A programmable variable depth and width random-access memory circuit is provided. The memory circuit contains rows and columns of memory cells for storing data. A row decoder is used to address individual rows of the memory cells. column address circuitry receives a column address signal and a width and depth selection signal. A column decoder within the column address circuitry addresses one or more columns of memory cells of the RAM array based on the selected width of the array. The output of the column decoder is routed to the appropriate column or columns of memory cells by a pattern of fixed connections and a group of programmable multiplexers. The number of data output lines to which data signals are provided is determined by the selected width of the RAM array. The output circuitry contains a group of programmable demultiplexers and a routing array having a pattern of fixed connections suitable for passing data signals from the RAM array to the selected number of data output lines.
|
8. A method of programmably varying the depth and width of a random-access memory circuit having a random-access memory array with a plurality of rows and columns of memory cells, a plurality of data output lines, a row decoder, and column address circuitry containing a column decoder, the method comprising the steps of:
storing data in said memory cells; addressing said rows of memory cells with said row decoder; receiving a mode selection signal with said column address circuitry that is indicative of a desired depth and width for said memory circuit; simultaneously addressing a predetermined number of said columns with said column address circuitry based on said mode selection signal, said predetermined number being equal to said desired width; and providing said data from said random-access memory array to said predetermined number of said data output lines.
1. A programmable variable depth and width random-access memory circuit, comprising:
a random-access memory array having a plurality of rows and columns of memory cells for storing data; a plurality of data output lines; a row decoder connected to said random-access memory array for addressing said rows of memory cells; column address circuitry having a column decoder connected to said random-access memory array for addressing said columns of memory cells, said column address circuitry receiving a mode selection signal indicative of a desired depth and width for said memory circuit, said column address circuitry simultaneously addressing a predetermined number of said columns based on said mode selection signal, said predetermined number being equal to said desired width; and output circuitry connected to said random-access memory array for providing said data from said random-access memory array to said predetermined number of said data output lines.
2. The memory circuit of
a plurality of column decoder output lines connected to said column decoder for receiving column decoder output signals; a plurality of groups of input routing lines; a plurality of fixed connections between said column decoder output lines and said input routing lines for routing said column decoder output signals from said column decoder output lines to said input routing lines; a plurality of multiplexers each having a plurality of multiplexer inputs connected to one of said groups of input routing lines and a multiplexer output; and a plurality of column selection lines each connected to one of said multiplexer outputs and being associated with a respective one of said columns of said memory cells.
3. The memory circuit of
4. The memory circuit of
a plurality of groups of output routing lines; a plurality of demultiplexers each having a demultiplexer input connected to a respective one of said pass transistor output terminals and each having a plurality of demultiplexer outputs connected to one of said groups of output routing lines; and a plurality of fixed connections between said output routing lines and said data output lines.
5. The memory circuit of
6. The memory circuit of
7. The memory circuit of
9. The method of
receiving column decoder output signals from said column decoder with said column decoder output lines; routing said column decoder output signals from said column decoder output lines to said multiplexer inputs with said fixed connections and said input routing lines; and passing said column decoder output signals from said multiplexer inputs to said multiplexer outputs.
10. The method of
receiving said column decoder output signals from said multiplexer outputs with said column selection lines; and simultaneously addressing said predetermined number of columns with said column selection lines.
11. The method of
12. The method of
receiving said data from said pass transistor output terminals with said demultiplexer inputs; passing said data from said demultiplexer inputs to said demultiplexer outputs; and routing said data from said demultiplexer outputs to said data output lines via said fixed connections and said output routing lines.
13. The method of
receiving said mode selection signal with said demultiplexers; and selectively passing said data from said demultiplexer inputs to said demultiplexer outputs based on said mode selection signal.
14. The method of
receiving said mode selection signal with said multiplexers; and selectively passing said column decoder output signals from said multiplexer inputs to said multiplexer outputs based on said mode selection signal.
15. The method of
receiving a column address signal and said mode selection signal with said control logic; and providing said column address signal and at least one logical signal of a predetermined fixed value to said column decoder with said control logic when said mode selection signal indicates that said width is at least two.
|
This application is a continuation-in-part of application Ser. No. 08/442,795, filed May 17, 1995a
A conventional 2K×1 memory device 100 is shown in FIG. 1. Memory device 100 has a two kilobit random access memory (RAM) array 102, which has 64 rows and 32 columns of memory cells (not shown). Data is written into the memory cells of array 102 using data input line 104. Data is read out of the memory cells via data output line 106. Row address circuitry 108 accepts a six bit address signal at input 110, which allows row address circuitry 108 to address a selected one of the 64 rows of memory cells in array 102. Column address circuitry 112 accepts a five bit address signal at input 114, which allows column address circuitry 112 to address a selected one of the 32 columns of memory cells in array 102.
Sense amplifier circuitry 116 receives 32 data output lines 118 from array 102. Sense amplifier circuitry 116 amplifies the data received from array 102 on data output lines 118 and combines these 32 data output lines 118 to form output 106. Because memory device 100 has a single output 106 and because the maximum amount of data that can be read out of output 106 is two kilobits, the memory device 100 is said to have a "depth" of 2K and a "width" of one. Because the depth and width of memory device 100 are fixed, if it is desired to use a memory configuration other than the 2K×1 RAM configuration of
A conventional 1K×2 memory device 120 is shown in FIG. 2. Memory device 120 has a two kilobit RAM array 122, which has 64 rows and 32 columns of memory cells (not shown). Data is written into the memory cells of array 122 using data input line 124. Data is read out of the memory cells via two data output lines: data output line 126 and data output line 128. Row address circuitry 130 accepts a six bit address signal at input 132, which allows row address circuitry 130 to address a selected one of the 64 rows of memory cells in array 122. Column address circuitry 134 accepts a four bit address signal at input 136, which allows column address circuitry 134 to address a selected pair of the 32 columns of memory cells in array 122 (e.g., column 0 and column 16 or column 1 and column 17).
Sense amplifier circuitry 138 receives 16 data output lines 140 from the first half of the columns of array 122 (e.g., columns 0 through 15). Sense amplifier circuitry 142 receives 16 data output lines 144 from the second half of the columns of array 122 (e.g., columns 16 through 31). Sense amplifier circuitry 138 amplifies the data received from array 122 on data output lines 140 and combines these 16 data output lines 140 to form the data output line 126. Sense amplifier circuitry 142 amplifies the data received from array 122 on data output lines 144 and combines these 16 data output lines 144 to form data output line 128. Addressing a pair of columns with column address circuitry 134 therefore causes the data from two associated memory cells of array 122 to be provided in parallel at data output lines 126 and 128. The maximum amount of data that can be read out of either data output line 126 or data output line 128 is 1K. The memory device 120 therefore has a depth of 1K and a width of two. The depth and width of memory device 120 are fixed, so if it is desired to use a memory configuration other than the 1K×2 configuration of
A variable depth and width memory circuit 146 in accordance with the present invention is shown in FIG. 3. Memory circuit 146 has a two kilobit RAM array 148, which has 64 rows and 32 columns of memory cells 150. Only one memory cell 150 is shown in
The number of data output lines 154 on which data is provided depends on the width selected for memory circuit 146. If memory circuit 146 has been programmed to have a width of one (the ×1 mode), data is provide provided on a single one of the data output lines 154 (output line D0). If the programmed width is two (the ×2 mode), then data is provided using two data output lines 154 (output lines D0 and D1). If the width is four (the ×4 mode) data is provided on data output lines D0, D1, D2, and D3. If the width is eight (the ×8 mode), data is provided on all eight of data output lines 154 (D0-D7).
The depth of memory circuit 146 varies depending on the chosen width of memory circuit 146. For example, if the width is one, the depth is 2K. Widths of two, four, and eight result in depths of 1K, 512, and 256 512, and 256, respectively.
The depth and width of memory circuit 146 are preferably determined by a two-bit depth and width mode selection signal applied to input 156 of multiplexer decoder 158. Multiplexer decoder 158 converts the two bit selection signal at input 156 to four depth and width control signals at output 160. The depth and width control signals at output 160 are provided to multiplexers 162, demultiplexers 164, and address control logic 166.
Address control logic 166 accepts a column address signal at input 168. In the ×1 mode, a five bit column address is used in conjunction with a six bit row address to address individual memory cells 150. In configurations of greater width, fewer bits of the column address are used. For example, in the ×2 mode, only a four bit column address is used. The four bit column address and the six bit row address are sufficient to specify a unique pair of memory cells 150 from which two data bits are obtained in parallel in the ×2 mode.
In the ×1 mode, all five bits of the column address supplied to input 168 are passed to column decoder 170. In the ×2 mode, address control logic 166 provides four bits of the column address to column decoder 170 unchanged and assigns the fifth bit to a logical low signal. In the ×2 mode, the fifth bit of the column address at input 168 is therefore a "don't care" bit. In the ×4 mode, address control logic 166 provides three bits of the column address to column decoder 170 unchanged and provides the fourth and fifth bits as logical low signals. The fourth and fifth bits of the column address at input 168 are don't care bits in the ×4 mode. In the ×8 mode, address control logic 166 passes two bits of the column address at input 168 to column decoder 170 unchanged and provides the third, fourth, and fifth bits as logical low signals. The third, fourth, and fifth bits of the column address at input 168 are don't care bits in the ×8 mode. Because address control logic 166 provides column decoder 170 with logical low signals when certain column address bits are not used, column decoder 170 addresses the appropriate column decoder output lines in routing array 173.
Column decoder 170 decodes the address signals provided at input 172 by address control logic 166 and provides a corresponding decoder output signal on output lines 174. Output lines 174 are connected to multiplexers 162 by 32 columns of input routing lines 176. A pattern of fixed connections 178 is used to connect output lines 174 to input routing lines 176. The illustrative pattern of fixed connections 178 shown in
When column addresses are provided to input 168, one or more column select lines 180 go high, depending on the selected mode of memory circuit 146. For example, if it is desired to operate memory circuit 146 in the ×1 mode, the depth and width mode selection signal applied to multiplexer decoder 158 results in control signals at output 160 that direct address control logic 166 to pass the complete five bit column address signal applied to input 168 to column decoder 170. If the five bits of the column address signal are high, low, low, low, and low in the ×1 mode, for example, the column decoder 170 will generate a logical high signal on the 0th (top) output line 174. The 0th output line 174 is connected to a number of multiplexers 162, such as multiplexer 162 in column 5 (via the ×8 input) and multiplexer 162 in column 3 (via the ×8 and ×4 inputs). However, only in column 0 is the 0th output line 174 connected to the ×1 input of one of multiplexers 162. Accordingly, in the ×1 mode only the column select line 180 in column 0 goes high.
When the column select line 180 in column 0 goes high, pass transistor 182 in column 0 is turned on, so that data in column 0 is provided to the demultiplexer 164 in column 0. Demultiplexers 164 are connected to output data lines 154 by output routing lines 184. Output data lines 154 and output routing lines 184 are connected by a pattern of fixed connections 186 in the form of routing array 187. If data is passed from RAM array 148 via the pass transistor 182 in column 0 in the ×1 mode, the data passes from demultiplexer 164 in column 0 to data output line DO D0 via the connection 186 at the intersection of the ×1 output of demultiplexer 164 and data output line D0. Data output lines D1-D7 are not connected to RAM array 148 in the ×1 mode.
If it is desired to operate memory circuit 146 in the ×2 mode, the user of memory circuit 146 provides a four bit address to the first four input terminals of address control logic 166. An appropriate depth and width mode selection signal is applied to multiplexer decoder 158, which results in control signals at output 160 that direct address control logic 166 to pass a four bit column address to column decoder 170.
If the four bits of the column address signal in the ×2 mode are high, low, low, and low, column decoder 170 will generate a logical high signal on the 0th (top) output line 174. Because the 0th output line 174 is connected to the ×2 input of multiplexers 162 in both column 0 and column 1, the column select lines 180 in column 0 and column 1 both go high, turning on pass transistors 182 in column 0 and column 1. Because pass transistors 182 in column 0 and column 1 are on, data bits from memory cells in column 0 and column 1 are provided in parallel to the demultiplexers 164 in column 0 and column 1. Output routing lines 184 connect the outputs of the demultiplexers 164 in column 0 and column 1 to output data lines D0 and D1. Data output lines D2-D7 are not connected to RAM array 148 in the ×2 mode.
At the same time that the column address is used to address data in one or more columns of RAM array 148, row decoder 190 accepts a six bit row address signal at input 192 that is used to address a selected one of the 64 rows of memory cells 150 in array 148. Output lines 194 of row decoder 190 drive 32 1:2 read/write demultiplexers 196, which receive a read/write select signal via line 198. If data is to be read from RAM array 148, demultiplexers 196 direct the signal from lines 194 to read word lines 200. If data is to be written to RAM array 148, demultiplexers 196 direct the signal from lines 194 to write word lines 202. A variety of different designs may be used for memory cell 150. If desired, a memory cell 150 that is addressed by a single word line and a single bit line may be used.
As shown in
Data is stored in storage element 208, which may be based on e.g, e.g., dynamic RAM (DRAM), static RAM (SRAM), erasable programmable read-only memory (EPROM), electrically-erasable programmable read-only memory (E2PROM), flash memory, or any other suitable addressable memory technology. Preferably, storage element 208 is a four transistor SRAM cell that stores a single data bit.
In order to write a data bit into storage element 208, write word line 202 and column select line 180 are placed in a high logical state. Each memory cell 150 contains a transistor 210, which is turned on when write word line 202 is high. Each column of memory cells 150 contains a transistor 212, which is turned on when column select line 180 is high. Because transistors 210 and 212 are on when write word line 202 and column select line 180 are high, the data bit passes from data input line 152 to storage element 208 via write bit line 204. Read word line 200 is low, so transistor 214 is off.
To read a data bit from storage element 208, read word line 200 and column select line 180 are placed in a logical high state, which turns on transistor 214 and pass transistor 182. Because transistor 214 and pass transistor 182 are on, the data bit passes from storage element 208 to data out terminal 216. Buffer 218 is used to increase the signal strength of the data bit on line 206. Write word line 202 is low, so transistor 210 is off.
The foregoing is merely illustrative of the principles of this invention and various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the memory circuit can have different numbers of rows and columns of memory cells and the circuitry used to address the memory cells can be any suitable size.
Chang, Wanli, Cliff, Richard G., Sung, Chiakang, Huang, Joseph, McClintock, Cameron R., Cope, L. Todd, Leong, William, Watson, James A., Ahanin, Bahram
Patent | Priority | Assignee | Title |
7542324, | Apr 17 2006 | Altera Corporation | FPGA equivalent input and output grid muxing on structural ASIC memory |
7702978, | Apr 21 2006 | TAHOE RESEARCH, LTD | Soft error location and sensitivity detection for programmable devices |
7901999, | Apr 17 2006 | Altera Corporation | FPGA equivalent input and output grid muxing on structural ASIC memory |
9275694, | Apr 17 2006 | Altera Corporation | FPGA equivalent input and output grid muxing on structural ASIC memory |
Patent | Priority | Assignee | Title |
3473160, | |||
4593373, | Aug 09 1982 | Sharp Kabushiki Kaisha | Method and apparatus for producing n-bit outputs from an m-bit microcomputer |
4609986, | Jun 14 1984 | ALTERA CORPORATION, A DELAWARE CORPORATION | Programmable logic array device using EPROM technology |
4617479, | May 03 1984 | ALTERA CORPORATION, A DELAWARE CORPORATION | Programmable logic array device using EPROM technology |
4642487, | Sep 26 1984 | XILINX, Inc.; XILINX, INC , A CORP OF CA | Special interconnect for configurable logic array |
4677318, | Apr 12 1985 | ALTERA CORPORATION, A DELAWARE CORPORATION | Programmable logic storage element for programmable logic devices |
4713792, | Jun 06 1985 | ALTERA CORPORATION, A DELAWARE CORPORATION | Programmable macrocell using eprom or eeprom transistors for architecture control in programmable logic circuits |
4751671, | Feb 14 1983 | Bankers Trust Company | Size configurable data storage system |
4758745, | Sep 19 1986 | Actel Corporation | User programmable integrated circuit interconnect architecture and test method |
4774421, | May 03 1984 | ALTERA CORPORATION, A DELAWARE CORPORATION | Programmable logic array device using EPROM technology |
4871930, | May 05 1988 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic device with array blocks connected via programmable interconnect |
4899067, | Jul 22 1988 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic devices with spare circuits for use in replacing defective circuits |
4912342, | May 05 1988 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic device with array blocks with programmable clocking |
4942541, | Jan 22 1988 | KONICA MINOLTA PRINTING SOLUTIONS U S A , INC | Patchification system |
4975601, | Sep 29 1989 | SGS-Thomson Microelectronics, Inc.; SGS-Thomson Microelectronics, Inc | User-writable random access memory logic block for programmable logic devices |
5027326, | Nov 10 1988 | Dallas Semiconductor Corporation | Self-timed sequential access multiport memory |
5121006, | Apr 22 1991 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Registered logic macrocell with product term allocation and adjacent product term stealing |
5128559, | Aug 30 1990 | SGS-Thomson Microelectronics, Inc. | Logic block for programmable logic devices |
5146428, | Feb 07 1989 | Hitachi, Ltd. | Single chip gate array |
5220214, | Apr 22 1991 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Registered logic macrocell with product term allocation and adjacent product term stealing |
5258668, | May 08 1992 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic array integrated circuits with cascade connections between logic modules |
5260610, | Sep 03 1991 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic element interconnections for programmable logic array integrated circuits |
5260611, | Sep 03 1991 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic array having local and long distance conductors |
5274581, | May 08 1992 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Look up table implementation of fast carry for adders and counters |
5350954, | Mar 29 1993 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Macrocell with flexible product term allocation |
5371422, | Sep 03 1991 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic device having multiplexers and demultiplexers randomly connected to global conductors for interconnections between logic elements |
5396608, | Jun 28 1993 | Analog Devices, Inc. | Method and apparatus for accessing variable length words in a memory array |
5506850, | Apr 08 1991 | Logic analyzer for high channel count applications | |
5541530, | May 17 1995 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic array integrated circuits with blocks of logic regions grouped into super-blocks |
5543732, | May 17 1995 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic array devices with interconnect lines of various lengths |
5550782, | May 08 1992 | ALTERA CORPORATION, A DELAWARE CORPORATION | Programmable logic array integrated circuits |
5592106, | May 17 1995 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic array integrated circuits with interconnection conductors of overlapping extent |
5614840, | May 17 1995 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic array integrated circuits with segmented, selectively connectable, long interconnection conductors |
DE2515696, | |||
EP156316, | |||
JP2108168, | |||
RE34363, | Mar 12 1984 | XILINX, Inc. | Configurable electrical circuit having configurable logic elements and configurable interconnects |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 12 1998 | Altera Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 30 2005 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 22 2009 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 09 2007 | 4 years fee payment window open |
May 09 2008 | 6 months grace period start (w surcharge) |
Nov 09 2008 | patent expiry (for year 4) |
Nov 09 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 09 2011 | 8 years fee payment window open |
May 09 2012 | 6 months grace period start (w surcharge) |
Nov 09 2012 | patent expiry (for year 8) |
Nov 09 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 09 2015 | 12 years fee payment window open |
May 09 2016 | 6 months grace period start (w surcharge) |
Nov 09 2016 | patent expiry (for year 12) |
Nov 09 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |