A thermostat system according to the invention includes: a central control device (typically a programmable thermostat with a processor having: a CPU, real time clock and a memory for storing a control program and data information), multiple rooms comprising a conditioned space, environmental control equipment, and multiple environmental sensors capable of sensing an environmental condition (such as temperature, humidity, or other condition). The sensors are associated with transmission means, which control transmission of sensor signals, and occupancy sensors. Each sensor measures a local environmental condition. occupancy sensors comprise infrared or other motion sensors, light detection sensors, door opening sensors, and other such sensors that detect the presence of humans in a room of the conditioned space where its associated sensor is located. space conditioning equipment is activated by comparison of a setpoint to a control value averaged from values of environmental conditions in occupied rooms.
|
1. An occupancy response system with a central control device adapted to control space conditioning equipment affecting a conditioned space, the central control device located at a single physical location in one of multiple rooms comprising the conditioned space, where remote sensors are located in physical locations substantially apart from the central control device, the improvement comprising:
A) two or more environmental sensors adapted to measure a local environmental condition and generate signals indicating its value;
B) two or more occupancy sensors adapted to detect occupancy of space around an environmental sensor and generate signals indicating occupancy;
C) either the central control device and one or more of the remote sensors or two or more of the remote sensors each comprise an environmental sensor and an occupancy sensor;
D) a central processor for the central control device including:
1) a central processing unit;
2) a real time clock;
3) a memory coupled to said central processing unit for storing a central control program and data, said data including at least one of the values of the environmental conditions sensed by the environmental sensors; and
4) an input/output unit coupled to the central processing unit, to the space conditioning equipment for issuing control signals thereto, and to a reception interface adapted to receive signals representing environmental conditions at a remote sensor;
E) a remote processor for each of the remote sensors including a central processing unit, a real time clock, a memory coupled to said central processing unit for storing a transmission control program, and an input/output unit coupled to the central processing unit and to a transmissions interface adapted to send to the central control device signals representing environmental conditions from a coupled environmental sensor; and
F) for the central control device or remote sensors having environmental sensors and occupancy sensors, their input/output units further including a sensor input coupled to an environmental sensor and an occupancy input coupled to an occupancy sensor;
G) the control programs causing a coupled central processing unit to selectively:
1) detect occupancy or vacancy of a nearby space from signals from a coupled occupancy sensor;
2) read current signals from a coupled environmental sensor and transmit them for storage in the memory of the central control device only if occupancy is detected;
3) for the central control program, calculate an average of the received environmental sensor values and use the average result as a control value which is compared with a setpoint stored in the memory of the central control program to determine actuation of the space conditioning equipment.
6. An occupancy response system with a central control device adapted to control space conditioning equipment affecting a conditioned space, the central control device located at a single physical location in one of multiple rooms comprising the conditioned space, where remote sensors are located in physical locations substantially apart from the central control device, the improvement comprising:
A) one or more environmental sensors adapted to measure a local environmental condition and generate signals indicating its value;
B) one or more occupancy sensors adapted to detect occupancy of space around an environmental sensor and generate signals indicating occupancy;
C) either the central control device and one or more of the remote sensors or two or more of the remote sensors each comprise an environmental sensor and an occupancy sensor;
D) a central processor for the central control device including:
1) a central processing unit;
2) a real time clock;
3) a memory coupled to said central processing unit for storing a central control program and data, said data including at least one of the values of the environmental conditions sensed by the environmental sensors; and
4) an input/output unit coupled to the central processing unit, to the space conditioning equipment for issuing control signals thereto, and to a reception interface adapted to receive signals representing environmental conditions at a remote sensor;
E) a remote processor for each of the remote sensors including a central processing unit, a real time clock, a memory coupled to said central processing unit for storing a transmission control program, and an input/output unit coupled to the central processing unit and to a transmissions interface adapted to send to the central control device signals representing environmental conditions from a coupled environmental sensor; and
F) for the central control device or remote sensors having environmental sensors and occupancy sensors, their input/output units further including a sensor input coupled to an environmental sensor and an occupancy input coupled to an occupancy sensor;
G) the control programs causing a coupled central processing unit to selectively:
1) detect occupancy or vacancy of a nearby space from signals from a coupled occupancy sensor;
2) read current signals from a coupled environmental sensor and a coupled occupancy sensor and transmit them for storage in the memory of the central control device so that values of environmental conditions are associated with their source of occupied or unoccupied rooms;
3) for the central control program, calculate an average of the received environmental sensor values and use the average result as a control value which is compared with a setpoint stored in the memory of the central control program to determine actuation of the space conditioning equipment.
2. The system of
3. The system of
4. The system of
5. The system of
7. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
|
This invention relates to the art of thermostats and, more particularly, to a thermostat system incorporating a central control device receiving remote environmental sensing data from remote sensors.
Thermostats have been used for many years as a temperature sensitive switch which controls heating and/or cooling equipment for conditioning a space in which the thermostat, or a temperature sensor connected to the thermostat, is placed. In the well known manner, a simple thermostat can be adjusted to establish a temperature set point such that, when the temperature in the conditioned space reaches the set point, the thermostat interacts with the heating and/or/cooling equipment to take suitable action to heat or cool the conditioned space as may be appropriate for the season.
Modern thermostat systems, which take advantage of the ongoing rapid advances in electronic technology and circuit integration, have many features which provide more precise supervision of the heating and/or cooling equipment to achieve more economical and more comfortable management of the temperature of a conditioned space. Many modern thermostat systems include a real time clock, a memory and a data processor to run a process control program stored in the memory to accurately measure the temperature of a temperature sensor disposed in the conditioned space and to send control signals to the heating and/or cooling equipment to closely control the temperature of the conditioned space. Modern thermostat systems permit anticipating and minimizing hysterisis or overshoot of the temperature in the conditioned space. In addition, the program can specify different set points at different times of the day and week and may also include a “vacation” mode which employs different set points when the conditioned space is not occupied for an extended period.
Many modern thermostat systems have a central control device or unit that receives environmental sensor data from sensors remote from the central control device. These sensors can detect temperature, humidity, or other parameters that may be used in a control program by the central control device to control environmental control equipment. The environmental control equipment (comprising HVAC equipment, among others) responds to signals from the central control device to affect the ambient comfort in rooms of a conditioned space. Typically, a remote sensor signal is received by the central control device and its value compared with that of a pre-set setpoint. If the sensor value is sufficiently different from the setpoint, environmental control equipment is activated or de-activated in response thereto. Remote sensors can be connected by wire directly to the central control device or by wireless connection so that the control program can store the output of each sensor and associate it with an identifier for the remote sensor where the output originated.
