A hybrid manual/programmable thermostat for a furnace or air conditioner offers the simplicity of a manual thermostat while providing the convenience and versatility of a programmable one. Initially, the hybrid thermostat appears to function as an ordinary manual thermostat; however, it privately observes and learns that is configured to learn from a user's manual temperature #5# setting habits settings and eventually programs program itself accordingly. If users begin changing their preferred temperature settings due to seasonal changes or other reasons, the thermostat continues learning The thermostat may be configured to learn and will adapt to those changes as well. For ease of use, the thermostat does not require an onscreen menu as a user interface. In some embodiments, the thermostat can effectively program itself for temperature settings that are set to occur at particular times daily or just on weekends, yet the user is not required to enter the time of day or the day of the week a user's manual temperature settings over time.
|
0. #5# 14. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature and the third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within a predetermined range of each other based on a weekly pattern.
0. #5# 9. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on an average of the first manually entered setpoint temperature, the second manually entered setpoint temperature and the third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within a predetermined range of each other based on a daily pattern.
0. #5# 15. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on an average of the first manually entered setpoint temperature, the second manually entered setpoint temperature and the third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within a predetermined range of each other based on a weekly pattern.
1. A thermostat method for a temperature conditioning unit, wherein the temperature conditioning unit helps control a temperature of a comfort zone, the method comprising:
#5# receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature; and
controlling the temperature conditioning unit in response to the learned setpoint temperature; and wherein
the first timestamp, the second timestamp, and the third timestamp are based on a 24-hour timer and all lie within a predetermined range of each other based on the 24-hour timer.
5. A thermostat method for a temperature conditioning unit, wherein the temperature conditioning unit helps control a temperature of a comfort zone, the method comprising:
#5# receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature; and
controlling the temperature conditioning unit in response to the learned setpoint temperature; and wherein
the first timestamp, the second timestamp, and the third timestamp are based on a 168-hour timer and all lie within a predetermined range of each other based on the 168-hour timer.
0. #5# 6. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature; and
wherein the first timestamp, the second timestamp, and the third timestamp are based on a daily pattern and all lie within a predetermined range of each other based on the daily pattern; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within 90 minutes of each other based on the daily pattern.
0. #5# 11. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature;
wherein the first timestamp, the second timestamp, and the third timestamp are based on a weekly pattern and all lie within a predetermined range of each other based on the weekly pattern; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within 90 minutes of each other based on the weekly pattern.
0. #5# 10. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and/or the third manually entered setpoint temperature if the first manually entered setpoint temperature, the second manually entered setpoint temperature, and the third manually entered setpoint temperature all fall within a temperature range that is less than 5 degrees f.;
controlling the temperature conditioning unit in response to the learned setpoint temperature; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within a predetermined range of each other based on a daily pattern.
0. #5# 17. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and/or the third manually entered setpoint temperature if the first manually entered setpoint temperature, the second manually entered setpoint temperature, and the third manually entered setpoint temperature all fall within a temperature range that is less than 5 degrees f.;
controlling the temperature conditioning unit in response to the learned setpoint temperature; and
wherein the first timestamp, the second timestamp, and the third timestamp all lie within a predetermined range of each other based on a weekly pattern.
0. #5# 16. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature;
wherein the first timestamp, the second timestamp, and the third timestamp are based on a weekly pattern and all lie within a predetermined range of each other based on the weekly pattern; and
wherein the identifying step identifies a learned setpoint temperature when the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature are within a predetermined deviation from one another.
0. #5# 8. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature;
wherein the first timestamp, the second timestamp, and the third timestamp are based on a daily pattern and all lie within a predetermined range of each other based on the daily pattern; and
wherein the controlling step controls the temperature conditioning unit in response to the learned setpoint temperature at a learned setpoint time, wherein the learned setpoint time is set before the first timestamp, the second timestamp, and the third timestamp on the daily pattern.
0. #5# 7. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature;
wherein the first timestamp, the second timestamp, and the third timestamp are based on a daily pattern and all lie within a predetermined range of each other based on the daily pattern; and
wherein the controlling step controls the temperature conditioning unit in response to the learned setpoint temperature at a learned setpoint time, wherein the learned setpoint time is based on the first timestamp, the second timestamp, and/or the third timestamp on the daily pattern.
0. #5# 13. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature;
wherein the first timestamp, the second timestamp, and the third timestamp are based on a weekly pattern and all lie within a predetermined range of each other based on the weekly pattern; and
wherein the controlling step controls the temperature conditioning unit in response to the learned setpoint temperature at a learned setpoint time, wherein the learned setpoint time is set before the first timestamp, the second timestamp, and the third timestamp on the weekly pattern.
0. #5# 12. A method for a temperature controller, wherein the temperature controller helps control a temperature conditioning unit of a comfort zone, the method comprising:
receiving a first manually entered setpoint temperature, which is assigned a first timestamp;
controlling the temperature conditioning unit in response to the first manually entered setpoint temperature;
receiving a second manually entered setpoint temperature, which is assigned a second timestamp;
controlling the temperature conditioning unit in response to the second manually entered setpoint temperature;
receiving a third manually entered setpoint temperature, which is assigned a third timestamp;
controlling the temperature conditioning unit in response to the third manually entered setpoint temperature;
identifying a learned setpoint temperature based on the first manually entered setpoint temperature, the second manually entered setpoint temperature, and third manually entered setpoint temperature;
controlling the temperature conditioning unit in response to the learned setpoint temperature;
wherein the first timestamp, the second timestamp, and the third timestamp are based on a weekly pattern and all lie within a predetermined range of each other based on the weekly pattern; and
wherein the controlling step controls the temperature conditioning unit in response to the learned setpoint temperature at a learned setpoint time, wherein the learned setpoint time is based on the first timestamp, the second timestamp, and/or the third timestamp on the weekly pattern.
2. The thermostat method of
3. The thermostat method of
after receiving the fourth manually entered setpoint temperature, controlling the temperature conditioning unit in response to the fourth manually entered setpoint temperature.
4. The thermostat method of
|
The subject invention generally pertains to a room or building thermostat and more specifically to a method of programming such a thermostat, wherein the thermostat can in effect program itself for various daily and/or weekly temperature setpoints upon learning temperature setting habits of a user and can do such self-programming without ever knowing the actual time of day or day of the week.
Furnaces, air conditioners and other types of temperature conditioning units typically respond to a thermostat in controlling the air temperature of a room or other area of a building. Currently, thermostats can be classified as manual or programmable.
With manual thermostats, a user manually enters into the thermostat a desired temperature setpoint, and then thermostat controls the temperature conditioning unit to bring the actual room temperature to that setpoint. At various times throughout the day, the user might adjust the setpoint for comfort or to save energy. When operating in a heating mode, for instance, a user might lower the setpoint temperature at night and raise it again in the morning. Although manual thermostats are easy to understand and use, having to repeatedly adjust the setpoint manually can be a nuisance.
Programmable thermostats, on the other hand, can be programmed to automatically adjust the setpoint to predetermined temperatures at specified times. The specified times can initiate automatic setpoint adjustments that occur daily such as on Monday-Friday, or the adjustments might occur weekly on days such as every Saturday or Sunday. For a given day, programmable thermostats can also be programmed to make multiple setpoint adjustments throughout the day, such as at 8:00 AM and 11:00 PM on Saturday or at 6:00 AM and 10 PM on Monday through Friday. Such programming, however, can be confusing as it can involve several steps including: 1) synchronizing the thermostat's clock with the current time of day; 2) entering into the thermostat the current date or day of the week; and 3) entering various chosen days, times and setpoint temperatures. One or more of these steps may need to be repeated in the event of daylight savings time, electrical power interruption, change in user preferences, and various other reasons.
Consequently, there is a need for a thermostat that offers the simplicity of a manual thermostat while providing the convenience and versatility of a programmed thermostat.
An object of the invention is to provide an essentially self-programmable thermostat for people that do not enjoy programming conventional programmable thermostats.
An object of some embodiments of the invention is to provide a programmable thermostat that does not rely on having to know the time of day, thus a user does not have to enter that.
Another object of some embodiments is to provide a programmable thermostat with both daily and weekly occurring settings, yet the thermostat does not rely on having to know the day of the week, thus a user does not have to enter that.
Another object of some embodiments is to provide a programmable thermostat that does not rely on onscreen menus for programming.
Another object of some embodiments is to provide a thermostat that effectively programs itself as it is being used as a manual thermostat.
Another object of some embodiments is to provide a thermostat that automatically switches from a manual mode to a programmed mode when it recognizes an opportunity to do so.
Another object of some embodiments is to provide a thermostat that automatically switches from a programmed mode to a manual mode simply by manually entering a new desired setpoint temperature.
Another object of some embodiments is to observe and learn the temperature setting habits of a user and automatically program a thermostat accordingly.
Another object of some embodiments is to provide a self-programming thermostat that not only learns a user's temperature setting habits, but if those habits or temperature-setting preferences change over time, the thermostat continues learning and will adapt to the new habits and setpoints as well.
Another object of some embodiments is to minimize the number of inputs and actions from which a user can choose, thereby simplifying the use of a thermostat.
Another object of some embodiments is to provide a thermostat that can effectively self-program virtually an infinite number of setpoint temperatures and times, rather than be limited to a select few number of preprogrammed settings.
Another object of some embodiments is to provide a simple way of clearing programmed settings of a thermostat.
One or more of these and/or other objects of the invention are provided by a thermostat and method that learns the manual temperature setting habits of a user and programs itself accordingly.
A digital display 30 can be used for displaying the current setpoint temperature, and another display 32 can show the comfort zone's actual temperature. Displays 30 and 32 could be combined into a single display unit, wherein the combined display unit could show the current setpoint temperature and the zone's actual temperature simultaneously or in an alternating manner. Thermostat 10 might also include a selector switch 34 for manually switching between a cooling mode for cooling zone 18 and a heating mode for heating zone 18. Items such as display 30, selector switch 34, manual input 12, and output 24 are well known to those of ordinary skill in the art. One or more of such items, for example, can be found in a model CT8775C manual thermostat provided by Honeywell Inc. of Golden Valley, Minn.
Although thermostat 10 can operate as a regular manual thermostat by controlling unit 26 as a function of a differential between the actual zone temperature and the most recently entered manual setpoint temperature, thermostat 10 includes a microprocessor 36 (e.g., computer, CPU, firmware programmed chip, etc.) that enables thermostat 10 to observe the temperature setting habits of the user (e.g., person that manually enters setpoint temperatures into the thermostat). After several manual settings, microprocessor 36 may learn the user's preferred setpoint temperatures and timestamps them with the aide of a timer 38. With one or more learned setpoint temperatures and timestamps 48, microprocessor 36 can begin anticipating the user's desires and automatically adjust the thermostat's setpoint temperatures accordingly. Thus, thermostat 10 can begin operating as a programmed thermostat, rather than just a manual one.
