits, which enhance signal conversion, have been described.

The individual components shown in outline or designated by blocks in the attached drawings are all well-known in the arts, and their specific construction and operation are not critical to the operation or best mode for carrying out the invention.

While the present invention has been described with respect to what is presently considered to be the preferred embodiments, it will be understood that the invention is not limited to the disclosed embodiments. To the contrary, the invention covers various modifications and equivalent arrangements included within the spirit and scope of the appended claims. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions. For example, the input signals for FIGS. 7, 11, , 13, 14 and 16 may be varied to produce different output waveforms. Also, the linear ramp produced by the current source of FIGS. 11 and 13, may be even further processed by the current source of FIG. 7, to produce smooth transition areas. Such modifications are within the scope of the present invention. Also, whereas the illustrated transistors are preferably CMOS transistor, n-type or p-type transistors may also be employed with the present invention.

Sutardja, Sehat

Patent Priority Assignee Title
7795942, Aug 26 2008 IPGlobal Microelectronics (SiChuan) Co., Ltd. Stage by stage delay current-summing slew rate controller
8451155, Feb 25 2011 General Electric Company Transmission circuit, ultrasonic probe and ultrasonic image display apparatus
Patent Priority Assignee Title
3297951,
3500215,
3521170,
3543009,
3793588,
3793589,
3973089, Oct 29 1973 General Electric Company Adaptive hybrid circuit
4071842, Aug 28 1975 Bell Telephone Laboratories, Incorporated Apparatus for analog to digital conversion
4112253, Jul 22 1976 Siemens Nixdorf Informationssysteme AG Device for the transmission of push-pull signals across a two-wire line in full duplex operation
4131767, Sep 07 1976 Bell Telephone Laboratories, Incorporated Echo cancellation in two-wire, two-way data transmission systems
4152541, Feb 03 1978 Unisys Corporation Full duplex driver/receiver
4309673, Mar 10 1980 NATIONSBANK, N A Delay lock loop modulator and demodulator
4321753, Sep 01 1978 Illinois Tool Works Inc. Electronic gear checker
4362909, May 14 1979 U S PHILIPS CORPORATION, A CORP OF DE Echo canceler with high-pass filter
4393370, Apr 29 1981 Nippon Electric Co., Ltd. Digital to analog converter using matrix of current sources
4393494, Oct 04 1979 Cselt Centro Studi e Laboratori Telecomunicazioni S.p.A. Transceiver for full-duplex transmission of digital signals over a common line
4408190, Jun 03 1980 Tokyo Shibaura Denki Kabushiki Kaisha Resistorless digital-to-analog converter using cascaded current mirror circuits
4464545, Jul 13 1981 Bell Telephone Laboratories, Incorporated Echo canceller
4503421, May 27 1981 Nippon Electric Co., Ltd. Digital to analog converter
4527126, Aug 26 1983 MCT WORLDWIDE, LLC AC parametric circuit having adjustable delay lock loop
4535206, Apr 09 1980 AT&T Bell Laboratories Echo cancellation in two-wire full-duplex data transmission with estimation of far-end data components
4591832, Jul 18 1984 RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE Digital-to-analog conversion system as for use in a digital TV receiver
4605826, Jun 23 1982 NEC Corporation Echo canceler with cascaded filter structure
4621172, Dec 22 1982 NEC Corporation Fast convergence method and system for echo canceller
4621356, Jul 18 1983 BENOIT MASSOUDA 22 5% ; LUKACHER, MARTIN ESQ 15% ,; MASSOUDA, SAMUEL 22 5% Communications interface for duplex transmission and reception of data and other signals over telephone lines
4626803, Dec 30 1985 ERICSSON INC , A CORP OF DE Apparatus for providing a carrier signal with two digital data streams I-Q modulated thereon
4715064, Jun 22 1984 NCR Corporation Adaptive hybrid circuit
4727566, Feb 01 1984 Telefonaktiebolaget LM Ericsson Method to test the function of an adaptive echo canceller
4746903, Dec 30 1985 INTERNATIONAL BUSINESS MACHINES CORPORATION, ARMONK, NY 10504, A CORP OF NY Parallel algorithmic digital to analog converter
4816830, Sep 14 1987 Technology Licensing Corporation Waveform shaping apparatus and method
4817081, Mar 28 1986 AT&T AND PHILIPS TELECOMMUNICATIONS B V , JAN VAN DER HEYDENSTRAAT 38-40, HILVERSUM, THE NETHERLANDS A CORP OF THE NETHERLANDS Adaptive filter for producing an echo cancellation signal in a transceiver system for duplex digital communication through one single pair of conductors
4868571, Oct 21 1986 NEC Electronics Corporation Digital to analog converter
4878244, Sep 19 1985 Nortel Networks Limited Electronic hybrid circuit
4888762, Feb 17 1987 NEC Corporation Echo canceller for bidirectional transmission on two-wire subscriber lines
4894820, Mar 24 1987 Oki Electric Industry Co., Ltd. Double-talk detection in an echo canceller
4935919, Sep 16 1986 NEC Corporation Full duplex modem having two echo cancellers for a near end echo and a far end echo
4947171, Mar 31 1988 Deutsche ITT Industries GmbH Circuit arrangement for averaging signals during pulse-density D/A or A/D conversion
4970715, Apr 03 1989 Motorola, Inc Modem with improved remote echo location and cancellation
4972360, Aug 30 1988 INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY Digital filter for a modem sigma-delta analog-to-digital converter
4988960, Dec 21 1988 Yamaha Corporation FM demodulation device and FM modulation device employing a CMOS signal delay device
4993045, Oct 31 1988 RACAL-DATACOM, INC Modem diagnostic loop
4999830, Sep 25 1989 AT&T Bell Laboratories Communication system analog-to-digital converter using echo information to improve resolution
5018134, Nov 18 1987 Hitachi, Ltd. Method for cancelling echo in a transmitter and an apparatus therefor
5043730, Dec 16 1988 Nakamichi Corporation Digital-analog conversion circuit with application of voltage biasing for distortion stabilization
5084865, Feb 23 1989 NEC Corporation Echo canceller having FIR and IIR filters for cancelling long tail echoes
5119365, Dec 14 1990 AG COMMUNICATIONS SYSTEMS CORPORATION, A DE CORP Bi-directional buffer line amplifier
5136260, Mar 08 1991 Western Digital Corporation PLL clock synthesizer using current controlled ring oscillator
5148427, Apr 10 1990 Level One Communications, Inc. Non-linear echo canceller
5153450, Jul 16 1991 SAMSUNG ELECTRONICS CO , LTD Programmable output drive circuit
5164725, Feb 05 1992 Cirrus Logic, INC Digital to analog converter with current sources paired for canceling error sources
5175764, Oct 18 1990 AG Communication Systems Corporation Enhanced high voltage line interface circuit
5185538, Jun 13 1990 Mitsubishi Denki Kabushiki Kaisha Output circuit for semiconductor integrated circuits having controllable load drive capability and operating method thereof
5202528, May 14 1990 Casio Computer Co., Ltd. Electronic musical instrument with a note detector capable of detecting a plurality of notes sounded simultaneously
5204880, Apr 23 1991 LEVEL ONE COMMUNICATIONS, INC , A CORP OF CA Differential line driver employing predistortion
5212659, Oct 08 1991 Cirrus Logic, INC Low precision finite impulse response filter for digital interpolation
5222084, Jun 25 1990 NEC Corporation Echo canceler having adaptive digital filter unit associated with delta-sigma modulation circuit
5243346, Dec 19 1990 NEC Corporation Digital-to-analog converting device using decoders and parallel-to-serial converters
5243347, Sep 28 1992 Freescale Semiconductor, Inc Monotonic current/resistor digital-to-analog converter and method of operation
5245231, Dec 30 1991 Dell USA L P Integrated delay line
5245654, Oct 10 1991 Cermetek Microelectronics, Inc. Solid state isolation device using opto-isolators
5248956, Apr 05 1991 VIRGINIA, UNIVERSITY OF, THE Electronically controllable resistor
5253249, Jun 29 1989 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Bidirectional transceiver for high speed data system
5253272, Mar 01 1991 AMP Incorporated Digital data transmission system with adaptive predistortion of transmitted pulses
5254994, Mar 06 1991 Kabushiki Kaisha Toshiba Current source cell use in current segment type D and A converter
5267269, Sep 04 1991 Level One Communications, Inc. System and method employing predetermined waveforms for transmit equalization
5269313, Sep 09 1991 Cardiac Science Corporation Filter and method for filtering baseline wander
5272453, Aug 03 1992 Freescale Semiconductor, Inc Method and apparatus for switching between gain curves of a voltage controlled oscillator
5280526, May 26 1992 DATA FRONTIERS LLC Transformer-less hybrid circuit
5282157, Sep 13 1990 Telecom Analysis Systems, Inc. Input impedance derived from a transfer network
5283582, Dec 20 1991 Texas Instruments Incorporated Circuitry and method for current input analog to digital conversion
5305379, May 22 1991 HITACHI, LTD Semiconductor integrated device
5307064, Sep 09 1991 Onkyo Corporation Digital-to-analog converter capable of reducing load of low-pass filter
5307405, Sep 25 1992 Qualcomm Incorporated Network echo canceller
5323157, Jan 15 1993 Apple Inc Sigma-delta digital-to-analog converter with reduced noise
5325400, Jun 04 1992 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method and apparatus for predistortion of signals in digital transmission systems
5357145, Dec 22 1992 National Semiconductor Corporation Integrated waveshaping circuit using weighted current summing
5365935, Sep 10 1991 CARD GUARD TECHNOLOGIES, INC Portable, multi-channel ECG data monitor/recorder
5367540, Jan 16 1992 Fujitsu Limited Transversal filter for use in a digital subscriber line transmission interface
5375147, Aug 21 1991 Fujitsu Limited Jitter compensating device
5388092, Jun 27 1989 NEC Corporation Echo canceller for two-wire full duplex digital data transmission
5388123, May 10 1991 Matsushita Electric Industrial Co., Ltd. Data receiving system
5392042, Aug 05 1993 Lockheed Martin Corporation Sigma-delta analog-to-digital converter with filtration having controlled pole-zero locations, and apparatus therefor
5399996, Aug 16 1993 AMD CORPORATION Circuit and method for minimizing electromagnetic emissions
5440514, Mar 08 1994 NXP, B V F K A FREESCALE SEMICONDUCTOR, INC Write control for a memory using a delay locked loop
5440515, Mar 08 1994 Motorola Inc. Delay locked loop for detecting the phase difference of two signals having different frequencies
5444739, Sep 12 1991 Matsushita Electric Industrial Co., Ltd. Equalizer for data receiver apparatus
5465272, Apr 08 1994 AVAYA Inc Data transmitter baseline wander correction circuit
5471665, Oct 18 1994 Apple Inc Differential DC offset compensation circuit
5479124, Aug 20 1993 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Slew rate controller for high speed bus
5489873, Mar 03 1994 Motorola, Inc. Active low-pass filter
5507036, Sep 30 1994 Rockwell International; Rockwell International Corporation Apparatus with distortion cancelling feed forward signal
5508656, Dec 23 1993 SGS-THOMSON MICROELECTRONICS S A Amplifier with offset correction
5517141, Nov 05 1993 Apple Inc Differential high speed track and hold amplifier
5517435, Mar 11 1993 NEC Corporation Method of identifying an unknown system with a band-splitting adaptive filter and a device thereof
5521540, Mar 24 1992 Bull, S.A. Method and apparatus for multi-range delay control
5537113, Jun 17 1992 Advantest Corp. A/D or D/A conversion using distribution of differential waveforms to interleaved converters
5539403, Jun 01 1992 Matsushita Electric Industrial Co, LTD D/A conversion apparatus and A/D conversion apparatus
5539405, Jul 29 1993 Cirrus Logic, INC DAC achieving monotonicity with equal sources and shift array therefor
5539773, Feb 17 1992 Thomson Consumer Electronics S.A. Method and apparatus for ghost cancelling and/or equalizing
5559476, May 31 1995 Cirrus Logic, Inc.; Cirrus Logic, INC Voltage controlled oscillator including voltage controlled delay circuit with power supply noise isolation
5568064, Jan 23 1995 International Business Machines Corporation Bidirectional transmission line driver/receiver
5568142, Oct 20 1994 Massachusetts Institute of Technology Hybrid filter bank analog/digital converter
5572158, Feb 15 1994 Rambus, Inc. Amplifier with active duty cycle correction
5572159, Nov 14 1994 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Voltage-controlled delay element with programmable delay
5577027, Apr 18 1995 Intel Corporation Apparatus and method for effectively eliminating the echo signal of transmitting signal in a modem
5579004, Nov 02 1994 MICROSEMI SEMICONDUCTOR U S INC Digital interpolation circuit for a digital-to-analog converter circuit
5585795, Apr 05 1993 Fujitsu Semiconductor Limited D/A converter including output buffer having a controllable offset voltage
5585802, Nov 02 1994 MICROSEMI SEMICONDUCTOR U S INC Multi-stage digital to analog conversion circuit and method
5587681, Oct 29 1993 Intel Corporation DC restoration circuit
5589788, May 12 1994 Advantest Corporation Timing adjustment circuit
5596439, Aug 01 1995 ViaSat, Inc. Self-interference cancellation for two-party relayed communication
5600321, Jun 07 1995 Advanced Micro Devices Inc High speed, low power CMOS D/A converter for wave synthesis in network
5613233, Sep 30 1994 Rockwell International Corp.; ROCKWELL INTERNATIONAL CORPORTATION Apparatus with distortion cancelling feedback signal
5625357, Feb 16 1995 MICROSEMI SEMICONDUCTOR U S INC Current steering semi-digital reconstruction filter
5629652, May 09 1996 Analog Devices Band-switchable, low-noise voltage controlled oscillator (VCO) for use with low-q resonator elements
5648738, Nov 01 1994 Cirrus Logic, Inc. Read channel having auto-zeroing and offset compensation, and power-down between servo fields
5651029, May 16 1995 Myson Technology, Inc. Apparatus for transmitting an output with predetermined frequency response to an unshielded twisted-pair media and waveform shaping circuit and method employed therein
5659609, Sep 05 1994 Fujitsu Limited Echo canceller and waveform-distortion compensation device
5663728, May 18 1995 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Digital-to-analog converted (DAC) and method that set waveform rise and fall times to produce an analog waveform that approximates a piecewise linear waveform to reduce spectral distortion
5666354, Dec 20 1995 International Business Machines Corporation CMOS bi-directional differential link
5684482, Mar 06 1996 IAN A GALTON Spectral shaping of circuit errors in digital-to-analog converters
5687330, Jun 18 1993 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Semiconductor process, power supply and temperature compensated system bus integrated interface architecture with precision receiver
5696796, Jun 07 1995 Comsat Corporation Continuously variable if sampling method for digital data transmission
5703541, Jun 05 1995 Mitsubishi Denki Kabushiki Kaisha; Mitsubishi Electric Engineering Co., Ltd Ring oscillator with two inverters per unit inverter circuit
5719515, Sep 27 1993 SGS-Thomson Microelectronics S.A. Digital delay line
5726583, Jul 19 1996 SAMSUNG ELECTRONICS CO , LTD ; CECIL H KAPLINSKY BYPASS TRUST DATED NOVEMBER 11, 1999, THE; VESSELINA KAPLINSKY MARITAL TRUST DATED NOVEMBER 11, 1999, THE Programmable dynamic line-termination circuit
5745564, Jan 26 1995 POPKIN FAMILY ASSETS, L L C Echo cancelling arrangement
5757219, Jan 31 1996 Analogic Corporation Apparatus for and method of autozeroing the input of a charge-to-voltage converter
5757298, Feb 29 1996 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method and apparatus for error compensation using a non-linear digital-to-analog converter
5760726, Aug 23 1996 Motorola, Inc. Digital-to-analog converter with dynamic matching and bit splitting
5790060, Sep 11 1996 INTERSIL AMERICAS LLC Digital-to-analog converter having enhanced current steering and associated method
5796725, Aug 31 1994 NEC Corporation Echo canceller capable of cancelling an echo signal at a high speed
5798661, Feb 09 1996 GLOBALFOUNDRIES Inc Method for continuous waveform synthesis
5798664, Apr 07 1995 NEC Corporation Offset cancelling amplifier circuit having Miller integrator as offset detector
5812597, Sep 21 1994 TUT SYSTEMS, INC Circuit for preventing base line wander of digital signals in a network receiver
5821892, Nov 20 1996 Texas Instruments Incorporated Digital to analog conversion system
5822426, Jun 06 1995 International Business Machines Corporation Balanced hybrid circuit
5825819, Apr 23 1996 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Asymmetrical digital subscriber line (ADSL) line driver circuit
5834860, Nov 25 1992 SGS-THOMSON MICROELECTRONICS LTD Controlled impedance transistor switch circuit
5838177, Jan 06 1997 Round Rock Research, LLC Adjustable output driver circuit having parallel pull-up and pull-down elements
5838186, Sep 21 1994 Mitsubishi Denki Kabushiki Kaisha Signal output circuit with reduced noise in output signal
5841386, Jan 18 1996 Texas Instruments Incorporated Simple high resolution monolithic DAC for the tuning of an external VCXO (voltage controlled quartz oscillator)
5841809, Jun 03 1996 Fujitsu Limimited Access line termination unit
5844439, Mar 13 1996 Hewlett Packard Enterprise Development LP DC restoration circuit for multi-level transmission signals
5859552, Oct 06 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Programmable slew rate control circuit for output buffer
5864587, Jun 06 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Differential signal receiver
5880615, Dec 10 1996 Intel Corporation Method and apparatus for detecting differential threshold levels while compensating for baseline wander
5887059, Jan 30 1996 MICROSEMI SEMICONDUCTOR U S INC System and method for performing echo cancellation in a communications network employing a mixed mode LMS adaptive balance filter
5892701, Aug 14 1996 Tamarack Microelectronics, Inc. Silicon filtering buffer apparatus and the method of operation thereof
5894496, Sep 16 1996 Ericsson Inc. Method and apparatus for detecting and compensating for undesired phase shift in a radio transceiver
5898340, Nov 20 1996 High power efficiency audio amplifier with digital audio and volume inputs
5930686, May 05 1993 Marconi Optical Components Limited Integrated transceiver circuit packaged component
5936450, Mar 21 1997 National Semiconductor Corporation Waveshaping circuit using digitally controlled weighted current summing
5940442, Jan 30 1997 National Semioonductor Corporation High speed data receiver
5940498, Jun 14 1996 Siemens Aktiengesellschaft Electronic voice circuit configuration
5949362, Aug 22 1997 INTERSIL AMERICAS LLC Digital-to-analog converter including current cell matrix with enhanced linearity and associated methods
5963069, Oct 16 1995 Altera Corporation System for distributing clocks using a delay lock loop in a programmable logic circuit
5982317, Apr 18 1997 Analog Devices BV Oversampled digital-to-analog converter based on nonlinear separation and linear recombination
5999044, Apr 13 1998 Credence Systems Corporation Differential driver having multiple output voltage ranges
6005370, Jan 26 1998 PHYSIO-CONTROL, INC Automatic rate control for defibrillator capacitor charging
6014048, May 27 1998 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Clock generator with multiple feedback paths including a delay locked loop path
6037812, May 18 1998 National Semiconductor Corporation Delay locked loop (DLL) based clock synthesis
6038266, Sep 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Mixed mode adaptive analog receive architecture for data communications
6043766, Dec 10 1997 National Semiconductor Corporation Distributive encoder for encoding error signals which represent signal peak errors in data signals for identifying erroneous signal baseline, peak and equalization conditions
6044489, Dec 10 1997 National Semiconductor Corporation Data signal baseline error detector
6046607, Nov 21 1994 Yamaha Corporation Logic circuit controlled by a plurality of clock signals
6047346, Feb 02 1998 Rambus, Inc System for adjusting slew rate on an output of a drive circuit by enabling a plurality of pre-drivers and a plurality of output drivers
6049706, Oct 21 1998 ParkerVision, Inc.; ParkerVision, Inc Integrated frequency translation and selectivity
6052076, Oct 14 1998 Western Digital Corporation Digital-to-analog converter having high resolution and high bandwidth
6057716, Apr 07 1998 DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT Inhibitable continuously-terminated differential drive circuit for an integrated circuit tester
6067327, Sep 18 1997 International Business Machines Corporation Data transmitter and method therefor
6087968, Apr 16 1997 NXP B V Analog to digital converter comprising an asynchronous sigma delta modulator and decimating digital filter
6094082, May 18 1998 National Semiconductor Corporation DLL calibrated switched current delay interpolator
6100830, Jan 08 1998 Fujitsu Microelectronics Europe GmbH Differential switching circuitry
6121831, May 12 1999 Level One Communications, Inc. Apparatus and method for removing offset in a gain circuit
6137328, May 29 1998 Hyundai Electronics Industries Co., Ltd. Clock phase correction circuit
6140857, Mar 29 1999 Intel Corporation Method and apparatus for reducing baseline wander
6148025, Apr 17 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED System and method for compensating for baseline wander
6150856, Apr 30 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Delay lock loops, signal locking methods and methods of implementing delay lock loops
6154784, Jun 10 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Current mode ethernet transmitter
6163283, Jan 08 1998 Fujitsu Microelectronics Europe GmbH Thermometer coding circuitry
6163289, Sep 23 1997 ST Wireless SA Differential voltage digital-to-analog converter
6163579, Mar 04 1998 Ikanos Communications, Inc Broadband modem transformer hybird
6166572, Jun 13 1997 Oki Electric Industry Co., Ltd. Voltage-controlled delay line, direct phase controlled voltage-controlled oscillator, clock/data recovery circuit, and clock/data recovery apparatus
6172634, Feb 25 1998 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Methods and apparatus for providing analog-fir-based line-driver with pre-equalization
6173019, Dec 10 1997 National Semiconductor Corporation Control loop for data signal baseline correction
6177896, Mar 13 1998 MAGNACHIP SEMICONDUCTOR LTD Oversampling digital/analog converter
6185263, Nov 09 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
6188282, Oct 08 1999 Unwired Planet, LLC Differential amplifier with reduced even order non-linearity and associated methods
6191719, Aug 25 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Digital to analog converter with reduced ringing
6192226, Dec 21 1998 MOTOROLA SOLUTIONS, INC Carrier squelch processing system and apparatus
6201490, Nov 14 1997 Yamaha Corporation DA conversion apparatus to reduce transient noise upon switching of analog signals
6201831, Apr 22 1999 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Demodulator for a multi-pair gigabit transceiver
6201841, Dec 07 1994 Fujitsu Limited Distortion compensating device
6204788, Aug 25 1998 SOCIONEXT INC Digital/analog conversion apparatus
6211716, May 28 1999 Micrel, Inc Baseline wander compensation circuit and method
6215429, Jan 19 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Distributed gain for audio codec
6223061, Jul 25 1997 Cleveland Medical Devices Inc. Apparatus for low power radio communications
6236345, Apr 24 1998 U.S. Philips Corporation Video rate D/A converter with sigma-delta modulator
6236346, Jan 08 1998 SOCIONEXT INC Cell array circuitry
6236645, Mar 09 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Apparatus for, and method of, reducing noise in a communications system
6249164, Sep 25 1998 International Business Machines Corporation; IBM Corporation Delay circuit arrangement for use in a DAC/driver waveform generator with phase lock rise time control
6249249, May 14 1998 Kabushiki Kaisha Toshiba Active array antenna system
6259680, Oct 01 1997 Adtran, Inc. Method and apparatus for echo cancellation
6259745, Oct 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated Gigabit Ethernet transmitter architecture
6259957, Apr 04 1997 CRYSTAL SEMICONDUCTOR CORP Circuits and methods for implementing audio Codecs and systems using the same
6266367, May 28 1998 Hewlett Packard Enterprise Development LP Combined echo canceller and time domain equalizer
6271782, Aug 06 1998 Analog Devices BV Delta-sigma A/D converter
6275098, Oct 01 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Digitally calibrated bandgap reference
6288592, Jan 21 1998 Gennum Corporation Cable driver with controlled linear rise and fall
6288604, Feb 03 1999 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD CMOS amplifier providing automatic offset cancellation
6289068, Jun 22 1998 XILINX, Inc. Delay lock loop with clock phase shifter
6295012, Aug 25 1999 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD CMOS DAC with high impedance differential current drivers
6298046, Aug 28 1998 VIADUX, INC Adjustable balancing circuit for an adaptive hybrid and method of adjusting the same
6307490, Sep 30 1999 The Engineering Consortium, Inc. Digital to analog converter trim apparatus and method
6309077, Jan 12 1999 Cornell Research Foundation Inc. Motion amplification based sensors
6313775, Aug 31 2000 Nokia Technologies Oy Delta-sigma modulator with two-step quantization, and method for using two-step quantization in delta-sigma modulation
6332004, Oct 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Analog discrete-time filtering for unshielded twisted pair data communication
6333959, Apr 25 2000 Winbond Electronics Corporation Cross feedback latch-type bi-directional shift register in a delay lock loop circuit
6339390, Oct 04 2000 Linearity, LLC Adaptive parallel processing analog and digital converter
6340940, Jul 18 2000 Cirrus Logic, Inc. Digital to analog conversion circuits and methods utilizing single-bit delta-SIGMA modulators and multiple-bit digital to analog converters
6346899, Dec 04 1998 Asahi Kasei Kabushiki Kaisha Analog current mode D/A converter using transconductors
6351229, Sep 05 2000 Texas Instruments Incorporated Density-modulated dynamic dithering circuits and method for delta-sigma converter
6369734, Feb 10 1998 Intel Corporation Method and apparatus for increasing linearity and reducing noise coupling in a digital to analog converter
6370190, Sep 15 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Data receiver including hybrid decision feedback equalizer
6373417, Feb 23 1999 CIRRUS LOGIC, INC , A DELAWARE CORPORATION Digital to analog converter using level and timing control signals to cancel noise
6373908, Nov 11 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Adaptive electronic transmission signal cancellation apparatus for full duplex communication
6377640, Jul 31 1997 Stanford Syncom, Inc.; STANFORD SYNCOM INC Means and method for a synchronous network communications system
6377683, May 29 1998 Hewlett Packard Enterprise Development LP Low complexity frequency domain echo canceller for DMT transceivers
6385238, Dec 03 1997 Kabushiki Kaisha Toshiba Adaptive equalization and baseline wander correction circuit
6385442, Mar 04 1998 Extreme Networks, Inc Multiphase receiver and oscillator
6389077, Oct 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
6408032, Sep 30 1998 PMC-Sierra Ltd. Transmit baseline wander correction technique
6411647, Oct 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Fully integrated ethernet transmitter architecture with interpolating filtering
6415003, Sep 11 1998 National Semiconductor Corporation Digital baseline wander correction circuit
6421377, May 13 1998 Ikanos Communications, Inc System and method for echo cancellation over asymmetric spectra
6421534, Oct 21 1998 ParkerVision, Inc. Integrated frequency translation and selectivity
6433608, Jan 02 2001 Realtek Semi-Conductor Co., Ltd. Device and method for correcting the baseline wandering of transmitting signals
6441761, Dec 08 1999 Texas Instruments Incorporated High speed, high resolution digital-to-analog converter with off-line sigma delta conversion and storage
6452428, Nov 23 1999 Intel Corporation Slew rate control circuit
6462688, Dec 18 2000 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Direct drive programmable high speed power digital-to-analog converter
6469988, Dec 07 1997 Macom Technology Solutions Holdings, Inc Low-level circuit implementation of signal flow graphs for real-time signal processing of high-speed digital signals
6476746, Dec 08 1999 Texas Instruments Incorporated Cellular base station having a high speed, high resolution digital-to-analog converter with off-line sigma delta conversion and storage
6476749, Dec 21 1998 Bell Canada High speed analog-to-digital converter and digital-to-analog converter
6477200, Nov 09 1998 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Multi-pair gigabit ethernet transceiver
6492922, Dec 14 2000 Xilinx Inc. Anti-aliasing filter with automatic cutoff frequency adaptation
6501402, May 09 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Digital-to-analogue converter using an array of current sources
6509854, Mar 16 1997 Hitachi, Ltd. DA conversion circuit
6509857, Oct 25 1999 TEXAS INSTRUMENTS INCORPORATION Digital-to-analog converting method and digital-to-analog converter
6531973, Sep 11 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Sigma-delta digital-to-analog converter
6535987, Jul 31 1998 STMicroelectronics SA Amplifier with a fan-out variable in time
6539072, Feb 06 1997 Rambus, Inc. Delay locked loop circuitry for clock delay adjustment
6556677, May 27 1999 Verizon Patent and Licensing Inc Single-ended echo cancellation system and method
6563870, Dec 15 1998 LANTIQ BETEILIGUNGS-GMBH & CO KG Nonlinear echo compensator
6570931, Dec 31 1999 Intel Corporation Switched voltage adaptive slew rate control and spectrum shaping transmitter for high speed digital transmission
6576746, Oct 13 1998 IMMUNOMEDICS, INC Site-specific labeling of disulfide-containing targeting vectors
6577114, Jul 31 2000 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Calibration circuit
6583742, Feb 26 1998 CIRRUS LOGIC INTERNATIONAL SEMICONDUCTOR LTD ; CIRRUS LOGIC INC Digital to analogue converter with dynamic element matching
6594304, Oct 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Adaptive configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
6608743, Oct 19 1999 NEC Electronics Corporation Delay locked loop, synchronizing method for the same and semiconductor device equipped with the same
6633178, Sep 28 2001 RAKUTEN GROUP, INC Apparatus and method for power efficient line driver
6687286, Dec 17 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Programmable transmitter circuit for coupling to an ethernet or fast ethernet
6690742, Oct 30 1998 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Adaptively configurable class-A/class-B transmit DAC for transceiver emission and power consumption control
6714825, Nov 12 1998 Godo Kaisha IP Bridge 1 Multi-channel audio reproducing device
6721379, Sep 25 1998 International Business Machines Corporation; IBM Corporation DAC/Driver waveform generator with phase lock rise time control
6731748, Nov 30 1998 Qualcomm Incorporated Audio interface for satellite user terminals
6744831, Nov 11 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Adaptive electronic transmission signal cancellation apparatus for full duplex communication
6744931, Apr 09 1992 Olympus Optical Co., Ltd. Image processing apparatus
6751202, Apr 30 1999 Hewlett Packard Enterprise Development LP Filtered transmit cancellation in a full-duplex modem data access arrangement (DAA)
6775529, Jul 31 2000 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Active resistive summer for a transformer hybrid
6816097, Sep 11 2000 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD System and method for performing digital-to-analog conversion using a sigma-delta modulator
6823028, May 12 2000 National Semiconductor Corporation Digitally controlled automatic gain control system for use in an analog front-end of a receiver
6844837, Dec 18 2000 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Class B driver
6864726, Jun 17 2003 BEIJING XIAOMI MOBILE SOFTWARE CO , LTD Output signal control from a DAC-driven amplifier-based driver
6882216, Jun 24 2003 Realtek Semiconductor Corp. On-chip high-pass filter with large time constant
20010050585,
20020009057,
20020061087,
20020084857,
20020136321,
20020181601,
20030002570,
20030174660,
20040005015,
20040090981,
20040091071,
20040105504,
20040141569,
20040208312,
20050025266,
DE102004017497,
EP800278,
JP10126183,
JP2001177409,
JP3273704,
JP4293306,
JP4351109,
JP5064231,
JP5748827,
JP58111415,
JP6029853,
JP62159925,
JP6276182,
JP63300700,
JP697831,
JP7131260,
JP9270707,
JP955770,
RE30111, Jul 28 1978 Motorola, Inc. Digital single signal line full duplex method and apparatus
RE37619, Jan 05 1996 Analog Devices, Inc. Skewless differential switch and DAC employing the same
TW512608,
TW545016,
WO27079,
WO28663,
WO28668,
WO28691,
WO28712,
WO35094,
WO9946867,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 06 2005Marvell International Ltd.(assignment on the face of the patent)
Dec 31 2019MARVELL INTERNATIONAL LTDCAVIUM INTERNATIONALASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0529180001 pdf
Dec 31 2019CAVIUM INTERNATIONALMARVELL ASIA PTE, LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0534750001 pdf
Date Maintenance Fee Events
Apr 08 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 08 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 17 20124 years fee payment window open
May 17 20136 months grace period start (w surcharge)
Nov 17 2013patent expiry (for year 4)
Nov 17 20152 years to revive unintentionally abandoned end. (for year 4)
Nov 17 20168 years fee payment window open
May 17 20176 months grace period start (w surcharge)
Nov 17 2017patent expiry (for year 8)
Nov 17 20192 years to revive unintentionally abandoned end. (for year 8)
Nov 17 202012 years fee payment window open
May 17 20216 months grace period start (w surcharge)
Nov 17 2021patent expiry (for year 12)
Nov 17 20232 years to revive unintentionally abandoned end. (for year 12)