Modern programmable thermostat systems also may act to control temperature in some rooms of out of all those in a conditioned space as a “zone”. Unfortunately, zone control requires dedicated equipment for the zone or duct dampers or deflectors to direct conditioned air to the zone rooms. This requires complexity and additional cost to the system. One form of zone control uses storage in a central control device storing all the signals from multiple remote environmental sensors in the zone. The control program calculates an average value from the stored values of the remote sensors and uses that average value as a control value. The control value is compared with a setpoint, whereafter environmental control equipment is activated or de-activated. The control value established by prior art thermostat systems can easily over- or under-condition a room where a user most desires environmental control.
There is a need for zone control in a thermostat system where remote sensor values are averaged for occupied rooms at a central control device. The averaged sensor data establish a zone control value. This zone control value more accurately reflects environmental conditions of rooms where the user most desires control of those environmental conditions.
A thermostat system according to the invention includes: a central control device (typically a programmable thermostat with a processor having: a CPU, real time clock and a memory for storing a control program and data information), multiple rooms comprising a conditioned space, environmental control equipment, and multiple environmental sensors capable of sensing an environmental condition (such as temperature, humidity, or other condition). With exception of those provided within or close to a housing of the central control device, environmental sensors are located remote from the central control device. “Remote” as used herein means effectively remote from the central control device as to a sensed environmental condition. A remote sensor may be located in another room as compared with the central control device. Alternately, a remote sensor may be located some distance away from the central control device in a large room. A communications interface is adapted to establish reception of signals (via wired or wireless connections) between the processor and the environmental sensors.
In one embodiment, the sensors are associated with transmission means, which control transmission of sensor signals, and occupancy sensors. Each sensor measures a local environmental condition. Occupancy sensors comprise infrared or other motion sensors, light detection sensors, door opening sensors, and other such sensors that detect the presence of humans in a room of the conditioned space where its associated sensor is located.
In one form of the invention, transmission means enables transmission of environmental sensor signals to the central control device only upon input of signals from the occupancy detector. In another form of the invention, transmission means provide continuous transmissions from environmental sensor signals to a central control device, albeit where such signals are associated with indications of occupancy or non-occupancy of a room where the sensor is located sensing occupancy of a room or an area of a large room. Such remote sensor signals are transmitted to the central control device and stored in its memory as a table of data indicating environmental conditions only in occupied rooms. The values of this table are averaged in one of several selected modes to yield a control value. This control value more accurately reflects the desired environmental conditions of the rooms where user's are present. Alternately, all sensor data may be stored at the central control device and associated with indications of occupancy or non-occupancy of a room where the sensor is located and a time of the sensing of the environmental condition and occupancy status of the room.
In a second embodiment, remote sensors and occupancy detectors are associated as in the first embodiment. However, this second embodiment comprises transmission means that causes transmission of environmental sensor signals to the central control device with additional signals indicating whether the sensor signal originates from an occupied or non-occupied room. Transmission means may transmit continuously, periodically or upon the occurrence of a sensed event. The occupancy status of the room is determined by the input to the transmission means of the occupancy sensor. These remote sensor signals are transmitted to the central control device and stored in its memory as a table of data indicating environmental conditions of both occupied and un-occupied rooms. The values of this table are averaged in one of several selected modes to yield a control value. This control value more accurately reflects the overall desired environmental conditions of the rooms where user's are present.
A user may optionally select from one of several forms of averaging of sensor data to derive a control value. The control program may cause a display screen connected with the CPU to provide a user with a list of averaging options, where by the user can select one of the options through a user interface with touch sensitive buttons or other well known means.
Averaging of sensor data may be accomplished by one of several methods. The sensor data table may contain sensor data from sensors located at the central control devices as well as from remote sensors. Simple averaging of sensor data associated with room occupancy occurs when all environmental sensor data are added together and divided by the number of data items in the table.
A second form of averaging uses weighting depending on square footage of the room where the sensor is located. Greater weighting is assigned to sensor data associated with occupancy in rooms with greater relative square footage.
A third form of averaging uses sensor data from occupied and unoccupied rooms and assigns greater weight to sensor data from occupied rooms.
A fourth form of averaging uses historical data to determine rooms most heavily occupied over a pre-determined period (such as a week or month) and averages current sensor data only from those heavily occupied rooms to arrive at a control value regardless of current occupancy status.
Current thermostat systems can include mobile remote temperature sensors with wireless transmitters. These mobile temperature sensors send sensed, local temperature signals to a central control device and are usually battery powered and enclosed in a handheld housing. The mobile sensors can include a display of locally sensed temperature. In one form of the invention, mobile sensors detect room occupancy and also have means to detect motion of the device itself relative to its surroundings. Without such means, movement of the mobile sensor by a user would result in a false indication of occupancy to the occupancy sensor. For example, an infra-red motion detector in the mobile sensor would falsely interpret carrying the mobile sensor from one room to another as the presence of a person moving in a room. Instead, transmission means are connected to a device motion sensor. The device motion sensor in one form comprises a circuit that opens, closes or alternates between those states when the mobile sensor is picked up and moved. A set of fixed contacts for the circuit can be arranged so that rolling or sliding metallic pieces in an enclosed cavity break or complete the circuit when the device itself is picked up and carried to another room. The transmission means delays receipt of inputs from the occupancy sensor until the mobile sensor has come to rest and/or after a predetermined period of time. These adaptations allow the mobile sensor to come to rest before setting room occupancy and thereafter transmitting local environmental conditions.
It is a feature of some modern thermostat systems to control duct dampers or diverters so that conditioned air from air handlers and fans is directed only to certain rooms of a conditioned space. In the present invention, occupancy sensed in a room creates a signal via the occupancy sensor which is transmitted from a remote device to the central control device. The central control device can act to average temperatures to calculate a control value and at the same time divert substantially all conditioned air only to the occupied rooms.
In some situations, environmental conditions in separated but occupied rooms may be quite different. A side of a building with its wall receiving full sun can dramatically heat a room on that side. A room on the opposite side of the building may be quite cool and have a temperature close to a desired setpoint. Simple averaging of local temperatures in those rooms may result in a control value near a desired setpoint for the central control device. A fifth form of averaging would cause the data table values of sensed environmental conditions to be subtracted from the setpoint to calculate a table of differences, some positive and some negative depending on the relationship of a sensor value to the setpoint. Differences beyond the setpoint value at which environmental control equipment is activated (such as the setpoint temperature at which air conditioning equipment is turned on) would be averaged and given greater weight than an average of differences outside of that activation range. For example, temperature sensors might indicate degree Fahrenheit temperatures of 80, 79, 77 and 75. If the setpoint is 78 for air conditioning to be turned on, the differences would be 2, 1, −1 and −3. Simply averaging the sensor values would not result in the overheated rooms being cooled. In one scenario, the positive differences are weighted 70% and the negative differences at 30%. The resulting control value will be sufficient to activate the air conditioning at the cost of overcooling some occupied rooms.
It is an object of the invention to average sensed environment conditions only in occupied rooms in order to calculate a control value.
Referring first to
Referring now to
The processor 30 includes a central processing unit (CPU) 31 in communication with a memory 32 which stores data and program information and also, via an input/output unit (I/O unit) 34, an optional user interface 35 and a liquid crystal or other type display (LCD) 36. The memory 32 may include a read-only part which is factory-programmed and a random-access part which stores data subject to change during operation. A settable real time clock 33 is used to keep time in the central control device to facilitate diverse operations, such as different temperature set points (desired temperatures), during different periods of the day cycle. The thermostat system may be suitably powered by a battery (not shown) and/or from equipment to which is connected. The I/O unit 34 includes a wired or wireless communications interface 41 for coordinating communications between the CPU 31 and one or more remote sensors.
Referring now to
The processor 50 includes a central processing unit (CPU) 51 in communication with a memory 52 which stores data and program information and also, via an input/output unit (I/O unit) 54, and a liquid crystal or other type display (LCD) 55. The memory 52 may include a read-only part which is factory-programmed and a random-access part which stores data subject to change during operation. A settable real time clock 53 is used to keep time in the remote sensor to facilitate diverse operations, such as receiving and transmitting sensor signals. The remote sensor may be suitably powered by a battery (not shown) and/or from power supply integral with structure 10. The I/O unit 54 includes a wired or wireless communications interface 59 for coordinating communications between the CPU 50 and the central control device.
Thus, in the usual manner during normal operation, one or more environmental sensors send an electrical signal (e.g., if the sensor S1 is a simple thermistor, a resistance value; several types of temperature sensors are widely used) representative of the temperature within its local conditioned space (i.e., the room) which the processor can average to calculate a control value to compare against a previously entered set point to determine if control signals need to be sent to the space conditioning equipment 37. For example, if the control value temperature in the conditioned space is found to be too low when operation is in the heating mode, the processor 31 signals the space conditioning equipment 38 circulate, through ducts 39/40, air from/to the conditioned space 38 which is heated by the space conditioning equipment before return to the conditioned space. This heating phase continues until the calculated control value indicates that the space is now too hot (or approaching too hot) with reference to the set point such that the processor 31 sends signal(s) to the space conditioning equipment 38 to cease the heating function, all as very well known in the art. In a cooling mode, a counterpart procedure is followed. Those skilled in the art will understand that the control process typically includes such refinements as anticipation, hysterisis accommodation, fan control, etc. which are acknowledged, but are not directly relevant to the invention.
Consider now a first embodiment of the invention referring to
Consider now a second embodiment of the invention referring to
Consider now the first and second embodiments of the invention referring to
If the central control device is programmable, the control program installed during manufacture will provide for user entry of above user input following conventional instructions similar to those used in user-programming the climate control operation of the thermostat system.
As used herein, a second form of averaging uses weighting of values of environmental conditions detected by environmental sensors S1 and S3 in occupied rooms depending on square footage of the room where the sensor is located. Greater weighting is assigned to sensor data in rooms with greater relative square footage. For an example using the environmental condition of temperature, assume that room 13 is four times the size of room 15 in structure 10. If rooms 13 and 15 are the only ones occupied, the second form of averaging would divide the sensed temperature at central control device 23 by 0.80 and the sensed temperature at remote sensor 23C by 0.20 to arrive at the control value. The denominator in the divisions is arrived at by the pro rata amount of space or square footage of the rooms relative to each other.
For the second embodiment of the invention, a third form of averaging uses weighting of values of environmental conditions detected by environmental sensors S1 and S3 in occupied and unoccupied rooms and assigns greater weight to sensor data from occupied rooms. For an example using the environmental condition of temperature, assume that rooms 13 through 15 are occupied and the rest vacant. The third form of averaging would divide the sensed temperatures at central control device 23 and remote sensors 23B and 23C by 0.90 and the sensed temperatures at the remained of the remote sensors by 0.10 to arrive at the control value. The denominator in the divisions is arrived at determining the value of conditioning the air in the unoccupied rooms.
A fourth form of averaging uses historical data to determine rooms most heavily occupied over a pre-determined period (such as a week or month) and averages current sensor data only from those heavily occupied rooms to arrive at a control value that may or may not depend on current occupancy. Historical data would indicate that, for example, rooms 13, 15 and 17 are occupied above a predetermined threshold level, i.e., three times per week or fifteen times per week. For those rooms where historical data indicated frequent occupancy and in the second embodiment of the invention, the environmental sensor data used to determine a control value would be those environmental conditions from occupied rooms and those environmental conditions from rooms where there is frequent occupancy regardless of current occupancy status. This form of averaging anticipates actual occupancy of a room. However, if a mobile environmental sensor it moved from one room to another and such motion is detected as above, historical environmental data for the moved sensor will be erased for the purposes of averaging in this embodiment of the invention. Environmental sensor data must begin anew with respect to room occupancy for a moved environmental sensor.
While the principles of the invention have now been made clear in an illustrative embodiment, there will be immediately obvious to those skilled in the art many modifications of structure, arrangements, proportions, the elements, materials, and components, used in the practice of the invention which are particularly adapted for specific environments and operating requirements without departing from those principles.
Patent | Priority | Assignee | Title |
10012407, | Sep 30 2012 | GOOGLE LLC | Heating controls and methods for an environmental control system |
10026304, | Oct 20 2014 | LEEO, INC | Calibrating an environmental monitoring device |
10030880, | Sep 30 2012 | GOOGLE LLC | Automated presence detection and presence-related control within an intelligent controller |
10030884, | Nov 19 2010 | GOOGLE LLC | Auto-configuring time-of-day for building control unit |
10043211, | Sep 08 2014 | Leeo, Inc.; LEEO, INC | Identifying fault conditions in combinations of components |
10048712, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for overall load balancing by scheduled and prioritized reductions |
10048852, | Oct 21 2011 | GOOGLE LLC | Thermostat user interface |
10078319, | Nov 19 2010 | GOOGLE LLC | HVAC schedule establishment in an intelligent, network-connected thermostat |
10078865, | Sep 08 2014 | Leeo, Inc.; LEEO, INC | Sensor-data sub-contracting during environmental monitoring |
10082306, | Nov 19 2010 | GOOGLE LLC | Temperature controller with model-based time to target calculation and display |
10088174, | Jul 11 2014 | ADEMCO INC | Multiple heatsink cooling system for a line voltage thermostat |
10094585, | Jan 25 2013 | ADEMCO INC | Auto test for delta T diagnostics in an HVAC system |
10101050, | Dec 09 2015 | GOOGLE LLC | Dispatch engine for optimizing demand-response thermostat events |
10102566, | Sep 08 2014 | LEEO, INC ; Leeo, Icnc. | Alert-driven dynamic sensor-data sub-contracting |
10107513, | Sep 14 2010 | GOOGLE LLC | Thermodynamic modeling for enclosures |
10108217, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
10126011, | Oct 06 2004 | GOOGLE LLC | Multiple environmental zone control with integrated battery status communications |
10132517, | Apr 26 2013 | GOOGLE LLC | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
10133283, | Jul 26 2012 | ADEMCO INC | HVAC controller with wireless network based occupancy detection and control |
10139843, | Feb 22 2012 | ADEMCO INC | Wireless thermostatic controlled electric heating system |
10145577, | Mar 29 2012 | GOOGLE LLC | User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device |
10151503, | Apr 05 2012 | GOOGLE LLC | Continuous intelligent-control-system update using information requests directed to user devices |
10162327, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
10175668, | Nov 19 2010 | GOOGLE LLC | Systems and methods for energy-efficient control of an energy-consuming system |
10191727, | Nov 19 2010 | GOOGLE LLC | Installation of thermostat powered by rechargeable battery |
10215437, | Oct 06 2004 | GOOGLE LLC | Battery-operated wireless zone controllers having multiple states of power-related operation |
10234163, | Nov 03 2014 | Alarm.com Incorporated | Thermostat technology |
10241482, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
10241484, | Oct 21 2011 | GOOGLE LLC | Intelligent controller providing time to target state |
10274914, | Oct 21 2011 | GOOGLE LLC | Smart-home device that self-qualifies for away-state functionality |
10288308, | Oct 12 2015 | Ikorongo Technology, LLC | Method and system for presenting comparative usage information at a thermostat device |
10288309, | Oct 12 2015 | Ikorongo Technology, LLC | Method and system for determining comparative usage information at a server device |
10295974, | Oct 07 2011 | GOOGLE LLC | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
10304123, | Sep 08 2014 | Leeo, Inc.; LEEO, INC | Environmental monitoring device with event-driven service |
10310477, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
10317104, | Apr 19 2013 | GOOGLE LLC | Automated adjustment of an HVAC schedule for resource conservation |
10330328, | Jul 22 2013 | Trane International Inc.; Trane International Inc | Temperature control system |
10346275, | Nov 19 2010 | GOOGLE LLC | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
10353411, | Jun 19 2014 | ADEMCO INC | Bypass switch for in-line power steal |
10367819, | Jun 17 2015 | GOOGLE LLC | Streamlined utility portals for managing demand-response events |
10396770, | Apr 23 2013 | ADEMCO INC | Active triac triggering circuit |
10404253, | Apr 23 2013 | ADEMCO INC | Triac or bypass circuit and MOSFET power steal combination |
10410300, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
10416627, | Sep 30 2012 | GOOGLE LLC | HVAC control system providing user efficiency-versus-comfort settings that is adaptable for both data-connected and data-unconnected scenarios |
10433032, | Aug 31 2012 | GOOGLE LLC | Dynamic distributed-sensor network for crowdsourced event detection |
10438304, | Mar 15 2013 | GOOGLE LLC | Systems, apparatus and methods for managing demand-response programs and events |
10443877, | Mar 29 2012 | GOOGLE LLC | Processing and reporting usage information for an HVAC system controlled by a network-connected thermostat |
10443879, | Dec 31 2010 | GOOGLE LLC | HVAC control system encouraging energy efficient user behaviors in plural interactive contexts |
10452083, | Dec 31 2010 | GOOGLE LLC | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
10452084, | Mar 14 2012 | ADEMCO INC | Operation of building control via remote device |
10454702, | Jul 27 2011 | ADEMCO INC | Systems and methods for managing a programmable thermostat |
10481780, | Nov 19 2010 | GOOGLE LLC | Adjusting proximity thresholds for activating a device user interface |
10488062, | Jul 22 2016 | ADEMCO INC | Geofence plus schedule for a building controller |
10502444, | Apr 05 2012 | GOOGLE LLC | Continuous intelligent-control-system update using information requests directed to user devices |
10510127, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat having network connected branding features |
10527309, | Sep 17 2015 | Carrier Corporation | Building air conditioning control system and control method thereof |
10533761, | Dec 14 2011 | ADEMCO INC | HVAC controller with fault sensitivity |
10534383, | Dec 15 2011 | ADEMCO INC | HVAC controller with performance log |
10545517, | Apr 19 2013 | GOOGLE LLC | Generating and implementing thermodynamic models of a structure |
10546472, | Oct 28 2015 | Johnson Controls Technology Company | Thermostat with direction handoff features |
10559045, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with occupancy detection based on load of HVAC equipment |
10581862, | Mar 15 2013 | GOOGLE LLC | Utility portals for managing demand-response events |
10606724, | Nov 19 2010 | GOOGLE LLC | Attributing causation for energy usage and setpoint changes with a network-connected thermostat |
10613555, | Jul 26 2012 | Ademco Inc. | HVAC controller with wireless network based occupancy detection and control |
10619876, | Nov 19 2010 | GOOGLE LLC | Control unit with automatic setback capability |
10627126, | May 04 2015 | Johnson Controls Technology Company | User control device with hinged mounting plate |
10627791, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
10635119, | Mar 29 2012 | ADEMCO INC | Method and system for configuring wireless sensors in an HVAC system |
10663443, | May 27 2004 | GOOGLE LLC | Sensor chamber airflow management systems and methods |
10677484, | May 04 2015 | Johnson Controls Technology Company | User control device and multi-function home control system |
10678416, | Oct 21 2011 | GOOGLE LLC | Occupancy-based operating state determinations for sensing or control systems |
10684633, | Feb 24 2011 | GOOGLE LLC | Smart thermostat with active power stealing an processor isolation from switching elements |
10690369, | Sep 30 2012 | GOOGLE LLC | Automated presence detection and presence-related control within an intelligent controller |
10697662, | Apr 19 2013 | GOOGLE LLC | Automated adjustment of an HVAC schedule for resource conservation |
10698434, | Sep 30 2008 | GOOGLE LLC | Intelligent temperature management based on energy usage profiles and outside weather conditions |
10718539, | Mar 15 2013 | GOOGLE LLC | Controlling an HVAC system in association with a demand-response event |
10732651, | Nov 19 2010 | GOOGLE LLC | Smart-home proxy devices with long-polling |
10747242, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
10747243, | Dec 14 2011 | ADEMCO INC | HVAC controller with HVAC system failure detection |
10760809, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
10768589, | Dec 11 2013 | Ademco Inc. | Building automation system with geo-fencing |
10769735, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with user interface features |
10771868, | Sep 14 2010 | GOOGLE LLC | Occupancy pattern detection, estimation and prediction |
10775814, | Apr 17 2013 | GOOGLE LLC | Selective carrying out of scheduled control operations by an intelligent controller |
10782044, | Nov 03 2014 | Alarm.com Incorporated | Thermostat technology |
10802459, | Apr 27 2015 | ADEMCO INC | Geo-fencing with advanced intelligent recovery |
10805775, | Nov 06 2015 | Jon, Castor | Electronic-device detection and activity association |
10808958, | May 04 2015 | Johnson Controls Technology Company | User control device with cantilevered display |
10811892, | Jun 28 2013 | ADEMCO INC | Source management for a power transformation system |
10832266, | Jun 17 2015 | GOOGLE LLC | Streamlined utility portals for managing demand-response events |
10853733, | Mar 14 2013 | GOOGLE LLC | Devices, methods, and associated information processing for security in a smart-sensored home |
10907844, | May 04 2015 | Johnson Controls Technology Company | Multi-function home control system with control system hub and remote sensors |
10928087, | Jul 26 2012 | ADEMCO INC | Method of associating an HVAC controller with an external web service |
10969131, | Oct 28 2015 | Johnson Controls Technology Company | Sensor with halo light system |
11054165, | Oct 12 2015 | Ikorongo Technology, LLC | Multi zone, multi dwelling, multi user climate systems |
11054448, | Jun 28 2013 | ADEMCO INC | Power transformation self characterization mode |
11080800, | Sep 11 2015 | Johnson Controls Tyco IP Holdings LLP | Thermostat having network connected branding features |
11087417, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with bi-directional communications interface for monitoring HVAC equipment |
11107390, | Dec 21 2018 | Johnson Controls Technology Company | Display device with halo |
11118803, | Apr 05 2012 | GOOGLE LLC | Continuous intelligent-control-system update using information requests directed to user devices |
11162698, | Apr 14 2017 | Johnson Controls Tyco IP Holdings LLP | Thermostat with exhaust fan control for air quality and humidity control |
11282150, | Mar 15 2013 | GOOGLE LLC | Systems, apparatus and methods for managing demand-response programs and events |
11308508, | Mar 15 2013 | GOOGLE LLC | Utility portals for managing demand-response events |
11334034, | Nov 19 2010 | GOOGLE LLC | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
11359831, | Sep 30 2012 | GOOGLE LLC | Automated presence detection and presence-related control within an intelligent controller |
11372433, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
11409315, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
11493224, | Jul 26 2012 | Ademco Inc. | Method of associating an HVAC controller with an external web service |
11549706, | Nov 19 2010 | GOOGLE LLC | Control unit with automatic setback capabtility |
11713895, | Jan 14 2019 | Research Products Corporation | Multi-zone environmental control system |
11726507, | Aug 28 2020 | GOOGLE LLC | Compensation for internal power dissipation in ambient room temperature estimation |
11739968, | Mar 15 2013 | GOOGLE LLC | Controlling an HVAC system using an optimal setpoint schedule during a demand-response event |
11761823, | Aug 28 2020 | GOOGLE LLC | Temperature sensor isolation in smart-home devices |
11781770, | Mar 29 2012 | GOOGLE LLC | User interfaces for schedule display and modification on smartphone or other space-limited touchscreen device |
11808467, | Jan 19 2022 | GOOGLE LLC | Customized instantiation of provider-defined energy saving setpoint adjustments |
11859851, | Sep 27 2018 | ALBIREO ENERGY, LLC | System, apparatus and hybrid VAV device with multiple heating coils |
11885838, | Aug 28 2020 | GOOGLE LLC | Measuring dissipated electrical power on a power rail |
8239066, | Oct 27 2008 | Lennox Industries Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8255086, | Oct 27 2008 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
8260444, | Feb 17 2010 | Lennox Industries Inc.; Lennox Industries Inc | Auxiliary controller of a HVAC system |
8295981, | Oct 27 2008 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
8352080, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8352081, | Oct 27 2008 | Lennox Industries Inc.; LENNOX INDUSTRIES, INC | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8433446, | Oct 27 2008 | Lennox Industries, Inc.; Lennox Industries Inc | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
8437877, | Oct 27 2008 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
8437878, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
8442693, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8452456, | Oct 27 2008 | Lennox Industries Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8452906, | Oct 27 2008 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8457796, | Mar 11 2009 | 75F, INC | Predictive conditioning in occupancy zones |
8463442, | Oct 27 2008 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
8463443, | Oct 27 2008 | Lennox Industries, Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
8478447, | Nov 19 2010 | GOOGLE LLC | Computational load distribution in a climate control system having plural sensing microsystems |
8510255, | Sep 14 2010 | GOOGLE LLC | Occupancy pattern detection, estimation and prediction |
8511577, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
8532827, | Oct 21 2011 | GOOGLE LLC | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
8543243, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8548630, | Oct 27 2008 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
8554376, | Sep 30 2012 | GOOGLE LLC | Intelligent controller for an environmental control system |
8558179, | Oct 21 2011 | GOOGLE LLC | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
8560125, | Oct 27 2008 | Lennox Industries | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8564400, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8600558, | Oct 27 2008 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
8600559, | Oct 27 2008 | Lennox Industries Inc | Method of controlling equipment in a heating, ventilation and air conditioning network |
8600561, | Sep 30 2012 | GOOGLE LLC | Radiant heating controls and methods for an environmental control system |
8606374, | Sep 14 2010 | GOOGLE LLC | Thermodynamic modeling for enclosures |
8615326, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8620841, | Aug 31 2012 | GOOGLE LLC | Dynamic distributed-sensor thermostat network for forecasting external events |
8622314, | Oct 21 2011 | GOOGLE LLC | Smart-home device that self-qualifies for away-state functionality |
8630742, | Sep 30 2012 | GOOGLE LLC | Preconditioning controls and methods for an environmental control system |
8655490, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8655491, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
8661165, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
8694164, | Oct 27 2008 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
8695888, | Oct 06 2004 | GOOGLE LLC | Electronically-controlled register vent for zone heating and cooling |
8725298, | Oct 27 2008 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network |
8727611, | Nov 19 2010 | GOOGLE LLC | System and method for integrating sensors in thermostats |
8744629, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
8754775, | Mar 20 2009 | GOOGLE LLC | Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms |
8761945, | Oct 27 2008 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
8761946, | Oct 21 2011 | GOOGLE LLC | Intelligent controller providing time to target state |
8762666, | Oct 27 2008 | Lennox Industries, Inc.; Lennox Industries Inc | Backup and restoration of operation control data in a heating, ventilation and air conditioning network |
8766194, | Oct 21 2011 | GOOGLE LLC | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
8770491, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
8774210, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8788100, | Oct 27 2008 | Lennox Industries Inc.; LENNOX INDUSTRIES, INC | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
8788104, | Feb 17 2010 | Lennox Industries Inc. | Heating, ventilating and air conditioning (HVAC) system with an auxiliary controller |
8788448, | Sep 14 2010 | GOOGLE LLC | Occupancy pattern detection, estimation and prediction |
8798796, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | General control techniques in a heating, ventilation and air conditioning network |
8802981, | Oct 27 2008 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
8855825, | Oct 27 2008 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
8874815, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network |
8892223, | Sep 07 2011 | ADEMCO INC | HVAC controller including user interaction log |
8892797, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8902071, | Dec 14 2011 | ADEMCO INC | HVAC controller with HVAC system fault detection |
8924027, | Nov 19 2010 | GOOGLE LLC | Computational load distribution in a climate control system having plural sensing microsystems |
8942853, | Oct 21 2011 | GOOGLE LLC | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
8950686, | Nov 19 2010 | GOOGLE LLC | Control unit with automatic setback capability |
8963726, | May 27 2004 | GOOGLE LLC | System and method for high-sensitivity sensor |
8963727, | May 27 2004 | GOOGLE LLC | Environmental sensing systems having independent notifications across multiple thresholds |
8963728, | May 27 2004 | GOOGLE LLC | System and method for high-sensitivity sensor |
8965587, | Sep 30 2012 | GOOGLE LLC | Radiant heating controls and methods for an environmental control system |
8977794, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
8981950, | May 27 2004 | GOOGLE LLC | Sensor device measurements adaptive to HVAC activity |
8994539, | Oct 27 2008 | Lennox Industries, Inc.; LENNOX INDUSTRIES, INC | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
8994540, | Sep 21 2012 | GOOGLE LLC | Cover plate for a hazard detector having improved air flow and other characteristics |
8998102, | Oct 21 2011 | GOOGLE LLC | Round thermostat with flanged rotatable user input member and wall-facing optical sensor that senses rotation |
9002523, | Dec 14 2011 | ADEMCO INC | HVAC controller with diagnostic alerts |
9007225, | May 27 2004 | GOOGLE LLC | Environmental sensing systems having independent notifications across multiple thresholds |
9019110, | May 27 2004 | GOOGLE LLC | System and method for high-sensitivity sensor |
9026232, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
9026254, | Nov 19 2010 | GOOGLE LLC | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
9070272, | Jul 16 2013 | LEEO, INC | Electronic device with environmental monitoring |
9081405, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
9086703, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
9091453, | Mar 29 2012 | GOOGLE LLC | Enclosure cooling using early compressor turn-off with extended fan operation |
9092040, | Nov 19 2010 | GOOGLE LLC | HVAC filter monitoring |
9098096, | Apr 05 2012 | GOOGLE LLC | Continuous intelligent-control-system update using information requests directed to user devices |
9104211, | Nov 19 2010 | GOOGLE LLC | Temperature controller with model-based time to target calculation and display |
9115908, | Jul 27 2011 | ADEMCO INC | Systems and methods for managing a programmable thermostat |
9116137, | Jul 15 2014 | Leeo, Inc.; LEEO, INC | Selective electrical coupling based on environmental conditions |
9127853, | Nov 19 2010 | GOOGLE LLC | Thermostat with ring-shaped control member |
9152155, | Oct 27 2008 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
9157647, | Sep 07 2011 | ADEMCO INC | HVAC controller including user interaction log |
9170625, | Jul 15 2014 | Leeo, Inc.; LEEO, INC | Selective electrical coupling based on environmental conditions |
9182140, | Oct 06 2004 | GOOGLE LLC | Battery-operated wireless zone controllers having multiple states of power-related operation |
9189751, | Sep 30 2012 | GOOGLE LLC | Automated presence detection and presence-related control within an intelligent controller |
9194598, | Oct 21 2011 | GOOGLE LLC | Thermostat user interface |
9194599, | Oct 06 2004 | GOOGLE LLC | Control of multiple environmental zones based on predicted changes to environmental conditions of the zones |
9194600, | Oct 06 2004 | GOOGLE LLC | Battery charging by mechanical impeller at forced air vent outputs |
9206993, | Dec 14 2011 | ADEMCO INC | HVAC controller with utility saver switch diagnostic feature |
9208676, | Mar 14 2013 | GOOGLE LLC | Devices, methods, and associated information processing for security in a smart-sensored home |
9213327, | Jul 15 2014 | Leeo, Inc.; LEEO, INC | Selective electrical coupling based on environmental conditions |
9222692, | Oct 06 2004 | GOOGLE LLC | Wireless zone control via mechanically adjustable airflow elements |
9223323, | Nov 19 2010 | GOOGLE LLC | User friendly interface for control unit |
9234669, | Oct 21 2011 | GOOGLE LLC | Integrating sensing systems into thermostat housing in manners facilitating compact and visually pleasing physical characteristics thereof |
9245229, | Sep 14 2010 | Google Inc. | Occupancy pattern detection, estimation and prediction |
9256230, | Nov 19 2010 | GOOGLE LLC | HVAC schedule establishment in an intelligent, network-connected thermostat |
9261289, | Nov 19 2010 | GOOGLE LLC | Adjusting proximity thresholds for activating a device user interface |
9261888, | Oct 27 2008 | Lennox Industries Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
9268344, | Nov 19 2010 | Google Inc | Installation of thermostat powered by rechargeable battery |
9268345, | Oct 27 2008 | Lennox Industries Inc.; LENNOX INDUSTRIES, INC | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
9273879, | Oct 06 2004 | GOOGLE LLC | Occupancy-based wireless control of multiple environmental zones via a central controller |
9282590, | Apr 15 2011 | Appleton Grp LLC | Self-adjusting thermostat for floor warming control systems and other applications |
9286781, | Aug 31 2012 | GOOGLE LLC | Dynamic distributed-sensor thermostat network for forecasting external events using smart-home devices |
9291359, | Oct 21 2011 | GOOGLE LLC | Thermostat user interface |
9298196, | Nov 19 2010 | GOOGLE LLC | Energy efficiency promoting schedule learning algorithms for intelligent thermostat |
9298197, | Apr 19 2013 | GOOGLE LLC | Automated adjustment of an HVAC schedule for resource conservation |
9303889, | Oct 06 2004 | GOOGLE LLC | Multiple environmental zone control via a central controller |
9304590, | Aug 27 2014 | Leen, Inc. | Intuitive thermal user interface |
9316407, | Oct 06 2004 | GOOGLE LLC | Multiple environmental zone control with integrated battery status communications |
9322565, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for weather-based preconditioning |
9324227, | Jul 16 2013 | LEEO, INC | Electronic device with environmental monitoring |
9325517, | Oct 27 2008 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
9329903, | May 12 2010 | COPELAND COMFORT CONTROL LP | System and method for internet based service notification |
9342082, | Dec 31 2010 | GOOGLE LLC | Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform |
9349273, | Sep 21 2012 | GOOGLE LLC | Cover plate for a hazard detector having improved air flow and other characteristics |
9353963, | Oct 06 2004 | GOOGLE LLC | Occupancy-based wireless control of multiple environmental zones with zone controller identification |
9353964, | Oct 06 2004 | GOOGLE LLC | Systems and methods for wirelessly-enabled HVAC control |
9360229, | Apr 26 2013 | GOOGLE LLC | Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components |
9366448, | Jun 20 2011 | Honeywell International Inc | Method and apparatus for configuring a filter change notification of an HVAC controller |
9372477, | Jul 15 2014 | Leeo, Inc.; LEEO, INC | Selective electrical coupling based on environmental conditions |
9377768, | Oct 27 2008 | Lennox Industries Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
9395096, | Oct 21 2011 | GOOGLE LLC | Smart-home device that self-qualifies for away-state functionality |
9417637, | Dec 31 2010 | GOOGLE LLC | Background schedule simulations in an intelligent, network-connected thermostat |
9429962, | Nov 19 2010 | GOOGLE LLC | Auto-configuring time-of day for building control unit |
9432208, | Oct 27 2008 | Lennox Industries Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
9442500, | Mar 08 2012 | ADEMCO INC | Systems and methods for associating wireless devices of an HVAC system |
9445451, | Oct 20 2014 | Leeo, Inc.; LEEO, INC | Communicating arbitrary attributes using a predefined characteristic |
9448568, | Oct 21 2011 | GOOGLE LLC | Intelligent controller providing time to target state |
9453655, | Oct 07 2011 | GOOGLE LLC | Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat |
9454895, | Mar 20 2009 | GOOGLE LLC | Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms |
9459018, | Nov 19 2010 | GOOGLE LLC | Systems and methods for energy-efficient control of an energy-consuming system |
9470430, | Sep 30 2012 | GOOGLE LLC | Preconditioning controls and methods for an environmental control system |
9477239, | Jul 26 2012 | ADEMCO INC | HVAC controller with wireless network based occupancy detection and control |
9488994, | Mar 29 2012 | ADEMCO INC | Method and system for configuring wireless sensors in an HVAC system |
9500385, | Sep 30 2008 | GOOGLE LLC | Managing energy usage |
9507362, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
9507363, | Sep 30 2008 | GOOGLE LLC | Systems, methods and apparatus for encouraging energy conscious behavior based on aggregated third party energy consumption |
9523993, | Oct 02 2007 | GOOGLE LLC | Systems, methods and apparatus for monitoring and managing device-level energy consumption in a smart-home environment |
9534805, | Mar 29 2012 | GOOGLE LLC | Enclosure cooling using early compressor turn-off with extended fan operation |
9535589, | Sep 21 2012 | GOOGLE LLC | Round thermostat with rotatable user input member and temperature sensing element disposed in physical communication with a front thermostat cover |
9574784, | Feb 17 2001 | Lennox Industries Inc. | Method of starting a HVAC system having an auxiliary controller |
9584119, | Apr 23 2013 | ADEMCO INC | Triac or bypass circuit and MOSFET power steal combination |
9595070, | Mar 15 2013 | GOOGLE LLC | Systems, apparatus and methods for managing demand-response programs and events |
9599359, | Feb 17 2010 | Lennox Industries Inc. | Integrated controller an HVAC system |
9600011, | Sep 30 2008 | GOOGLE LLC | Intelligent temperature management based on energy usage profiles and outside weather conditions |
9605858, | Nov 19 2010 | GOOGLE LLC | Thermostat circuitry for connection to HVAC systems |
9612032, | Nov 19 2010 | GOOGLE LLC | User friendly interface for control unit |
9618223, | Oct 06 2004 | GOOGLE LLC | Multi-nodal thermostat control system |
9628074, | Jun 19 2014 | ADEMCO INC | Bypass switch for in-line power steal |
9632490, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
9645589, | Jan 13 2011 | ADEMCO INC | HVAC control with comfort/economy management |
9651925, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
9673811, | Nov 22 2013 | ADEMCO INC | Low power consumption AC load switches |
9678486, | Oct 27 2008 | Lennox Industries Inc.; Lennox Industries Inc | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
9683749, | Jul 11 2014 | ADEMCO INC | Multiple heatsink cooling system for a line voltage thermostat |
9696735, | Apr 26 2013 | GOOGLE LLC | Context adaptive cool-to-dry feature for HVAC controller |
9702579, | Nov 19 2010 | GOOGLE LLC | Strategic reduction of power usage in multi-sensing, wirelessly communicating learning thermostat |
9702582, | Oct 12 2015 | Ikorongo Technology, LLC | Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems |
9709290, | Nov 19 2010 | GOOGLE LLC | Control unit with automatic setback capability |
9714772, | Nov 19 2010 | GOOGLE LLC | HVAC controller configurations that compensate for heating caused by direct sunlight |
9715239, | Nov 19 2010 | GOOGLE LLC | Computational load distribution in an environment having multiple sensing microsystems |
9720585, | Oct 21 2011 | GOOGLE LLC | User friendly interface |
9732979, | Dec 31 2010 | GOOGLE LLC | HVAC control system encouraging energy efficient user behaviors in plural interactive contexts |
9740385, | Oct 21 2011 | GOOGLE LLC | User-friendly, network-connected, smart-home controller and related systems and methods |
9741240, | Mar 20 2009 | GOOGLE LLC | Use of optical reflectance proximity detector in battery-powered devices |
9746198, | Sep 30 2012 | GOOGLE LLC | Intelligent environmental control system |
9766606, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
9778235, | Jul 17 2013 | LEEO, INC | Selective electrical coupling based on environmental conditions |
9798979, | Mar 14 2013 | GOOGLE LLC | Devices, methods, and associated information processing for security in a smart-sensored home |
9801013, | Nov 06 2015 | LEEO, INC | Electronic-device association based on location duration |
9806705, | Apr 23 2013 | ADEMCO INC | Active triac triggering circuit |
9810442, | Mar 15 2013 | GOOGLE LLC | Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat |
9810590, | Feb 23 2011 | GOOGLE LLC | System and method for integrating sensors in thermostats |
9832034, | Jul 27 2011 | ADEMCO INC | Systems and methods for managing a programmable thermostat |
9857091, | Nov 22 2013 | ADEMCO INC | Thermostat circuitry to control power usage |
9857238, | Apr 18 2014 | GOOGLE LLC | Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics |
9857961, | Oct 21 2011 | GOOGLE LLC | Thermostat user interface |
9865016, | Sep 08 2014 | Leeo, Inc.; LEEO, INC | Constrained environmental monitoring based on data privileges |
9890970, | Mar 29 2012 | Nest Labs, Inc | Processing and reporting usage information for an HVAC system controlled by a network-connected thermostat |
9910449, | Apr 19 2013 | GOOGLE LLC | Generating and implementing thermodynamic models of a structure |
9910577, | Oct 21 2011 | GOOGLE LLC | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature |
9952573, | Nov 19 2010 | GOOGLE LLC | Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements |
9952608, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
9971364, | Mar 29 2012 | ADEMCO INC | Method and system for configuring wireless sensors in an HVAC system |
9983244, | Jun 28 2013 | ADEMCO INC | Power transformation system with characterization |
9995497, | Oct 06 2004 | GOOGLE LLC | Wireless zone control via mechanically adjustable airflow elements |
9998475, | Jun 17 2015 | GOOGLE LLC | Streamlined utility portals for managing demand-response events |
D648641, | Oct 21 2009 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
D648642, | Oct 21 2009 | Lennox Industries Inc. | Thin cover plate for an electronic system controller |
RE45574, | Feb 09 2007 | ADEMCO INC | Self-programmable thermostat |
RE46236, | Feb 09 2007 | ADEMCO INC | Self-programmable thermostat |
Patent | Priority | Assignee | Title |
4205381, | Aug 31 1977 | United Technologies Corporation | Energy conservative control of heating, ventilating, and air conditioning (HVAC) systems |
4522336, | Dec 09 1982 | Honeywell Inc. | Adaptive optimum start/stop control system |
4860950, | Jun 24 1988 | Larry J., Reeser | Remote controlled thermostat |
5170935, | Nov 27 1991 | Massachusetts Institute of Technology | Adaptable control of HVAC systems |
5197668, | Dec 20 1991 | Honeywell Inc. | Communicating thermostat |
5341988, | Oct 01 1991 | Trane International Inc | Wireless air balancing system |
5407002, | May 09 1994 | Multiple-zone air circulation control system | |
5644302, | Dec 27 1994 | Najib, Hana | Device for remotely changing the set temperature of a thermostat |
5801940, | Jan 19 1995 | HVAC MODULATION TECHNOLOGIES LLC | Fault-tolerant HVAC system |
6338437, | May 13 1999 | Acutherm L.P. | Process and apparatus for individual adjustment of the temperature set points of a plurality of VAV devices through a network server |
6536675, | Mar 04 1999 | EnergyIQ Systems, Inc. | Temperature determination in a controlled space in accordance with occupancy |
20030216838, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 18 2021 | ROSEN, HOWARD | IAED TECHNOLOGIES INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055449 | /0467 | |
Dec 03 2021 | IAED TECHNOLOGIES INC | ROSEN TECHNOLOGIES LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058779 | /0656 |
Date | Maintenance Fee Events |
Nov 04 2009 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 06 2013 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Nov 23 2017 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Jul 15 2011 | 4 years fee payment window open |
Jan 15 2012 | 6 months grace period start (w surcharge) |
Jul 15 2012 | patent expiry (for year 4) |
Jul 15 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 2015 | 8 years fee payment window open |
Jan 15 2016 | 6 months grace period start (w surcharge) |
Jul 15 2016 | patent expiry (for year 8) |
Jul 15 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 2019 | 12 years fee payment window open |
Jan 15 2020 | 6 months grace period start (w surcharge) |
Jul 15 2020 | patent expiry (for year 12) |
Jul 15 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |