A method for producing a digital video signal from an analog video signal, the analog video signal including an analog video data signal that is raster scanned in lines across a crt screen to form consecutive frames of video information, the raster scanning controlled by use of a horizontal synchronizing signal (Hsnyc) that controls a line scan rate, and a vertical synchronizing signal (Vsnyc) that controls a frame refresh rate, to produce consecutive frames of video information, wherein the digital video signal is produced by generating a pixel clock signal with pixel clocks for repetitively sampling instantaneous values of the analog video data signal, and digitizing the analog video data signal based on the pixel clock sampling. An expected width e, measured in number of pixel clocks, of a video image producible by the analog video signal is estimated, and an actual width w, measured in number of pixel clocks, of the video image producible by the analog video signal is calculated. The actual width w is compared with the expected width e. When e does not equal w, at least one of a frequency component and a phase component of the pixel clock signal is adjusted unit e equals w.

Patent
   RE38618
Priority
Mar 13 1996
Filed
Sep 08 2000
Issued
Oct 12 2004
Expiry
Mar 13 2016
Assg.orig
Entity
Large
4
6
all paid
0. 21. A method for recovering a correct phase and frequency clock for an analog video signal that is converted into a digital video signal for display on a digital display object having pixels arranged in lines and columns, the analog video signal including an analog video data signal that is operable for raster scanning in lines across a display screen to form consecutive frames of video information, the raster scanning controlled by timing signals that control a line scan rate and a frame refresh rate to produce consecutive frames of video information, comprising:
estimating an expected width of an image producible by the analog video signal;
determining an actual width of an image producible by the digital video signal; and
iteratively adjusting the digital video signal until the actual width equals the expected width.
1. A method for recovering a correct phase and frequency clock for an analog video signal that is converted for display on a digital display object having pixels arranged in lines and columns, the analog video signal including an analog video data signal that is operable for raster scanning in lines across a crt screen to form consecutive frames of video information, the raster scanning controlled by timing signals that control a line scan rate and a frame refresh rate, to produce consecutive frames of video information, comprising the steps of:
converting an analog video signal to a digital video signal;
estimating an expected width of an image producible by the analog video signal;
determining an actual width of a an image producible by the digital video signal;
iteratively adjusting the digital video signal until the actual width equals the expected width.
4. A method for producing a digital video signal from an analog video signal, the analog video signal including an analog video data signal that is operable for raster scanning in lines across a crt screen to form consecutive frames of video information, the raster scanning controlled by timing signals that control a horizontal line scan rate and a frame refresh rate, to produce consecutive frames of video information, comprising the steps of:
generating a pixel clock signal with pixel clocks for repetitively sampling instantaneous values of the analog video data signal;
digitizing the analog video data signal based on the pixel clock sampling;
estimating an expected width e, measured in number of pixel clocks, of an expected video image producible by the analog video signal;
calculating an actual width w, measured in number of pixel clocks, of an actual video image producible by the analog video signal;
comparing the actual width w with the expected width e, and when e is unequal to w;
automatically adjusting at least one of a frequency component and a phase component of the pixel clock signal until e equals w.
15. A method for recovering a correct phase and frequency clock for an analog video signal that is converted for display on a digital display object having pixels arranged in lines and columns, the analog video signal including an analog video data signal that is operable for raster scanning in lines across a crt screen to form consecutive frames of video information, the raster scanning controlled by timing signals that control a line scan rate and a frame refresh rate, to produce consecutive frames of video information, comprising the steps of:
generating a pixel clock signal that reads instantaneous values of the analog video data signal;
setting a total number n of pixel clocks that read the analog video data signal along each horizontal line;
determining an expected number e of pixel clocks from an expected left-most pixel clock in a frame that reads a left-most value of the analog video data signal that is greater than a selected threshold value, to an expected right-most pixel clock in the frame that reads a right-most value of the analog video data signal that is greater than the selected threshold value, the expected number e indicating an expected width of active analog video data;
determining an actual number w of pixel clocks from an actual left-most active pixel clock in the frame that reads a left-most actual value of the analog video data signal that is greater than the selected threshold value, to an actual right-most pixel clock in the frame that reads a right-most actual value of the analog video data signal that is greater than the selected threshold value, the actual number w indicating an actual width of active analog video data; and
comparing the actual width w with the expected number e.
2. The method of claim 1, including the steps of:
generating a pixel clock signal that samples the analog video signal in order to convert the analog video signal to the digital video signal; and
iteratively adjusting at least one of frequency and phase of the pixel clock signal in order to iteratively adjust the digital video signal.
3. The method of claim 2, including the step of:
adjusting the frequency of the pixel clock signal before adjusting the phase of the pixel clock signal.
5. The method of claim 4, including the steps of:
automatically determining whether a phase difference exists between the pixel clock signal and the analog video data signal; and
automatically shifting the pixel clock phase to substantially eliminate the phase difference.
6. The method of claim 4, wherein the actual width w is equal to an actual number of pixel clocks from an actual left-most active pixel clock in a frame that reads a left-most actual active portion of the analog video data signal in the frame, to an actual right-most pixel clock in the frame that reads a right-most actual active portion of the analog video data signal in the frame.
7. The method of claim 6, wherein the expected width e is equal to an expected number of pixel clocks from an expected left-most pixel clock in the frame that reads an expected left-most active portion of the analog video data signal in the frame, to an expected right-most pixel clock in the frame that reads an expected right-most active value of the analog video data signal in the frame.
8. The method of claim 7, wherein the frequency component of the pixel clock signal is adjusted whenever one of W>e+1 and W<e holds true in the frame.
9. The method of claim 7, wherein the frequency component of the pixel clock signal is decreased whenever E<w-1.
10. The method of claim 7, wherein the frequency component of the pixel clock signal is increased whenever E>w.
11. The method of claim 4, wherein the frequency component of the pixel clock signal is adjusted by adjusting a number n of pixel clocks across each line in a frame of the analog video data signal.
12. The method of claim 11, wherein the number n of pixel clocks and the expected width e are determined by reference to a look-up table.
13. The method of claim 4, wherein the frequency component of the pixel clock signal is adjusted before the phase component of the pixel clock signal is adjusted.
14. The method of claim 4, wherein the phase of the pixel clock signal is adjusted by the steps:
adjusting the pixel clock signal phase by a selected iterative amount for each of a series of subsequent frames until a frame phase error condition passes from W=E+1 through a subseries of frames where W=E, and back to a frame with a phase error condition of W=E+1;
storing the w values from the series of subsequent frames;
examining the w values to identify the subseries of consecutive frames in which W=E;
selecting a phase corrected frame in a center portion of the subseries of frames; and
setting the pixel clock phase at the phase of the phase corrected frame.
16. The method of claim 15, including the steps of:
when one of W>e+1 and W<e, calculating an adjusted total number n' of pixel clocks that read instantaneous analog video data signal values across each line of analog video signal=n·(e/w);
substituting n' for n for a next frame; and
redetermining the actual number w of pixel clocks for the next frame.
17. The method of claim 15, including the steps of:
when W=E+1, adjusting pixel clock signal phase for a next frame; and
redetermining the actual number w of pixel clocks for the next frame.
18. The method of claim 15, including the steps of:
when W=E+1, adjusting pixel clock signal phase by a selected iterative amount for each of a series of subsequent frames;
determining the actual number w of pixel clocks for each of the series of subsequent frames; and
storing the actual number w of pixel clocks for each of the series of subsequent frames;
identifying a subseries of consecutive frames in which W=E;
selecting a corrected frame from the subseries of consecutive frames, the corrected frame being from a middle portion of the subseries of consecutive frames;
identifying a corrected pixel clock signal phase of the corrected frame; and
setting the pixel clock signal phase to the corrected pixel clock signal phase.
19. The method of claim 15, including the step of correlating the expected width of the video image to an expected number e of pixel clocks.
20. The method of claim 15, including the step of correlating the actual width of the video image to an actual number w of activated pixels.
0. 22. The method of claim 21, further including:
generating a pixel clock signal that samples the analog video signal to convert the analog video signal to the digital video signal; and
iteratively adjusting at least one of frequency and phase of the pixel clock signal to iteratively adjust the digital video signal.
0. 23. The method of claim 22, further including adjusting the frequency of the pixel clock signal before adjusting the phase of the pixel clock signal.
0. 24. The method of claim 21, in which the determining an actual width of an image includes determining a difference between a number of reference clock counts occurring between successive sync pulses associated with the lines of the digital display object and a number of reference clock counts occurring within a blanked data interval between next successive sync pulses associated with a line of the display object.
0. 25. The method of claim 24, in which the number of reference clock counts occurring between successive sync pulses represents for each line of the digital display object an average number of clock counts taken over multiple sync pulses.

The present invention pertains to converting from an analog video signal to a digital video signal, and in particular to automatically adjusting phase and frequency of a clock for converting from an analog signal to a digital signal

FIG. 2 schematically depicts a projection display system 10 in accordance with the present invention, connected to a multimedia source 12 of the PC type. The projection display system 10 includes an image capture circuit 14 that automatically eliminates phase and tracking error. A microcontroller 16, which is part of a display system CPU 17, controls the image capture circuit 14. The image capture circuit includes a programmable delay device 18, a PLL 20, a divide-by-n-counter (counter) 22, an A/D converter 24, and an ASIC (Application Specific Integrated Circuit) 26 that contains an image edge detection circuit. The microcontroller 16 executes a firmware program that runs the ASIC edge detection circuit 26, and controls the delay device 18 and the counter 22 based on the output of the edge detection circuit 26 to eliminate phase and tracking errors. A display object, preferably an active matrix LCD 28, is connected to the output of the A/D converter.

As shown in FIG. 2, for purposes of video signal transmission, the multimedia source PC 12 is connected to the projection display system 10 through a video source cable 30 which is shown in exploded schematic form. The cable 30 is of conventional design and includes multiple distinct conductors that are shielded together, including three separate channels 32a, 32b, 32c for carrying analog signals corresponding to red, green, and blue (RGB) color video components, and two conductors 34, 36 carrying the Hsync and Vsync signals, respectively.

Turning to the details of the image capture circuit 14, the microcontroller 16 is connected to the delay device 18 by a bus 38, to the counter 22 by a bus 40, and to the ASIC 26 by a bus 42. A mode identification counter 43, which is connected to Hsync and Vsync through conductors 45 and 47, respectively, may be located in the microcontroller or the ASIC. The mode identification counter 43 may also be provided independent of the microcontroller. A preferred microcontroller 16 is model MC6833 1, made by Motorola.

The delay device has an input connected to the Hsync conductor 34, and an output connected to the PLL through conductor 44. The preferred delay device is model No. DS 10205-25, made by the Dallas Corporation.

As shown in detail in FIG. 3, the PLL 20 is of conventional design and includes a phase comparator 46, a low-pass filter 48, and a VCO 50. A feedback loop 52 provided with the counter 22 connects the VCO output 55 and the phase comparator 46. The counter output 51 is connected to the ASIC 26 through a conductor 53, and the VCO output 55 is connected to the ASIC 26 and the A/D converter 24 through conductor 54. The preferred PLL is model ICS 1522 made by ICS. The counter is preferably a part of the ASIC.

Referring to FIGS. 2 and 4, the three analog video data signal channels 32a, 32b, 32c are connected to the A/D converter input. The A/D converter 24 includes three separate conventional A/D converters for digitizing each of the red, green and blue analog video data signals. Three color data signal channels 56a, 56b, 56c connect the A/D converter output to the ASIC. A preferred A/D converter is model 9542A made by the Raytheon Corporation.

The Vsync signal output of the PC source 12 is connected to the ASIC 26 through a frame advance conductor 58.

The ASIC image edge detection circuit 26 is shown in detail in FIG. 4. The edge detection circuit 26 has a microcontroller interface connected to the microcontroller bus 42, and inputs connected to the line advance signal conductor 53, pixel clock signal conductor 54, color data signal channels 56a, 56b, 56c, and the frame advance conductor 58.

The edge detection circuit includes a horizontal position counter (HPC) with a RESET input 59a that receives the line advance conductor 53, and a CLOCK input 59b that receives the pixel clock conductor 54. The HPC further has an HPC output 61 connected through a HPC bus 60 to a left edge register (LEFT REG), a left edge comparator (LCOMP) associated with the LEFT REG, a right edge register (RIGHT REG), and a right edge comparator (RCOMP) associated with RIGHT REG.

The LEFT REG has a LPOS input 62 connected to the HPC output 61, an LSET input 64 connected to the Vsync signal conductor 58, a LLOAD input 66 discussed below, a LCLOCK input 68 that is connected to the pixel clock signal conductor, and an LEFT REG output 70. The RIGHT REG has a RPOS input 72 that is connected to the HPC output 61 through bus 60, a RRESET input 74 that receives the Vsync frame advance signal, an RLOAD input 76 discussed below, an RCLOCK input 78 that is connected to the pixel clock signal conductor, and a RIGHT REG output 80.

The LCOMP has a LHPC input 82 that is connected through bus 60 to the HPC output 61, an LREG input 84 that is connected through a bus 86 to the LEFT REG output 70, and an LCOMP output 88. The RCOMP has a RHPC input 90 that is connected through bus 60 to the HPC output 61, an RREG input 92 that is connected through a bus 94 to the IRIGHT output 80, and a RCOMP output 96.

As shown in FIGS. 4 and 5, a pixel value calculator 97 has inputs receiving each of the RGB video data signal channels 56a, 56b, 56c. The RGB video data signals are connected in parallel to an "OR" gate 99a, and are connected to a 4:1 multiplexer 99b. The output of the OR gate 99a is also connected to the multiplexer 99b. The output 101 of the pixel value calculator is connected through bus 103 to a pixel data comparator (PIXCOMP).

The PIXCOMP has a threshold value input 98 connected to a threshold value register (THRESH REG), and a pixel value input 100 connected to the pixel value calculator 97. The PIXCOMP has an output 102 connected to a first input 104 of a left AND gate (LGATE). The LGATE has a second input 106 that is connected to the LCOMP output 88, and a LGATE output 108 that is connected to the LLOAD input 66 of the LEFT REG. The PIXCOMP output is also connected to a first input 110 of a right "AND" gate (RGATE). The RGATE has a second input 112 that is connected to the RCOMP output 96, and an output 114 that is connected to the RLOAD input 76 of the RIGHT REG.

A left edge status register (LEFT STATUS) has an input 116 connected through bus 86 to the LEFT REG output 70, a LCLOCK input 118 connected to the pixel clock signal, a LLOAD input 120 connected to the Vsync frame advance signal, and an output 122 connected through bus 42 to the microcontroller (FIG. 2). A right edge status register (RIGHT STATUS) has an input 124 connected through bus 94 to the RIGHT REG output 80, a RCLOCK input 126 connected to the pixel clock signal, a RLOAD input 128 connected to the Vsync frame advance signal, and an output 130 connected through bus 42 to the microcontroller (FIG. 2).

Turning to the signal path to the LCD shown in FIG. 2, the line advance conductor 53, the digital video data signal channels 56a, 56b, 56c, and the frame advance conductor 58 are connected to an input port of a window random access memory (WRAM) 132. The WRAM has an output port connected to an LCD control module 134. The LCD control module is connected to the LCD 28. The LCD is preferable a 6.4 inch active matrix LCD, such as model LQ64P311 made by Sharp.

The operation of the preferred embodiment will now be explained. The display system 10 determines the resolution mode by a firmware program that uses the mode identification counter 43. Hsync is input through conductor 45 to the mode identification counter 43, and the number of 50 MHz counter clocks over twenty Hsync pulses is counted. In this way, an average number of clocks per line is obtained. Vsync is input through conductor 47 into the mode identification counter 43, and the number of lines for each Vsync pulse is obtained. The firmware then accesses a look-up table that determines resolution based on the number of 50 Mhz MHz clocks per twenty lines, and number of lines per frame. An exemplary look-up table showing a few common non-interlaced 60 Hz video modes is as follows:

TABLE 1
Number of
50 MHz Pixel
Clocks/20 Clocks/
Ysync(Hz) lines Lines/Frame Resolution Line (n)
60 Hz 31778 525 640 × 480 800
60 Hz 24400 628 600 × 600 1056
60 Hz 20677 806 1024 × 768 1344
60 Hz 15631 1056 1280 × 1024 1696

Thus, for exemplary values of 31778 50MHz clocks in twenty lines, and 525 lines per frame, the look-up table determines a resolution of 640×480, with a number n of pixel clocks per line of 800. The expected width (in pixels) of the active video region 11 (see FIG. 1d) is initially set at the horizontal component of the resolution (e.g. 640).

It is to be understood that such number n is an initial guess, and that a range of initial n values will work, due to the iterative corrective nature of the present invention. Accordingly, n may be determined in other ways, such as by multiplying the horizontal resolution by a constant slightly larger than 1∅ It is also to be understood that the preferred look-up table will cover modes from 640×480 to 1600×1200 resolution, and from 60 Hz to 100 Hz frame refresh rates. Moreover, other ways of determining the resolution are possible, such as by using the number of lines per frame to determine the vertical and horizontal resolution.

Digitization of the analog video data signals occurs based on the n pixel clocks per line. Referring to the PLL 20, the VCO 50 generates the pixel clock signal, and the microcontroller 16 sets the counter 22 to generate a feedback pulse (i.e. line advance signal) once every n pixel clocks. Once n is selected, the PLL automatically adjusts to produce a line advance signal frequency corresponding to Hsync, and a pixel clock signal having a frequency of n times the line advance frequency.

The PLL works by the phase comparator 46 receiving the Hsync, signal from the delay device 18 through conductor 44, and receiving the feedback pulse signal through the feedback loop 52. The phase comparator 46 compares the frequencies of the Hsync and the feedback pulse signal, generating an output voltage that is a measure of their phase difference. If the feedback pulse frequency does not equal the Hsync frequency, the phase difference signal causes the VCO pixel clock frequency to deviate so that the feedback pulse frequency of the counter 22 deviates toward the Hsync frequency.

The feedback pulse signal (line advance signal) of the counter 22 is directed to the ASIC 26 through a conductor 53, and the pixel clock signal of the VCO 50 is directed to the ASIC 26 and the A/D converter 24 through conductor 54. The line advance signal and Vsync are conditioned to be one clock pulse in duration, through the use of a pulse edge detection circuit or the like.

The A/D converter 24 samples (reads) the instantaneous voltage value of the analog video data signal at the leading edge of each of the pixel clocks, thereby generating a series of sampled data signal values. The A/D converter then quantizes the sampled values by matching each value to one of a series of preselected voltage amplitude levels, which have corresponding numerical values. These numerical values are then represented digitally and coded to establish 8-bit data for each of the colors red, green and blue. The three eight-bit color data signals are input through the three respective color data signal channels 56a, 56b, 56c to the edge detection circuit 26. At the LCD, the coded color data signal set pixels at blank (black) or specific activated (non-black) status corresponding to the sampled voltage level.

The actual width W of the active video region 11 (FIG. 1d) is then determined by the image edge detection circuit shown in FIG. 4. The actual width W is measured in number of pixel clocks equal to: ((the right-most active pixel in a frame)-(the left most-active pixel in a frame)+1). Thus, W is a measure of the total number of pixels across the active video region of a frame of video data. The pixel clock positions referred to in the following are the sampling positions of pixel clocks along the lines of analog video data in a frame.

The PIXCOMP compares the threshold value with the value of each pixel of the pixel data signal, and generates a binary "yes" if the pixel value is greater than the threshold value. The pixel value calculator 97 determines the value of each pixel by grouping the twenty-four total bits of each pixel together in eight groups of individual red, green and blue bits. Each of these groups of three bits is passed through the "OR" gate 99a, and the results of all of the eight "ored" groups and the digital RGB data signals are multiplexed in the 4:1 multiplexer 99b to establish a value for each pixel. It is contemplated that the pixel value may be set in various other ways, including setting a separate value for one or each of the RGB digital data signals.

The pixel value is compared against a selected threshold value at the PIXCOMP. If the sum is greater than the threshold value, a binary "yes" signal is delivered to the LGATE and RGATE, designating the pixel as active. If the pixel value sum is less than the threshold value, the PIXCOMP generates a binary "no", indicating the pixel as inactive.

The LCOMP compares the instantaneous pixel position generated by the HPC with a pixel position stored in the LEFT REG. At the beginning of each frame, the LEFT REG is preferably initiated at the far right pixel position of the video region (i.e. the right edge of the inactive margin region 13 in FIG. 1d). The LCOMP outputs a binary "yes" to the LGATE when the instantaneous HPC pixel position is less than the pixel position stored in the LEFT REG. When the PIXCOMP is simultaneously outputting a "yes", the LGATE signals the LEFT REG through the LLOAD input 120 to replace the stored LEFT REG pixel position with the instantaneous HPC pixel position.

Similarly, the RCOMP compares the instantaneous pixel position generated by the HPC with a pixel position stored in the RIGHT REG. At the beginning of each frame, the RIGHT REG is preferably initiated at the far left pixel position of a video region (i.e., the left edge of the inactive margin region 13 in FIG. 1d). Referring again to FIG. 4, the RCOMP outputs a binary "yes" to the RGATE when the instantaneous HPC pixel position is greater than the pixel position stored in the RIGHT REG. When the PIXCOMP is simultaneously outputting a "yes", the RGATE signals the RIGHT REG through the RLOAD input to update the stored RIGHT REG pixel position with the instantaneous HPC pixel position.

At the end of each frame, Vsync signals the LEFT STATUS and RIGHT STATUS to update the respective stored left edge and right edge pixel positions. The stored left and right pixel positions are then read by the microcontroller, and the actual width W (in pixels) of the active video region 11 of the frame 9 (FIG. 1d) is calculated by subtracting the left edge pixel position stored in LEFT STATUS from the right edge pixel position stored in RIGHT STATUS.

Once the actual width W is determined, the microcontroller compares it with the expected width E. If E=W, then the clock phase and the number n of clocks per line is correct. In other words, at E=W, each discreet discrete data region (plateau) of the analog video data signal is aligned with and sampled by a pixel clock, resulting in error-free digitization of the analog video data signal. In this case, n and the pixel clock phase are left unchanged for the scanning of the next frame.

If W>E+1 or W<E, then the number n of clocks per line is incorrectly set, resulting in tracking error. To correct such tracking error, a the number n of pixel clocks is adjusted to a new number n'=n·(E/W). The original n is replaced by the adjusted n', and the next frame is scanned as set forth above. Such adjustment of n is iteratively repeated every frame until W=E or W=E+1. Put another way, if the actual width W is larger than the expected width E, the number of pixel clocks n per line is decreased, (i.e. the period of each pixel clock is increased, and the frequency of the pixel clock signal is decreased), so that the width of the E pixel clocks is effectively spread out to precisely register with the active pixel data region. Conversely, if the actual width W is smaller than the expected width E, the number of pixel clocks n per line is increased, so that the width of the E pixel clocks is effectively contracted to register precisely with the active pixel data region of the analog video data signal.

Once the tracking error is corrected, any phase error is corrected. As discussed above, if W=E, the number of pixel clocks n per line is correctly configured, and no phase error exists. However, if W=E+1, phase error is present, resulting in noise in the video display. Referring to FIG. 1, phase error occurs because of the "jitter" zones present in the leading and trailing edges of clock pulses. Even if the pixel clock signal frequency is equal to the analog video data signal frequency, phase error noise will occur if the jitter zone on the leading edge of the pixel clock waveform overlaps with a transition zone on either side of plateau regions of the analog video data waveform.

To correct the phase error when W=E+1, microcontroller signals the programmable delay to adjust the pixel clock signal phase by a selected iterative amount for each of a series of subsequent frames. The pixel clock phase iteration proceeds until the frame phase error condition passes from W=E+1 through a subseries of frames without phase error (i.e. W=E), and back to a frame with a phase error condition of W=E+1. The resulting series of W values is stored in the microcontroller. The stored series of W values are then examined to identify the subseries of consecutive frames in which W=E. A phase corrected frame in the center of the subseries is then selected, and the programmable delay is signaled to set the pixel clock phase at the phase of the phase corrected frame. Thus, the phase is set so that the pixel clock leading edges are located in the middle of the analog video signal pixel components, in order to consistently avoid sampling in transition regions.

The digital video signals output from the video capture circuit 14 are manipulated by the WRAM 132 and LCD control module 134 to appropriately control the LCD 28. For instance, the WRAM and LCD control module may "flip" the digital video signals as appropriate for different multimedia display system 10 applications, such as front lighting and back lighting of a display screen. The WRAM and LCD control module may also serve to manipulate interlaced video modes into noninterlaced form appropriate for controlling the LCD.

It is also noteworthy that the method and apparatus of the present invention can be used to properly horizontally position the active video region 11 (FIG. 1d) on the LCD. In this application, the value of LEFT STATUS may be used to determine when video data begins to be stored by the WRAM 132. Thus, no data is stored for the blanked margins on either side of the active video region, eliminating the possible possibility that spuriously activated analog pixel components in the blanked margin region will be transferred to the LCD.

An exemplary image edge detection method will now be described in conjunction with the exemplary screen image shown in FIG. 6. The determination of the actual image width W for a single frame will be described, with the assumption that that the original analog image has a resolution of 640×480. Referring to the look-up table, the number of lines/frame is 525, and n is 800. In this example, the pixel position will be designated by Cartesian coordinates corresponding to the horizontal line position and vertical line of the pixel.

The exemplary screen image 140 is a diamond-shape 142 above a horizontal menu bar 144. A margin of blanked pixels 146 (bounded by a dashed line) extends along the sides and the top and bottom of the active image region 148. The diamond has an upper point at horizontal pixel position 400, 20. The diamond widens to a pair of side points on the same horizontal pixel line at respective pixel positions 200, 300 and 600, 300. The diamond has a lower point at horizontal pixel position 400, 475. The menu bar immediately below the diamond has upper left and right edges at horizontal pixel positions 80, 475 and 720, 475 respectively.

Prior to imaging, the LEFT REG is initialized at 800 and the RIGHT REG is initialized at 0. The frame scan begins with blanked pixel data that is advanced line by line down through the blanked upper margin of the total data region. Since none of the blanked pixel values P are above the threshold value T, the LEFT REG and RIGHT REG are not updated.

The first active pixel is sampled at the diamond upper point at 400, 20. At this point the HPC<LEFT REG and the HPC>RIGHT REG, so that both LEFT REG and RIGHT REG update to 400. The LEFT REG updates toward the left and the RIGHT REG updates toward the right as the frame scan moves downward through upper diagonal section 150 of the diamond. The LEFT REG and RIGHT REG are respectively updated to 200 and 300 at the diamond side comers, and then are not further updated as the frame scan moves through narrowing lower diagonal section 152 of the diamond.

As the frame scan moves onto the menu bar area, active pixel data begins at HPC=80. Since HPC=80<LEFT REG=200, the LEFT REG updates to 80. As the scan moves past HPC=600 toward the right edge of the menu bar, the RIGHT REG updates rightward until RIGHT REG=720 at the right edge of the menu bar. The LEFT REG and RIGHT REG do not further update as the frame scan moves down through the menu bar and the lower blanked area.

At the end of the frame, Vsync signals the LEFT STATUS and RIGHT STATUS to update the left and right edge positions respectively to 80 and 720. The microncontroller then calculates W=RIGHT STATUS-LEFT STATUS=640. Thus, in this example W=E=640, and no tracking or phase error correction is required. Of course, if W>E+1 or W<E, an adjusted number n' of pixel clocks would be calculated as described above. If W=E+1, then pixel clock phase correction as described above would be initiated.

Although the present invention has been described in connection with a preferred embodiment thereof, it is to be understood that such preferred embodiment is exemplary only. It will be appreciated by those skilled in the art that additions, deletions, modifications and substitutions may be made to the described preferred embodiment without departing from the spirit and scope of the invention. For instance, the present invention is applicable to any digital display device that converts analog video signals into digital video signals for controlling a digital display object. Such a digital display object, in addition to various types of LCD, may be a light valve of diffraction grating, micro-mirror, or other type. The analog video source may also be a VCR, a computer workstation, or other device. Moreover, the edge detection circuit can also be utilized to detect the upper and lower vertical edges of an image. Accordingly, the present invention should be interpreted broadly in reference to the appended claims.

West, Michael G.

Patent Priority Assignee Title
11024249, Mar 27 2019 Samsung Display Co., Ltd. Display device and driving method thereof
7053959, Apr 10 2002 Sony Corporation Digital video encoder
8884975, Nov 19 2010 Ricoh Company, Ltd. Image projection apparatus, memory control apparatus, laser projector, and memory access method
RE40675, Mar 13 1996 Seiko Epson Corporation Method and apparatus for automatic pixel clock phase and frequency correction in analog to digital video signal conversion
Patent Priority Assignee Title
4905085, Sep 29 1988 AGFA HEALTHCARE N V Synchronous sampling system
5404173, Mar 10 1993 THE BANK OF NEW YORK TRUST COMPANY, N A Method to synchronize video modulation using a constant time base
5539473, Mar 31 1994 HTC Corporation Dot clock generation with minimal clock skew
5657089, Oct 14 1994 HTC Corporation Video signal processing device for sampling TV signals to produce digital data with interval control
5767916, Mar 13 1996 Seiko Epson Corporation Method and apparatus for automatic pixel clock phase and frequency correction in analog to digital video signal conversion
WO9825401,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 08 2000InFocus Corporation(assignment on the face of the patent)
Oct 19 2009InFocus CorporationRPX CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0235460105 pdf
Oct 26 2009RPX CorporationSeiko Epson CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0235380889 pdf
Date Maintenance Fee Events
Mar 03 2006M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 24 2010M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Mar 24 2010M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.
May 20 2010ASPN: Payor Number Assigned.
May 20 2010RMPN: Payer Number De-assigned.


Date Maintenance Schedule
Oct 12 20074 years fee payment window open
Apr 12 20086 months grace period start (w surcharge)
Oct 12 2008patent expiry (for year 4)
Oct 12 20102 years to revive unintentionally abandoned end. (for year 4)
Oct 12 20118 years fee payment window open
Apr 12 20126 months grace period start (w surcharge)
Oct 12 2012patent expiry (for year 8)
Oct 12 20142 years to revive unintentionally abandoned end. (for year 8)
Oct 12 201512 years fee payment window open
Apr 12 20166 months grace period start (w surcharge)
Oct 12 2016patent expiry (for year 12)
Oct 12 20182 years to revive unintentionally abandoned end. (for year 12)