Since a user's desired temperature setpoints and time preferences might change for various reasons, any manually entered setpoint temperature 16 overrides the currently active setpoint temperature regardless of whether the current setpoint temperature was manually entered or was automatically activated as a learned setpoint temperature. Once overridden, another learned setpoint temperature might later be activated at a learned time to return thermostat 10 back to its programmed mode. Thus, thermostat 10 is somewhat of a hybrid manual/programmable thermostat in that it can shift automatically between manual and programmed operation.
To assign timestamps 48 to manually entered setpoint temperatures, timer 38 can actually comprise one or more timers and/or counters. In some embodiments, for example, timer 38 includes a continuously running daily or 24-hour timer that resets itself every 24 hours. The time increments can be in minutes, seconds, or any preferred unit. In some cases, timer 38 is a continuously operating weekly or 168-hour timer that resets itself every seven days. The increments can be in days, hours, minutes, seconds, or any preferred unit. The weekly timer could also be a seven-increment counter that indexes one increment every 24 hours in response to a daily or 24-hour timer. Timer 38, however, is not necessarily synchronized with the actual time of day or day of the week. Such synchronization preferably is not required; otherwise the user might have to manually enter or set the correct time and day of the week.
In the case where timer 36 comprises a weekly timer in the form of a 7-increment counter triggered by each 24-hour cycle of a daily timer, timestamp 48 might a be a two-part number such as (X and Y) wherein X cycles from 1 to 7 as a weekly timer, and Y cycles from 0 to 1,439 (1,440 minutes per day) as a daily timer. In this case, a timestamp 48 might be (3 and 700) to indicate 700 minutes elapsed during day-3. Whether day-3 represents Monday, Tuesday or some other day is immaterial, and whether the 700-minute represents 2:00 AM, 7:30 PM or some other time of day is also immaterial. As one way to provide a programmable thermostat that can operate independently of an actual time of day clock and to provide thermostat 10 with other functionality, microprocessor 36 can be firmware programmed to execute one or more of the following rules:
Rule-1—Upon receiving a manually entered setpoint temperature, microprocessor assigns an (X and Y) timestamp 48 to the manually entered setpoint temperature, wherein the timestamp indicates when the setpoint temperature was entered relative to other timestamps. The manually entered setpoint temperature and its timestamp 48 are stored in memory for later reference.
Rule-2—Microprocessor 36 looks for patterns of manual setpoints, wherein each manual setpoint has a manually entered setpoint temperature and a timestamp 48.
A daily pattern, for example, can be defined as three consecutive days in which a series of three similar manually entered setpoint temperatures (e.g., within a predetermined deviation of perhaps 2° F. or 5° F. of each other) have similar daily timestamps 48 (e.g., each Y-value being within a predetermined deviation of perhaps 90 minutes of each other). Such a daily pattern can then be assigned a learned daily setpoint temperature and a learned daily time. The learned daily setpoint temperature could be, for example, an average of the three similar manually entered setpoints temperatures or the most recent of the three. The learned daily time could be, for example, 20 minutes before the three similar timestamps. For future automatic settings, the 20 minutes might allow microprocessor 36 to activate the learned daily setpoint temperature before the user would normally want to adjust the setpoint.
A weekly pattern, for example, can be defined as three manual setpoints spaced 7 days apart (e.g., same X-value after one complete 7-day cycle) in which three similar manually entered setpoint temperatures (e.g., within 2° F. or 5° F. of each other) have similar timestamps 48 (e.g., each Y-value being within 90 minutes of each other). Such a weekly pattern can then be assigned a learned weekly setpoint temperature and a learned weekly time. The learned weekly setpoint temperature could be, for example, an average of the three similar manually entered setpoints temperatures spaced 7 days apart or the most recent of the three. The learned time could be, for example, 20 minutes before the three similar timestamps.
Rule-3—Automatically activate a learned daily setpoint temperature at its learned daily time (at its assigned Y-value), whereby thermostat 10 controls unit 26 based on the learned daily setpoint temperature and continues to do so until interrupted by one of the following: a) the user enters a manually entered setpoint temperature (adjusts the temp), b) another learned daily setpoint temperature becomes activated at its learned daily time, or c) a learned weekly setpoint temperature becomes activated at its learned weekly time.
Rule-4—Automatically activate a learned weekly setpoint temperature at its learned weekly time (at its assigned X and Y values), whereby thermostat 10 controls unit 26 based on the learned weekly setpoint temperature and continues to do so until interrupted by one of the following: a) the user enters a manually entered setpoint temperature (adjusts the temp), b) a learned daily setpoint temperature becomes activated at its learned daily time (but see Rule-5), or c) another learned weekly setpoint temperature becomes activated at its learned weekly time.
Rule-5—A weekly pattern overrides or supersedes a daily pattern if their assigned timestamps 48 are within a predetermined period of each other such as, for example, within three hours of each other based on the Y-values of their timestamps.
Rule-6—If a user enters a manually entered setpoint temperature, thermostat 10 controls unit 26 in response to the manually entered setpoint temperature and continues to do so until interrupted by one of the following: a) the user enters another manually entered setpoint temperature (adjusts the temp), b) a learned daily setpoint temperature becomes activated at its learned daily time, or c) a learned weekly setpoint temperature becomes activated at its learned weekly time.
Rule-7—If a user enters two manually entered setpoint temperatures within a predetermined short period of each other, e.g., within 90 minutes of each other, the first of the two manual entries is disregarded as being erroneous and is not to be considered as part of any learned pattern.
Rule-8—If a learned daily setpoint temperature is activated at a learned time and is soon interrupted by the user entering a manually entered setpoint temperature within a predetermined short period (e.g., within 3 hours), and this occurs a predetermined number of days in a row (e.g., 3 days in a row as indicated by the X-value of timer 38), then the daily pattern associated with the learned daily setpoint temperature is erased from the memory.
Rule-9—If a learned weekly setpoint temperature is activated at a learned time and is soon interrupted by the user entering a manually entered setpoint temperature within a predetermined short period (e.g., within 3 hours), and this occurs a predetermined number of weeks in a row (e.g., 2 weeks in a row as indicated by an additional counter that counts the cycles of the X-value of timer 38), then the weekly pattern associated with the learned weekly setpoint temperature is erased from the memory.
Rule-10—Actuating switch 34 between cool and heat or actuating some other manual input can be used for erasing the entire collection of learned data.
Rules 1-10 might be summarized more concisely but perhaps less accurately as follows:
1) Assign timestamps 48 to every manually entered setpoint temperature.
2) Identify daily patterns (similar manually entered temperatures and times 3 days in a row), and identify weekly patterns (3 similar manually entered temperatures and times each spaced a week apart). Based on those patterns, establish learned setpoint temperatures and learned times.
3) Activate learned daily setpoints at learned times, and keep them active until the activated setpoint is overridden by the next learned setpoint or interrupted by a manually entered setpoint.
4) Activate learned weekly setpoints at learned times, and keep them active until the activated setpoint is overridden by the next learned setpoint or interrupted by a manually entered setpoint.
5) If a learned weekly setpoint and a learned daily setpoint are set to occur near the same time on given day, the learned daily setpoint is ignored on that day because the day is probably a Saturday or Sunday.
6) Whenever the user manually adjusts the temperature, the manually entered setpoint temperature always overrides the currently active setting. The manually entered setpoint remains active until it is interrupted by a subsequent manual or learned setting.
7) If a user repeatedly tweaks or adjusts the temperature within a short period, only the last manually entered setpoint temperature is used for learning purposes, as the other settings are assumed to be trial-and-error mistakes by the user.
8) If a user has to repeatedly correct a learned daily setpoint (e.g., correct it 3 days in a row), that learned setpoint is deleted and no longer used. Using 3 days as the cutoff avoids deleting a good daily pattern due to 2 days of corrections over a weekend.
9) If a user has to repeatedly correct a learned weekly setpoint (e.g., correct it 2 weeks in a row), that learned setpoint is deleted and no longer used.
10) Switching between heating and cooling, for at least 5 seconds or so, deletes the entire collection of learned data.
To execute one or more of the aforementioned rules, microprocessor 36 could operate under the control of various algorithms, such as, for example, an algorithm 40 of
Referring to the example of
Referring to the example of
Although the invention is described with respect to a preferred embodiment, modifications thereto will be apparent to those of ordinary skill in the art. The scope of the invention, therefore, is to be determined by reference to the following claims:
Patent | Priority | Assignee | Title |
10001792, | Jun 12 2013 | OPOWER, INC.; OPOWER, INC | System and method for determining occupancy schedule for controlling a thermostat |
10162327, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with concierge features |
10180673, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with emergency direction features |
10310477, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with occupant tracking features |
10318266, | Nov 25 2015 | Johnson Controls Technology Company | Modular multi-function thermostat |
10345781, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with health monitoring features |
10410300, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with occupancy detection based on social media event data |
10458669, | Mar 29 2017 | Tyco Fire & Security GmbH | Thermostat with interactive installation features |
10510127, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat having network connected branding features |
10546472, | Oct 28 2015 | Johnson Controls Technology Company | Thermostat with direction handoff features |
10551081, | Jul 17 2017 | Air conditioner with safety device | |
10559045, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with occupancy detection based on load of HVAC equipment |
10627126, | May 04 2015 | Johnson Controls Technology Company | User control device with hinged mounting plate |
10655881, | Oct 28 2015 | Johnson Controls Technology Company | Thermostat with halo light system and emergency directions |
10677484, | May 04 2015 | Johnson Controls Technology Company | User control device and multi-function home control system |
10712038, | Apr 14 2017 | Johnson Controls Technology Company | Multi-function thermostat with air quality display |
10732600, | Oct 28 2015 | Johnson Controls Technology Company | Multi-function thermostat with health monitoring features |
10760809, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with mode settings for multiple zones |
10769735, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with user interface features |
10808958, | May 04 2015 | Johnson Controls Technology Company | User control device with cantilevered display |
10907844, | May 04 2015 | Johnson Controls Technology Company | Multi-function home control system with control system hub and remote sensors |
10941951, | Jul 27 2016 | Johnson Controls Technology Company | Systems and methods for temperature and humidity control |
10969131, | Oct 28 2015 | Johnson Controls Technology Company | Sensor with halo light system |
11080800, | Sep 11 2015 | Johnson Controls Tyco IP Holdings LLP | Thermostat having network connected branding features |
11087417, | Sep 11 2015 | Johnson Controls Technology Company | Thermostat with bi-directional communications interface for monitoring HVAC equipment |
11107390, | Dec 21 2018 | Johnson Controls Technology Company | Display device with halo |
11131474, | Mar 09 2018 | Tyco Fire & Security GmbH | Thermostat with user interface features |
11162698, | Apr 14 2017 | Tyco Fire & Security GmbH | Thermostat with exhaust fan control for air quality and humidity control |
11216020, | May 04 2015 | Tyco Fire & Security GmbH | Mountable touch thermostat using transparent screen technology |
11277893, | Oct 28 2015 | Johnson Controls Technology Company | Thermostat with area light system and occupancy sensor |
11441799, | Mar 29 2017 | Tyco Fire & Security GmbH | Thermostat with interactive installation features |
11859851, | Sep 27 2018 | ALBIREO ENERGY, LLC | System, apparatus and hybrid VAV device with multiple heating coils |
9890971, | May 04 2015 | Johnson Controls Technology Company | User control device with hinged mounting plate |
9964328, | May 04 2015 | Johnson Controls Technology Company | User control device with cantilevered display |
ER5745, |
Patent | Priority | Assignee | Title |
2202008, | |||
4032867, | Sep 02 1975 | Lockheed Martin Corporation | Balanced transversal filter |
4223831, | Feb 21 1979 | Sound activated temperature control system | |
4316577, | Oct 06 1980 | Honeywell Inc. | Energy saving thermostat |
4335847, | May 27 1980 | HONEYWELL INC , A CORP OF DE | Electronic thermostat with repetitive operation cycle |
4350966, | Apr 28 1981 | Honeywell Inc. | Thermostat assembly |
4408711, | Nov 24 1980 | HONEYWELL INC , A CORP OF DE | Thermostat with adaptive operating cycle |
4467178, | Mar 26 1982 | Control system for regulating water heater operation in accordance with anticipated demand | |
4469274, | May 27 1980 | HONEYWELL INC , A CORP OF DE | Electronic thermostat with repetitive operation cycle |
4531064, | May 27 1980 | HONEYWELL INC , A CORP OF DE | Electronic thermostat with repetitive operation cycle |
4595430, | May 07 1984 | ATLAS POWER COMPANY, A CORP OF DE | Desensitized dynamites |
4615380, | Jun 17 1985 | Honeywell Inc. | Adaptive clock thermostat means for controlling over and undershoot |
4621336, | Sep 17 1984 | Emerson Electric Co | Visual display of time schedule in a programmable thermostat |
4669654, | Feb 18 1986 | Honeywell, Inc. | Electronic programmable thermostat |
4674027, | Jun 19 1985 | Honeywell Inc. | Thermostat means adaptively controlling the amount of overshoot or undershoot of space temperature |
4685614, | May 27 1980 | Honeywell, Inc | Analog to digital conversion employing the system clock of a microprocessor, the clock frequency varying with analog input |
4751961, | Feb 18 1986 | Honeywell Inc. | Electronic programmable thermostat |
4768706, | Jun 04 1987 | Indicating and control instruments | |
5005365, | Dec 02 1988 | INTERNATIONAL COMFORT PRODUCTS CORPORATION USA | Thermostat speed bar graph for variable speed temperature control system |
5056712, | Dec 30 1988 | Water heater controller | |
5088645, | Jun 24 1991 | Self-programmable temperature control system for a heating and cooling system | |
5115967, | Mar 18 1991 | Method and apparatus for adaptively optimizing climate control energy consumption in a building | |
5165465, | May 03 1988 | ELECTRONIC ENVIRONMENTAL CONTROLS INC , A COMPANY OF THE PROVINCE OF ONTARIO | Room control system |
5170935, | Nov 27 1991 | Massachusetts Institute of Technology | Adaptable control of HVAC systems |
5192020, | Nov 08 1991 | Honeywell Inc.; HONEYWELL INC , A CORP OF DE | Intelligent setpoint changeover for a programmable thermostat |
5192874, | Sep 26 1991 | Honeywell, Inc. | Interface circuit for low power drain microprocessor-based thermostat |
5211332, | Sep 30 1991 | Honeywell Inc.; HONEWELL INC | Thermostat control |
5224649, | Mar 23 1992 | Emerson Electric Co. | Digital thermostat with single rotary encoder switch for establishing set point temperature |
5238184, | Sep 30 1991 | Honeywell Inc. | Thermostat having simple battery level detection |
5240178, | Sep 05 1991 | Carrier Corporation | Active anticipatory control |
5255975, | Nov 26 1991 | Honeywell Inc.; Honeywell INC | Low cost calibration system for frequency varying temperature sensing means for a thermostat |
5270952, | Sep 30 1991 | Honeywell Inc.; HONEYWELL INC A CORPORATION OF DELAWARE | Self-adjusting recovery algorithm for a microprocessor-controlled setback thermostat |
5294047, | Apr 06 1991 | Grasslin KG | Electronic thermostat timer |
5303612, | Dec 24 1992 | Honeywell Inc. | Increased diameter detachable thermostat knob allowing easier thermostat use |
5361983, | Sep 28 1993 | Honeywell, Inc.; Honeywell INC | Method of maximizing the efficiency of an environmental control system including a programmable thermostat |
5395042, | Feb 17 1994 | TELKONET, INC | Apparatus and method for automatic climate control |
5476221, | Jan 28 1994 | PARTOMED MEDIZINTECHNIX GMBH A COMPANY OF GERMANY | Easy-to-install thermostatic control system based on room occupancy |
5482209, | Jun 01 1994 | Honeywell INC | Method and means for programming a programmable electronic thermostat |
5485954, | Jun 10 1994 | Trane International Inc | Reduced profile thermostat |
5499196, | Aug 18 1993 | P.C. Sentry, Inc.; Harris Partners, Ltd. | Sensor interface for computer-based notification system |
5555927, | Jun 07 1995 | Honeywell Inc. | Thermostat system having an optimized temperature recovery ramp rate |
5603451, | Mar 31 1995 | John W., Helander | Aesthetic thermostat |
5611484, | Dec 17 1993 | Honeywell Inc. | Thermostat with selectable temperature sensor inputs |
5627531, | Sep 30 1994 | Apple Inc | Multi-function menu selection device |
5673850, | Jul 22 1996 | JOHNSON CONTROLS, INC | Programmable thermostat with rotary dial program setting |
5690277, | Feb 06 1995 | ACTION TALKING PRODUCTS, LLL | Audible thermostat |
5720176, | Oct 19 1994 | Whirlpool Corporation | Control system for an air conditioner |
5808602, | Mar 15 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Rotary cursor positioning apparatus |
5902183, | Nov 15 1996 | Process and apparatus for energy conservation in buildings using a computer controlled ventilation system | |
5909378, | Apr 09 1997 | LOG-ONE LIMITED; KONTROL ENERGY GROUP INC | Control apparatus and method for maximizing energy saving in operation of HVAC equipment and the like |
5931378, | Mar 31 1995 | Valeo Klimasysteme GmbH | Operating system for a motor vehicle automatic air-conditioning system |
5943917, | Oct 16 1997 | Honeywell Inc.; Honeywell INC | Thermostat having a temperature setting lever with tactilely determinable position |
5977964, | Jun 06 1996 | Intel Corporation | Method and apparatus for automatically configuring a system based on a user's monitored system interaction and preferred system access times |
6062482, | Sep 19 1997 | ELUTIONS, INC | Method and apparatus for energy recovery in an environmental control system |
6098893, | Oct 22 1998 | Honeywell, Inc | Comfort control system incorporating weather forecast data and a method for operating such a system |
6164374, | Jul 02 1998 | Emerson Electric Co. | Thermostat having a multiple color signal capability with single indicator opening |
6206295, | Mar 04 1998 | Comfort thermostat | |
6209794, | Aug 17 1999 | Visteon Global Technologies, Inc | Method for designing a vehicle thermal management system |
6211921, | Dec 20 1996 | U S PHILIPS CORPORATION | User interface for television |
6213404, | Jul 08 1993 | VENSTAR CORP | Remote temperature sensing transmitting and programmable thermostat system |
6216956, | Oct 29 1997 | ELUTIONS, INC | Environmental condition control and energy management system and method |
6222191, | Dec 24 1997 | Hubbel Incorporated | Occupancy sensor |
6286764, | Jul 14 1999 | Fluid Dynamics Corporation | Fluid and gas supply system |
6298285, | Jan 04 2000 | SMART IRRIGATION SOLUTIONS INC | Irrigation accumulation controller |
6349883, | Feb 09 1999 | ENERGY REST, INC | Energy-saving occupancy-controlled heating ventilating and air-conditioning systems for timing and cycling energy within different rooms of buildings having central power units |
6351693, | Jan 22 1999 | Honeywell INC | Computerized system for controlling thermostats |
6356204, | Aug 19 1997 | SEISMIC WARNING SYSTEMS INC | Method and apparatus for detecting impending earthquakes |
6375087, | Jun 14 2000 | International Business Machines Corporation | Method and apparatus for self-programmable temperature and usage control for hot water heaters |
6453687, | Jan 07 2000 | Robertshaw Controls Company | Refrigeration monitor unit |
6502758, | Jul 11 2000 | Invensys Controls Italy Srl | Electronic device for regulating and controlling ambient temperatures, and relative setting method |
6519509, | Jun 22 2000 | STONEWATER CONTROL SYSTEMS | System and method for monitoring and controlling energy distribution |
6636197, | Nov 26 1996 | Immersion Corporation | Haptic feedback effects for control, knobs and other interface devices |
6641055, | Jan 10 2001 | Variations on combined thermostat and fuel level monitor | |
6644557, | Mar 25 2002 | BIOMETRX, INC | Access controlled thermostat system |
6645066, | Nov 19 2001 | Koninklijke Philips Electronics N.V. | Space-conditioning control employing image-based detection of occupancy and use |
6726112, | Mar 07 2003 | WHITEROCK CORPORATION | Illuminating thermostat |
6741158, | Jul 18 2002 | Honeywell International Inc. | Magnetically sensed thermostat control |
6769482, | May 10 2001 | Invensys Systems, Inc | System and method for switching-over between heating and cooling modes |
6814299, | Feb 18 2003 | COPELAND COMFORT CONTROL LP | Thermostat with one button programming feature |
6824069, | Jan 30 2002 | Programmable thermostat system employing a touch screen unit for intuitive interactive interface with a user | |
6851621, | Aug 18 2003 | Honeywell International Inc | PDA diagnosis of thermostats |
6951306, | Nov 18 2003 | JOHNSON CONTROLS, INC | Thermostat having multiple mounting configurations |
7000849, | Nov 14 2003 | Invensys Systems, Inc | Thermostat with configurable service contact information and reminder timers |
7014336, | Nov 18 1999 | SIGNIFY NORTH AMERICA CORPORATION | Systems and methods for generating and modulating illumination conditions |
7024336, | May 13 2004 | Tyco Fire & Security GmbH | Method of and apparatus for evaluating the performance of a control system |
7028912, | Sep 03 2003 | ROSEN TECHNOLOGIES LLC | Programmable thermostat incorporating a display screen selectively presenting system modes that includes a simple mode |
7035805, | Jul 14 2000 | Switching the modes of operation for voice-recognition applications | |
7055759, | Aug 18 2003 | Honeywell International Inc | PDA configuration of thermostats |
7083109, | Aug 18 2003 | Honeywell International Inc | Thermostat having modulated and non-modulated provisions |
7108194, | Jun 01 2004 | Remote controlled thermostat system for the sight-impaired | |
7109970, | Jul 01 2000 | Apparatus for remotely controlling computers and other electronic appliances/devices using a combination of voice commands and finger movements | |
7111788, | Apr 22 2002 | CALLAHAN CELLULAR L L C | System and method for navigating applications using a graphical user interface |
7114554, | Dec 02 2003 | ADEMCO INC | Controller interface with multiple day programming |
7117129, | Mar 11 2005 | Hewlett-Packard Development Company, L.P. | Commissioning of sensors |
7140551, | Mar 01 2004 | ADEMCO INC | HVAC controller |
7141748, | Jan 19 2004 | Calsonic Kansei Corporation | Multifunctional switch with indicator |
7142948, | Jan 07 2004 | ADEMCO INC | Controller interface with dynamic schedule display |
7146348, | Jan 22 2002 | Honeywell International Inc | Probabilistic goal recognition system and method incorporating inferred unobserved actions |
7152806, | Jan 30 2002 | ROSEN TECHNOLOGIES LLC | Programmable thermostat incorporating a liquid crystal display and having a feature for mounting horizontally, vertically and any intermediate orientation |
7156318, | Sep 03 2003 | ROSEN TECHNOLOGIES LLC | Programmable thermostat incorporating a liquid crystal display selectively presenting adaptable system menus including changeable interactive virtual buttons |
7159789, | Jun 22 2004 | Honeywell International Inc | Thermostat with mechanical user interface |
7159790, | Jun 22 2004 | Honeywell International Inc | Thermostat with offset drive |
7181317, | Dec 02 2003 | ADEMCO INC | Controller interface with interview programming |
7222494, | Jan 07 2004 | ADEMCO INC | Adaptive intelligent circulation control methods and systems |
7222800, | Aug 18 2003 | Honeywell International Inc. | Controller customization management system |
7225054, | Dec 02 2003 | ADEMCO INC | Controller with programmable service event display mode |
7258280, | Apr 13 2004 | Tuckernuck Technologies LLC | Damper control in space heating and cooling |
7264175, | Jul 01 2004 | ADEMCO INC | Thermostat with parameter adjustment |
7274972, | Dec 02 2003 | ADEMCO INC | Programmable controller with saving changes indication |
7287709, | Sep 21 2004 | Carrier Corporation | Configurable multi-level thermostat backlighting |
7299996, | Nov 12 2004 | Trane International Inc | Thermostat with energy saving backlit switch actuators and visual display |
7302642, | Jun 03 2003 | TIM SIMON, INC | Thermostat with touch-screen display |
7333880, | Dec 09 2002 | ENEL X NORTH AMERICA, INC | Aggregation of distributed energy resources |
7379997, | Jul 28 2003 | Invensys Systems, Inc | System and method of controlling delivery and/or usage of a commodity |
7434742, | Jun 20 2005 | COPELAND COMFORT CONTROL LP | Thermostat capable of displaying received information |
7451937, | Jul 13 2005 | Action Talkin Products, LLC | Thermostat with handicap access mode |
7455240, | Aug 31 2005 | Ranco Incorporated of Delaware | Thermostat display system providing animated icons |
7469550, | Jan 08 2004 | Robertshaw Controls Company | System and method for controlling appliances and thermostat for use therewith |
7509753, | Jun 30 2004 | HARLEY-DAVIDSON MOTOR COMPANY GROUP, INC | Apparatus for indicating oil temperature and oil level within an oil reservoir |
7552030, | Jan 22 2002 | Honeywell International Inc | System and method for learning patterns of behavior and operating a monitoring and response system based thereon |
7558648, | Nov 30 2006 | ADEMCO INC | HVAC zone control panel with zone configuration |
7584899, | Mar 01 2004 | ADEMCO INC | HVAC controller |
7596431, | Oct 31 2006 | Hewlett Packard Enterprise Development LP | Method for assessing electronic devices |
7600694, | Jan 27 2004 | Trane International Inc | Multiple thermostats for air conditioning system with time setting feature |
7614567, | Jan 10 2006 | Invensys Systems, Inc | Rotatable thermostat |
7624931, | Aug 31 2005 | Invensys Systems, Inc | Adjustable display resolution for thermostat |
7634504, | Dec 02 2003 | ADEMCO INC | Natural language installer setup for controller |
7641126, | Mar 31 2005 | ADEMCO INC | Controller system user interface |
7643908, | May 16 2007 | Inncom International Inc. | Occupant controlled energy management system and method for managing energy consumption in a multi-unit building |
7644869, | Dec 28 2005 | ADEMCO INC | Auxiliary stage control of multistage thermostats |
7667163, | Jul 10 2006 | Invensys Systems, Inc | Thermostat with adjustable color for aesthetics and readability |
7693582, | Dec 02 2003 | ADEMCO INC | Controller interface with multiple day programming |
7702424, | Aug 20 2003 | Cannon Technologies, Inc. | Utility load control management communications protocol |
7703694, | Jun 20 2005 | COPELAND COMFORT CONTROL LP | Thermostat capable of displaying received information |
7778734, | Nov 27 2003 | Centrica Hive Limited | Using energy-use sensors to model activity and location of building users |
7784291, | Feb 23 2005 | COPELAND COMFORT CONTROL LP | Interactive control system for an HVAC system |
7784704, | Feb 09 2007 | ADEMCO INC | Self-programmable thermostat |
7802618, | Jan 19 2005 | TIM SIMON, INC | Thermostat operation method and apparatus |
7845576, | Jun 28 2007 | ADEMCO INC | Thermostat with fixed segment display having both fixed segment icons and a variable text display capacity |
7848900, | Sep 16 2008 | ECOFACTOR, INC | System and method for calculating the thermal mass of a building |
7854389, | Aug 30 2005 | SIEMENS INDUSTRY, INC | Application of microsystems for comfort control |
7904830, | Nov 30 2006 | ADEMCO INC | HVAC zone control panel |
7913825, | Aug 30 2004 | Borgwarner Inc. | Electronically controlled fluid coupling device with fluid scavenge control and slip speed sensor |
7949615, | Mar 28 2002 | Invensys Systems, Inc | System and method of controlling delivery and/or usage of a commodity |
8010237, | Jul 07 2008 | ECOFACTOR, INC | System and method for using ramped setpoint temperature variation with networked thermostats to improve efficiency |
8019567, | Sep 17 2007 | ECOFACTOR, INC | System and method for evaluating changes in the efficiency of an HVAC system |
8042048, | Nov 17 2005 | AT&T Intellectual Property I, L P | System and method for home automation |
8063775, | Apr 11 2008 | Bay Controls, LLC | Energy management system |
8078330, | Mar 08 2002 | Intercap Capital Partners, LLC | Automatic energy management and energy consumption reduction, especially in commercial and multi-building systems |
8090477, | Aug 20 2010 | ECOFACTOR, INC | System and method for optimizing use of plug-in air conditioners and portable heaters |
8131497, | Sep 17 2007 | EcoFactor, Inc. | System and method for calculating the thermal mass of a building |
8180492, | Jul 14 2008 | ECOFACTOR, INC | System and method for using a networked electronic device as an occupancy sensor for an energy management system |
8219250, | Oct 31 2008 | OPTIMUM ENERGY CO, LLC | Systems and methods to control energy consumption efficiency |
8239922, | Aug 27 2007 | Honeywell International Inc. | Remote HVAC control with user privilege setup |
8280536, | Nov 19 2010 | GOOGLE LLC | Thermostat user interface |
8442695, | Aug 21 2009 | SAMSUNG ELECTRONICS CO , LTD | Auto-adaptable energy management apparatus |
8452457, | Oct 21 2011 | GOOGLE LLC | Intelligent controller providing time to target state |
8510255, | Sep 14 2010 | GOOGLE LLC | Occupancy pattern detection, estimation and prediction |
20020005435, | |||
20030034898, | |||
20030040842, | |||
20030042320, | |||
20040027271, | |||
20040034484, | |||
20040055446, | |||
20040149478, | |||
20040249479, | |||
20040256472, | |||
20040260427, | |||
20040262410, | |||
20050040247, | |||
20050119766, | |||
20050128067, | |||
20050189429, | |||
20050204997, | |||
20050280421, | |||
20060079983, | |||
20060186214, | |||
20060196953, | |||
20070045430, | |||
20070045433, | |||
20070045444, | |||
20070050732, | |||
20070057079, | |||
20070158442, | |||
20070158444, | |||
20070173978, | |||
20070225867, | |||
20070227721, | |||
20070228183, | |||
20070241203, | |||
20070257120, | |||
20070278320, | |||
20080006709, | |||
20080015742, | |||
20080054082, | |||
20080191045, | |||
20080219227, | |||
20080223136, | |||
20080245480, | |||
20080290183, | |||
20080317292, | |||
20090001180, | |||
20090057424, | |||
20090112335, | |||
20090140056, | |||
20090140057, | |||
20090143916, | |||
20090171862, | |||
20090195349, | |||
20090215534, | |||
20090216380, | |||
20090254225, | |||
20090259713, | |||
20090271042, | |||
20090283603, | |||
20090312999, | |||
20100019051, | |||
20100025483, | |||
20100026229, | |||
20100052576, | |||
20100070084, | |||
20100070085, | |||
20100070086, | |||
20100070089, | |||
20100070096, | |||
20100070234, | |||
20100070907, | |||
20100084482, | |||
20100106305, | |||
20100107070, | |||
20100107076, | |||
20100198425, | |||
20100211224, | |||
20100262298, | |||
20100262299, | |||
20100280667, | |||
20100289643, | |||
20100308119, | |||
20100318227, | |||
20100324437, | |||
20100327766, | |||
20110015798, | |||
20110015802, | |||
20110035060, | |||
20110046756, | |||
20110046782, | |||
20110046792, | |||
20110046805, | |||
20110046806, | |||
20110054710, | |||
20110077896, | |||
20110153089, | |||
20110173542, | |||
20110185895, | |||
20110196539, | |||
20110224838, | |||
20110288905, | |||
20110307103, | |||
20120065935, | |||
20120066168, | |||
20120085831, | |||
20120131504, | |||
20120158350, | |||
20120165993, | |||
20120221151, | |||
20120245740, | |||
20130103622, | |||
20130274928, | |||
CA2202008, | |||
D506150, | Jul 03 2003 | Honeywell International Inc | Thermostat |
D506689, | Jul 03 2003 | Honeywell International Inc. | Thermostat |
EP196069, | |||
JP1252850, | |||
JP59106311, | |||
RE40437, | Nov 23 2004 | ROSEN TECHNOLOGIES LLC | Thermostat system with remote data averaging |
WO2011072332, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 17 2012 | Honeywell International Inc. | (assignment on the face of the patent) | / | |||
Jul 29 2018 | Honeywell International Inc | ADEMCO INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 056522 | /0420 | |
Oct 25 2018 | ADEMCO INC | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047337 | /0577 |
Date | Maintenance Fee Events |
Feb 21 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 15 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 23 2018 | 4 years fee payment window open |
Dec 23 2018 | 6 months grace period start (w surcharge) |
Jun 23 2019 | patent expiry (for year 4) |
Jun 23 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2022 | 8 years fee payment window open |
Dec 23 2022 | 6 months grace period start (w surcharge) |
Jun 23 2023 | patent expiry (for year 8) |
Jun 23 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2026 | 12 years fee payment window open |
Dec 23 2026 | 6 months grace period start (w surcharge) |
Jun 23 2027 | patent expiry (for year 12) |
Jun 23 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |