A barrier assembly. The barrier assembly includes at least one barrier stack having at least one barrier layer and at least one polymer layer. The barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and an oxygen transmission rate of less than 0.005 cc/m2/day at 38° C. and 90% relative humidity. The barrier stack also has a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity. A method for making a barrier assembly is also disclosed.

Patent
   RE40531
Priority
Oct 25 1999
Filed
Jul 12 2004
Issued
Oct 07 2008
Expiry
Oct 25 2019

TERM.DISCL.
Assg.orig
Entity
Large
74
377
all paid
1. A barrier assembly comprising:
at least one barrier stack comprising at least one barrier layer and at least one polymer layer, wherein the at least one barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity.
2. The barrier assembly of claim 1 wherein the at least one barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 38° C. and 90% relative humidity.
3. The barrier assembly of claim 1 wherein the at least one barrier stack has a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity.
4. The barrier assembly of claim 1 further comprising a substrate adjacent to the at least one barrier stack.
5. The barrier assembly of claim 1 wherein the at least one barrier layer is substantially transparent.
6. The barrier assembly of claim 1 wherein at least one of the at least one barrier layer comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
7. The barrier assembly of claim 6 wherein the metal oxides are selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof.
8. The barrier assembly of claim 6 wherein the metal nitrides are selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof.
9. The barrier assembly of claim 6 wherein the metal oxynitrides are selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.
10. The barrier assembly of claim 1 wherein the at least one barrier layer is substantially opaque.
11. The barrier assembly of claim 1 wherein at least one of the at least one barrier layers is selected from opaque metals, opaque polymers, opaque ceramics, and opaque cermets.
12. The barrier assembly of claim 4 wherein the substrate comprises a flexible substrate material.
13. The barrier assembly of claim 12 wherein the flexible substrate material is selected from polymers, metals, paper, fabric, and combinations thereof.
14. The barrier assembly of claim 4 wherein the substrate comprises a rigid substrate material.
15. The barrier assembly of claim 14 wherein the rigid substrate material is selected from ceramics, metals, and semiconductors.
16. The barrier assembly of claim 1 wherein at least one of the at least one polymer layers comprises an acrylate-containing polymer.
17. The barrier assembly of claim 4 further comprising a polymer smoothing layer adjacent to the substrate.
18. The barrier assembly of claim 4 further comprising a scratch resistant layer adjacent to the substrate.
19. The barrier assembly of claim 4 further comprising an anti-reflective coating adjacent to the substrate.
20. The barrier assembly of claim 4 further comprising an anti-fingerprint coating adjacent to the substrate.
21. The barrier assembly of claim 4 further comprising an anti-static coating adjacent to the substrate.
22. The barrier assembly of claim 1 wherein the at least one barrier layer comprises two barrier layers.
23. The barrier assembly of claim 22 wherein the two barrier layers are made of the same barrier material.
24. The barrier assembly of claim 22 wherein the two barrier layers are made of different barrier materials.
25. The barrier assembly of claim 11 wherein at least one of the at least one barrier layers is opaque cermet selected from zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride.

This application is a continuation-in-part of U.S. patent application Ser. No. 09/427,138, filed Oct. 25, 1999, entitled “Environmental Barrier Material For Organic Light Emitting Device and Method Of Making,” now U.S. Pat. No. 6,522,067, issued Feb. 18, 2003.

The present invention relates generally to barrier coatings, and more particularly to barrier coatings having improved barrier properties.

Many different types of products are sensitive to gas and liquids, which can cause deterioration of the product or render it useless, including electronics, medical devices, and pharmaceuticals. Barrier coatings have been included in the packaging for these environmentally sensitive products to protect them from gas and liquid transmission. As used herein, the term environmentally sensitive means products which are subject to degradation caused by permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere or chemicals used in the processing, handling, storage, and use of the product.

Plastics are often used in product packaging. However, the gas and liquid permeation resistance of plastics is poor, often several orders of magnitude below what is required for product performance. For example, the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m2/day/micron of thickness (or 8.7 cc/m2/day for 7 mil thickness PET), and the water vapor transmission rates are also in this range. Certain display applications using environmentally sensitive display devices, such as organic light emitting devices, require encapsulation that has a maximum oxygen transmission rate of 10−4 to 10−2 cc/m2/day, and a maximum water vapor transmission rate of 10−5 to 10−6 g/m2/day.

Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability. Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiOx, AlOx, an Si3N4 vacuum deposited on polymeric substrates. A single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m2/day, and water vapor permeability to about 0.1 to 1.0 g/m2/day, which is insufficient for many display devices.

Barrier coatings which include alternating barrier layers and polymeric layers have been developed. For example, U.S. Pat. Nos. 5,607,789 and 5,681,666 disclose a moisture barrier for an electrochemical cell tester. However, the claimed moisture barrier ranges from 2 to 15 micrograms/in2/day which corresponds to a rate of 0.003 to 0.023 g/m2/day. U.S. Pat. No. 5,725,909 to Shaw et al. discloses a coating for packaging materials which has an acrylate layer and an oxygen barrier layer. The oxygen transmission rate for the coating was reported to be 0.1 cc/m2/day at 23° C. and the water vapor transmission rate was reported to be 0.01 g/m2/day in D. G. Shaw and M. G. Langlois, Society of Vacuum Coaters, 37th Annual Technical Conference Proceedings, p. 240-244, 1994. The oxygen transmission rates for these coatings are inadequate for many display devices.

Thus, there is a need for an improved, lightweight, barrier coating, and for methods for making such a barrier coating.

The present invention meets these needs by providing a barrier assembly and a method for making such an assembly. The barrier assembly includes at least one barrier stack having at least one barrier layer and at least one polymer layer. The barrier stack has an oxygen transmission rate of less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and an oxygen transmission rate of less than 0.005 cc/m2/day at 38° C. and 90% relative humidity. It also preferably has a water vapor transmission rate of less than 0.005 g/m2/day at 38° C. and 100% relative humidity.

Preferably, the barrier layers of the barrier stacks are substantially transparent. At least one of the barrier layers preferably comprises a material selected from metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.

The barrier layers can be substantially opaque, if desired. The opaque barrier layers are preferably selected from opaque metals, opaque polymers, and opaque ceramics.

The barrier assembly can include a substrate adjacent to the at least one barrier stack. By adjacent, we mean next to, but not necessarily directly next to. There can be additional layers intervening between the adjacent layers. The substrate can either be flexible or rigid. It is preferably made of a flexible substrate material, such as polymers, metals, paper, fabric, and combinations thereof. If a rigid substrate is used, it is preferably a ceramic (including glasses), a metal, or a semiconductor.

The polymer layers of the barrier stacks are preferably acrylate-containing polymers. As used herein, the term acrylate-containing polymers includes acrylate-containing polymers, methacrylate-containing polymers, and combinations thereof The polymer layers can be the same or different.

The barrier assembly can include additional layers if desired, such as polymer smoothing layers, scratch resistant layers, antireflective coatings, or other functional layers.

The present invention also involves a method of making the barrier assembly. The method includes providing a substrate, and placing at least one barrier stack on the substrate. The barrier stack includes at least one barrier layer and at least one polymer layer.

The at least one barrier stack can be placed on the substrate by deposition, preferably vacuum deposition, or by laminating the barrier stack over the environmentally sensitive device. The lamination can be performed using an adhesive, solder, ultrasonic welding, pressure, or heat.

Accordingly, it is an object of the present invention to provide a barrier assembly, and to provide a method of making such a barrier assembly.

FIG. 1 is a cross-section of one embodiment of the barrier assembly of the present invention.

FIG. 2 is a cross-section of an encapsulated device made using the barrier assembly of the present invention.

One embodiment of the barrier assembly of the present invention is shown in FIG. 1. The barrier assembly is supported by a substrate 105. The substrate 105 can be either rigid or flexible. A flexible substrate can be any flexible material, including, but not limited to: polymers, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), or high temperature polymers, such as polyether sulfone (PES), polyimides, or Transphan™ (a high glass transition temperature cyclic olefin polymer available from Lofo High Tech Film, GMBH or Weil am Rhein, Germany); metal; paper; fabric; and combinations thereof. Rigid substrates are preferably glass, metal, or silicon.

There are scratch resistant layers 110 on either side of the substrate 105 to protect it. When a scratch resistant layer is included, it is preferred that both sides of the substrate have a scratch resistant layer. This helps to balance stresses and prevent deformation of a flexible substrate during processing and use.

On top of the scratch resistant layer 110, there is a polymer smoothing layer 115. The polymer smoothing layer decreases surface roughness, and encapsulates surface defects, such as pits, scratches, and digs. This produces a planarized surface which is ideal for subsequent deposition of layers. Depending on the desired application, there can be additional layers deposited on the substrate 105, such as organic or inorganic layers, planarizing layers, electrode layers, antireflective coatings, and other functional layers. In this way, the substrate can be specifically tailored to different applications.

The first barrier stack 120 is adjacent to the polymer smoothing layer 115. The first barrier stack 120 includes a barrier layer 125 and a polymer layer 130. The first barrier layer 125 includes barrier layers 135 and 140. Barrier layers 135 and 140 can be made of the same barrier material or of different barrier materials.

Although FIG. 1 shows a barrier stack with two barrier layers and one polymer layer, the barrier stacks can have one or more polymer layers and one or more barrier layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers. The important feature is that the barrier stack have at least one polymer layer and at least one barrier layer. The barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically about 100-400 Å thick, and the polymer layers are typically about 1000-10,000 Å thick.

Although only one barrier stack is shown in FIG. 1, the number of barrier stacks is not limited. The number of barrier stacks needed depends on the substrate material used and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.

There is a transparent conductor 145, such as an indium tin oxide layer, adjacent to the first barrier stack 120. There can be additional overcoat layers on top of the barrier stack, such as organic or inorganic layers, planarizing layers, transparent conductors, antireflective coatings, or other functional layers, if desired. This allows the barrier assembly to be tailored to the application.

FIG. 2 shows a barrier assembly being used to encapsulate an environmentally sensitive display device. The substrate 205 has an environmentally sensitive display device 210 on it. There is a barrier stack 215 over the environmentally sensitive display device 210 encapsulating it. The barrier stack 215 includes a barrier layer 220 and a polymer layer 225.

The environmentally sensitive display device 210 can be any display device which is environmentally sensitive. Examples of environmentally sensitive display devices include, but are not limited to liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices. These display devices can be made using known techniques, such as those described in U.S. Pat. Nos. 6,025,899, 5,995,191, 5,994,174, 5,956,112 (LCDs); U.S. Pat. Nos. 6,005,692, 5,821,688, 5,747,928 (LEDs); U.S. Pat. Nos. 5,969,711, 5,961,804, 4,026,713 (E Ink); U.S. Pat. Nos. 6,023,373, 6,023,124, 6,023,125 (LEPs); and U.S. Pat. Nos. 6,023,073, 6,040,812, 6,019,654, 6,018,237, 6,014,119, 6,010,796 (EDs), which are incorporated herein by reference.

The method of making the barrier assembly will be described with reference to FIGS. 1 and 2. Any initial layers which are desired, such as scratch resistant layers, planarizing layers, electrically conductive layers, etc., can be coated, deposited, or otherwise placed on the substrate. A polymer smoothing layer is preferably included to provide a smooth base for the remaining layers. It can be formed by depositing a layer of polymer, for example, an acrylate-containing polymer, onto the substrate or previous layer. The polymer layer can be deposited in vacuum or by using atmospheric processes such as spin coating and/or spraying. Preferably, an acrylate-containing monomer, oligomer, or resin is deposited and then polymerized in situ to form the polymer layer. As used herein, the term acrylate-containing monomer, oligomer, or resin includes acrylate-containing monomers, oligomers, and resins, methacrylate-containing monomers, oligomers, and resins, and combinations thereof.

The barrier stack is then placed on the substrate. The barrier stack includes at least one barrier layer and at least one polymer layer. The barrier stacks are preferably made by vacuum deposition. The barrier layer can be vacuum deposited onto the polymer smoothing layer, the substrate, or the previous layer. The polymer layer is then deposited on the barrier layer, preferably by flash evaporating acrylate-containing monomers, oligomers, or resins, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber. U.S. Pat. Nos. 5,440,446 and 5,725,909, which are incorporated herein by reference, describe methods of depositing thin film, barrier stacks.

Vacuum deposition includes flash evaporation of acrylate-containing monomer, oligomer, or resin with in situ polymerization under vacuum, plasma deposition and polymerization of acrylate-containing monomer, oligomer, or resin, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.

In order to protect the integrity of the barrier layer, the formation of defects and/or microcracks in the deposited layer subsequent to deposition and prior to downstream processing should be avoided. The barrier assembly is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.

When the barrier stack is being used to encapsulate an environmentally sensitive display device, the substrate can be prepared as described above, and the environmentally sensitive display device placed on the substrate. Alternatively, the environmentally sensitive display device can be placed directly on a substrate (or on a substrate with functional layers, such as planarizing layers, scratch resistant layers, etc.).

The environmentally sensitive display device can be placed on the substrate by deposition, such as vacuum deposition. Alternatively it can be placed on the substrate by lamination. The lamination can use an adhesive, glue, or the like, or heat to seal the environmentally sensitive display device to the substrate.

A barrier stack is then placed over the environmentally sensitive display device to encapsulate it. The second barrier stack can be placed over the environmentally sensitive display device by deposition or lamination.

The barrier layers in the first and second barrier stacks may be any barrier material. The barrier layers in the first and second barrier stacks can be made of the same material or a different material. In addition, multiple barrier layers of the same or different barrier materials can be used in a barrier stack.

The barrier layers can be transparent or opaque, depending on the design of the packaging, and application for which it is to be used. Preferred transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. The metal oxides are preferably selected from silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof. The metal nitrides are preferably selected from aluminum nitride, silicon nitride, boron nitride, and combinations thereof. The metal oxynitrides are preferably selected from aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof.

Opaque barrier layers can be also be used in some barrier stacks. Opaque barrier materials include, but are not limited to, metals, ceramics, polymers, and cermets. Examples of opaque cermets include, but are not limited to, zirconium nitride, titanium nitride, hafnium nitride, tantalum nitride, niobium nitride, tungsten disilicide, titanium diboride, and zirconium diboride.

The polymer layers of the first and second barrier stacks are preferably acrylate-containing monomers, oligomers, or resins. The polymer layers in the first and second barrier stacks can be the same or different. In addition, the polymer layers within each barrier stack can be the same or different.

In a preferred embodiment, the barrier stack includes a polymer layer and two barrier layers. The two barrier layers can be made from the same barrier material or from different barrier materials. The thickness of each barrier layer in this embodiment is about one half the thickness of the single barrier layer, or about 50 to 200 Å. There are no limitations on the thickness, however.

When the barrier layers are made of the same material, they can be deposited either by sequential deposition using two sources or by the same source using two passes. If two deposition sources are used, deposition conditions can be different for each source, leading to differences in microstructure and defect dimensions. Any type of deposition source can be used. Different types of deposition processes, such as magnetron sputtering and electron beam evaporation, can be used to deposit the two barrier layers.

The microstructures of the two barrier layers are mismatched as a result of the differing deposition sources/parameters. The barrier layers can even have different crystal structure. For example, Al2O3 can exist in different phases (alpha, gamma) with different crystal orientations. The mismatched microstructure can help decouple defects in the adjacent barrier layers, enhancing the tortuous path for gases and water vapor permeation.

When the barrier layers are made of different materials, two deposition sources are needed. This can be accomplished by a variety of techniques. For example, if the materials are deposited by sputtering, sputtering targets of different compositions could be used to obtain thin films of different compositions. Alternatively, two sputtering targets of the same composition could be used but with different reactive gases. Two different types of deposition sources could also be used. In this arrangement, the lattices of the two layers are even more mismatched by the different microstructures and lattice parameters of the two materials.

A single pass, roll-to-roll, vacuum deposition of a three layer combination on a PET substrate, i.e., PET substrate/polymer layer/barrier layer/polymer layer, can be more than five orders of magnitude less permeable to oxygen and water vapor than a single oxide layer on PET alone. See J. D. Afinito, M. E. Gross, C. A. Coronado, G. L. Graff, E. N. Greenwell, and P. M. Martin, Polymer-Oxide Transparent Barrier Layers Produced Using PML Process, 39th Annual Technical Conference Proceedings of the Society of Vacuum Coaters, Vacuum Web Coating Session, 1996, pages 392-397; J. D. Affinito, S. Eufinger, M. E. Gross, G. L. Graff, and P. M. Martin, PML/Oxide/PML Barrier Layer Performance Difference Arising From Use of UV or Electron Beam Polymerization of the PML Layers, Thin Solid Films, Vol. 308, 1997, pages 19-25. This is in spite of the fact that the effect on the permeation rate of the polymer multilayers (PML) layers alone, without the barrier layer (oxide, metal, nitride, oxynitride) layer, is barely measurable. It is believed that the improvement in barrier properties is due to two factors. First, permeation rates in the roll-to-roll coated oxide-only layers were found to be conductance limited by defects in the oxide layer that arose during deposition and when the coated substrate was wound up over system idlers/rollers. Asperities (high points) in the underlying substrate are replicated in the deposited inorganic barrier layer. These features are subject to mechanical damage during web handling/take-up, and can lead to the formation of defects in the deposited film. These defects seriously limit the ultimate barrier performance of the films. In the single pass, polymer/barrier/polymer process, the first acrylic layer planarizes the substrate and provides an ideal surface for subsequent deposition of the inorganic barrier thin film. The second polymer layer provides a robust “protective” film that minimizes damage to the barrier layer and also planarizes the structure for subsequent barrier layer (or environmentally sensitive display device) deposition. The intermediate polymer layers also decouple defects that exist in adjacent inorganic barrier layers, thus creating a tortuous path for gas diffusion.

The permeability of the barrier stacks used in the present invention is shown in Table 1. The barrier stacks of the present invention on polymeric substrates, such as PET, have measured oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) values well below the detection limits of current industrial instrumentation used for permeation measurements (Mocon OxTran 2/20L and Permatran). Table 1 shows the OTR and WVTR values (measured according to ASTM F 1927-98 and ASTM F 1249-90, respectively) measured at Mocon (Minneapolis, Minn.) for several barrier stacks on 7 mil PET, along with reported values for other materials.

TABLE 1
Oxygen Water Vapor
Permeation Rate Permeation
(cc/m2/day) (g/m2/day)*
Sample 23° C. 38° C. 23° C. 38° C.
Native 7 mil PET 7.62
1-barrier stack <0.005 <0.005* 0.46*
1-barrier stack <0.005 <0.005* 0.011*
with ITO
2-barrier stacks <0.005 <0.005* <0.005*
2-barrier stacks <0.005 <0.005* <0.005*
with ITO
5-barrier stacks <0.005 <0.005* <0.005*
5-barrier stacks <0.005 <0.005* <0.005*
with ITO
DuPont film1 0.3
(PET/Si3N4 or
PEN/Si3N4)
Polaroid3 <1.0
PET/Al2 0.6 0.17
PET/silicon 0.7-1.5 0.15-0.9
oxide2
Teijin LCD film <2 <5
(HA grade-
TN/STN)3
*38° C., 90% RH, 100% O2
*38° C., 100% RH
1P. F. Carcia, 46th International Symposium of the American Vacuum Society, October 1999
2Langowski, H. C., 39th Annual Technical Conference Proceedings, SVC, pp. 398-401 (1996)
3Technical Data Sheet

As the data in Table 1 shows, the barrier stacks of the present invention provide oxygen and water vapor permeation rates several orders of magnitude better than PET coated with aluminum, silicon oxide, or aluminum oxide. Typical oxygen permeation rates for other barrier coatings range from 1 to about 0.1 cc/m2/day. The oxygen transmission rate for the barrier stacks of the present invention is less than 0.005 cc/m2/day at 23° C. and 0% relative humidity, and at 38° C. and 90% relative humidity. The water vapor transmission rate is less than 0.005 g/m2/day at 38° C. and 100% relative humidity. The actual transmission rates are lower, but cannot be measured with existing equipment.

The barrier assemblies were also tested by encapsulating organic light emitting devices using the barrier stacks of the present invention. The organic light emitting devices are extremely sensitive to water vapor, and they are completely destroyed in the presence of micromole quantities of water vapor. Experimentation and calculations suggest that the water vapor transmission rate through the encapsulation film must be on the order of about 10−6 to 10−5 g/m2/day to provide sufficient barrier protection for acceptable device lifetimes. The experiments/calculations are based on the detrimental hydrolysis reaction of water vapor with the extremely thin (less than 10 nm), low work function, cathode materials (Ca, Mg, Li, LiF). Hydrolysis of the cathode leads to the formation of non-conductive reaction products (such as hydroxides and oxides) that delaminate or blister away from the electron transport layers of the organic light emitting devices, resulting in the formation of dark spots on the device.

The organic light emitting devices encapsulated in the barrier stacks of the present invention have been in operation for over six months and without measurable degradation. The extrapolated lifetime for the encapsulated devices exceeds the required 10,000 hours necessary to satisfy industry standards. The barrier stacks are extremely effective in preventing oxygen and water penetration to the underlying components, substantially outperforming other thin-film barrier coatings on the market.

The preferred deposition process is compatible with a wide variety of substrates. Because the preferred process involves flash evaporation of a monomer and magnetron sputtering, deposition temperatures are well below 100° C., and stresses in the coating can be minimized. Multilayer coatings can be deposited at high deposition rates. No harsh gases or chemicals are used, and the process can be scaled up to large substrates and wide webs. The barrier properties of the coating can be tailored to the application by controlling the number of layers, the materials, and the layer design. Thus, the present invention provides a barrier stack with the exceptional barrier properties necessary for hermetic sealing of an environmentally sensitive display device, or other environmentally sensitive device. It permits the production of an encapsulated environmentally sensitive display device.

While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.

Shi, Ming Kun, Graff, Gordon Lee, Martin, Peter Maclyn, Gross, Mark Edward, Hall, Michael Gene, Mast, Eric Sidney

Patent Priority Assignee Title
10016338, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC Trilayer coated pharmaceutical packaging
10040968, Aug 31 2015 Kateeva, Inc.; KATEEVA, INC Di- and mono(meth)acrylate based organic thin film ink compositions
10189603, Nov 11 2011 SIO2 MEDICAL PRODUCTS, LLC Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
10190018, Aug 31 2015 Kateeva, Inc.; KATEEVA, INC Di- and mono(meth)acrylate based organic thin film ink compositions
10201660, Nov 30 2012 SIO2 MEDICAL PRODUCTS, LLC Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
10363370, Nov 30 2012 SIO2 MEDICAL PRODUCTS, LLC Controlling the uniformity of PECVD deposition
10390744, May 13 2009 SIO2 MEDICAL PRODUCTS, LLC Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
10537273, May 13 2009 SIO2 MEDICAL PRODUCTS, LLC Syringe with PECVD lubricity layer
10537494, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC Trilayer coated blood collection tube with low oxygen transmission rate
10577154, Nov 11 2011 SIO2 MEDICAL PRODUCTS, LLC Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
10680277, Jun 07 2010 Sapurast Research LLC Rechargeable, high-density electrochemical device
10886501, Jan 15 2010 GRAPHENE SQUARE, INC Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof
10912714, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC PECVD coated pharmaceutical packaging
11066745, Mar 28 2014 SIO2 MEDICAL PRODUCTS, LLC Antistatic coatings for plastic vessels
11077233, Aug 18 2015 SIO2 MEDICAL PRODUCTS, LLC Pharmaceutical and other packaging with low oxygen transmission rate
11116695, Nov 11 2011 SIO2 MEDICAL PRODUCTS, LLC Blood sample collection tube
11123491, Nov 12 2010 SIO2 MEDICAL PRODUCTS, LLC Cyclic olefin polymer vessels and vessel coating methods
11148856, Nov 11 2011 SIO2 MEDICAL PRODUCTS, LLC Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
11298293, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC PECVD coated pharmaceutical packaging
11344473, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC Coated packaging
11406765, Nov 30 2012 SIO2 MEDICAL PRODUCTS, LLC Controlling the uniformity of PECVD deposition
11624115, May 12 2010 SIO2 MEDICAL PRODUCTS, LLC Syringe with PECVD lubrication
11684546, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC PECVD coated pharmaceutical packaging
11724860, Nov 11 2011 SIO2 MEDICAL PRODUCTS, LLC Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
11844234, Apr 21 2017 Kateeva, Inc. Compositions and techniques for forming organic thin films
11884446, Nov 11 2011 SIO2 MEDICAL PRODUCTS, LLC Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
7675074, May 15 2002 Semiconductor Energy Laboratory Co., Ltd. Light emitting device including a lamination layer
7959769, Dec 08 2004 Sapurast Research LLC Deposition of LiCoO2
7985188, May 13 2009 SIO2 MEDICAL PRODUCTS, LLC Vessel, coating, inspection and processing apparatus
7993773, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
8021778, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
8062708, Sep 29 2006 Sapurast Research LLC Masking of and material constraint for depositing battery layers on flexible substrates
8129715, May 15 2002 Semiconductor Energy Labratory Co., Ltd. Light emitting device
8197781, Nov 07 2006 Sapurast Research LLC Sputtering target of Li3PO4 and method for producing same
8236443, Jun 15 2005 Sapurast Research LLC Metal film encapsulation
8260203, Sep 12 2008 Sapurast Research LLC Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
8268488, Dec 21 2007 Sapurast Research LLC Thin film electrolyte for thin film batteries
8350519, Apr 02 2008 Sapurast Research LLC Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
8394522, Apr 29 2008 Sapurast Research LLC Robust metal film encapsulation
8404376, Aug 09 2002 Sapurast Research LLC Metal film encapsulation
8431264, Aug 09 2002 Sapurast Research LLC Hybrid thin-film battery
8445130, Nov 17 2005 Sapurast Research LLC Hybrid thin-film battery
8476623, May 15 2002 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
8508193, Oct 08 2008 Sapurast Research LLC Environmentally-powered wireless sensor module
8512796, May 13 2009 SIO2 MEDICAL PRODUCTS, LLC Vessel inspection apparatus and methods
8518581, Jan 11 2008 Sapurast Research LLC Thin film encapsulation for thin film batteries and other devices
8535396, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
8599572, Sep 01 2009 Sapurast Research LLC Printed circuit board with integrated thin film battery
8636876, Dec 08 2004 DEMARAY, LLC Deposition of LiCoO2
8659012, May 15 2002 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
8728285, May 23 2003 DEMARAY, LLC Transparent conductive oxides
8834954, May 13 2009 SIO2 MEDICAL PRODUCTS, LLC Vessel inspection apparatus and methods
8906523, Aug 11 2008 Sapurast Research LLC Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
9118025, May 15 2002 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
9272095, Apr 01 2011 SIO2 MEDICAL PRODUCTS, LLC Vessels, contact surfaces, and coating and inspection apparatus and methods
9334557, Dec 21 2007 Sapurast Research LLC Method for sputter targets for electrolyte films
9394198, Dec 05 2013 Intermolecular, Inc. Simplified protection layer for abrasion resistant glass coatings and methods for forming the same
9458536, Jul 02 2009 SIO2 MEDICAL PRODUCTS, LLC PECVD coating methods for capped syringes, cartridges and other articles
9532453, Sep 01 2009 Sapurast Research LLC Printed circuit board with integrated thin film battery
9545360, May 09 2012 SIO2 MEDICAL PRODUCTS, LLC Saccharide protective coating for pharmaceutical package
9554968, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC Trilayer coated pharmaceutical packaging
9572526, May 13 2009 SIO2 MEDICAL PRODUCTS, LLC Apparatus and method for transporting a vessel to and from a PECVD processing station
9614186, Mar 13 2013 Panasonic Corporation Electronic device
9634296, Aug 09 2002 Sapurast Research LLC Thin film battery on an integrated circuit or circuit board and method thereof
9662450, Mar 01 2013 SIO2 MEDICAL PRODUCTS, LLC Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
9664626, Nov 01 2012 SIO2 MEDICAL PRODUCTS, LLC Coating inspection method
9764093, Nov 30 2012 SIO2 MEDICAL PRODUCTS, LLC Controlling the uniformity of PECVD deposition
9786873, Jan 11 2008 Allegro MicroSystems, LLC Thin film encapsulation for thin film batteries and other devices
9793523, Aug 09 2002 Sapurast Research LLC Electrochemical apparatus with barrier layer protected substrate
9863042, Mar 15 2013 SIO2 MEDICAL PRODUCTS, LLC PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
9878101, Nov 12 2010 SIO2 MEDICAL PRODUCTS, LLC Cyclic olefin polymer vessels and vessel coating methods
9903782, Nov 16 2012 SIO2 MEDICAL PRODUCTS, LLC Method and apparatus for detecting rapid barrier coating integrity characteristics
9909022, Jul 25 2014 Kateeva, Inc.; KATEEVA, INC Organic thin film ink compositions and methods
9937099, Mar 11 2013 SIO2 MEDICAL PRODUCTS, LLC Trilayer coated pharmaceutical packaging with low oxygen transmission rate
Patent Priority Assignee Title
2382432,
2384500,
3475307,
3607365,
3941630, Apr 29 1974 RCA Corporation Method of fabricating a charged couple radiation sensing device
4061835, Feb 27 1975 Standard Oil Company (Indiana) Process of forming a polypropylene coated substrate from an aqueous suspension of polypropylene particles
4098965, Jan 24 1977 Polaroid Corporation Flat batteries and method of making the same
4266223, Dec 08 1978 W. H. Brady Co. Thin panel display
4283482, Mar 29 1979 Nihon Shinku Gijutsu Kabushiki Kaisha Dry Lithographic Process
4313254, Oct 30 1979 The Johns Hopkins University Thin-film silicon solar cell with metal boride bottom electrode
4426275, Nov 27 1981 BRUNSWICK CORPORATION, A CORP OF DE Sputtering device adaptable for coating heat-sensitive substrates
4521458, Apr 01 1983 116736 CANADA INC , A COMPANY OF CANADA Process for coating material with water resistant composition
4537814, Jan 27 1983 TOYODA GOSEI CO , LTD Resin article having a ceramics coating layer
4555274, Mar 15 1982 Fuji Photo Film Co., Ltd. Ion selective electrode and process of preparing the same
4557978, Dec 12 1983 Primary Energy Research Corporation Electroactive polymeric thin films
4572842, Sep 02 1983 Leybold Aktiengesellschaft Method and apparatus for reactive vapor deposition of compounds of metal and semi-conductors
4581337, Jul 07 1983 DADE BEHRING INC ; BADE BEHRING INC Polyether polyamines as linking agents for particle reagents useful in immunoassays
4624867, Mar 21 1984 NIHON SHINKU GIJUTSU KABUSHIKI KAISHA, ALSO TRADING AS ULVAC CORPORATION Process for forming a synthetic resin film on a substrate and apparatus therefor
4695618, May 23 1986 AMERON INTERNATIONAL CORPORATION, A CORPORATION OF DELAWARE Solventless polyurethane spray compositions and method for applying them
4710426, Nov 28 1983 Polaroid Corporation, Patent Dept. Solar radiation-control articles with protective overlayer
4722515, Nov 06 1984 SPECTRUM CONTROL, INC Atomizing device for vaporization
4768666, May 26 1987 Tamper proof container closure
4842893, Dec 19 1983 3M Innovative Properties Company High speed process for coating substrates
4843036, Jun 29 1987 Eastman Kodak Company Method for encapsulating electronic devices
4855186, Mar 06 1987 Hoechst Aktiengesellschaft Coated plastic film and plastic laminate prepared therefrom
4889609, Sep 06 1988 OIS OPTICAL IMAGING SYSTEMS, INC Continuous dry etching system
4913090, Oct 02 1987 Mitsubishi Denki Kabushiki Kaisha Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber
4931158, Mar 22 1988 The Regents of the Univ. of Calif. Deposition of films onto large area substrates using modified reactive magnetron sputtering
4934315, Jul 23 1984 Alcatel N.V. System for producing semicondutor layer structures by way of epitaxial growth
4954371, Jun 23 1986 3M Innovative Properties Company Flash evaporation of monomer fluids
4977013, Jun 03 1988 ABLECO FINANCE LLC, AS COLLATERAL AGENT Tranparent conductive coatings
5032461, Dec 19 1983 3M Innovative Properties Company Method of making a multi-layered article
5036249, Dec 11 1989 Molex Incorporated Electroluminescent lamp panel and method of fabricating same
5047131, Nov 08 1989 Von Ardenne Anlagentechnik GmbH; Applied Films Corporation Method for coating substrates with silicon based compounds
5059861, Jul 26 1990 Global Oled Technology LLC Organic electroluminescent device with stabilizing cathode capping layer
5124204, Jul 14 1988 Sharp Kabushiki Kaisha Thin film electroluminescent (EL) panel
5189405, Jan 26 1989 Sharp Kabushiki Kaisha Thin film electroluminescent panel
5203898, Dec 16 1991 Corning Incorporated Method of making fluorine/boron doped silica tubes
5204314, Jul 06 1990 Entegris, Inc Method for delivering an involatile reagent in vapor form to a CVD reactor
5237439, Sep 30 1991 Sharp Kabushiki Kaisha Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide
5260095, Aug 21 1992 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers
5336324, Dec 04 1991 Veeco Instruments INC Apparatus for depositing a coating on a substrate
5354497, Apr 20 1992 Sharp Kabushiki Kaisha Liquid crystal display
5356947, Mar 29 1990 Minnesota Mining and Manufacturing Company Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith
5393607, Jan 13 1992 Mitsui Chemicals, Inc Laminated transparent plastic material and polymerizable monomer
5395644, Aug 21 1992 Battelle Memorial Institute; Battelle Memorial Institute K1-53 Vacuum deposition and curing of liquid monomers
5402314, Feb 10 1992 Sony Corporation Printed circuit board having through-hole stopped with photo-curable solder resist
5427638, Jun 04 1992 AlliedSignal Inc. Low temperature reaction bonding
5440446, Oct 04 1993 3M Innovative Properties Company Acrylate coating material
5451449, May 11 1994 ENGELHARD CORPORATION, A CORPORATION OF NEW JERSEY Colored iridescent film
5461545, Aug 24 1990 Thomson-CSF Process and device for hermetic encapsulation of electronic components
5464667, Aug 16 1994 Minnesota Mining and Manufacturing Company Jet plasma process and apparatus
5510173, Aug 20 1993 SOUTHWALL TECHNOLOGIES INC Multiple layer thin films with improved corrosion resistance
5512320, Jan 28 1993 Applied Materials, Inc. Vacuum processing apparatus having improved throughput
5536323, Jul 06 1990 Entegris, Inc Apparatus for flash vaporization delivery of reagents
5547508, Aug 21 1992 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers apparatus
5554220, May 19 1995 PORTAL CONNECT, INC Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
5576101, Dec 18 1992 Bridgestone Corporation Gas barrier rubber laminate for minimizing refrigerant leakage
5578141, Jul 01 1993 Canon Kabushiki Kaisha Solar cell module having excellent weather resistance
5607789, Jan 23 1995 GILLETTE COMPANY, THE Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
5620524, Feb 27 1995 IPPRIME INC Apparatus for fluid delivery in chemical vapor deposition systems
5629389, Jun 06 1995 Innolux Corporation Polymer-based electroluminescent device with improved stability
5652192, Jul 10 1992 Battelle Memorial Institute; Battelle Memorial Institute K1-53 Catalyst material and method of making
5654084, Jul 22 1994 Martin Marietta Energy Systems, Inc. Protective coatings for sensitive materials
5660961, Jan 11 1996 Xerox Corporation Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference
5665280, Jan 30 1996 Blood collection tube assembly
5681615, Jul 27 1995 Battelle Memorial Institute Vacuum flash evaporated polymer composites
5681666, Jan 23 1995 GILLETTE COMPANY, THE Light transparent multilayer moisture barrier for electrochemical celltester and cell employing same
5684084, Dec 21 1995 AXALTA COATING SYSTEMS IP CO , LLC Coating containing acrylosilane polymer to improve mar and acid etch resistance
5686360, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivation of organic devices
5693956, Jul 29 1996 UNIVERSAL DISPLAY CORPORATION Inverted oleds on hard plastic substrate
5695564, Aug 19 1994 Tokyo Electron Limited Semiconductor processing system
5711816, Jul 06 1990 Entegris, Inc Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
5725909, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating process
5731661, Jul 15 1996 UNIVERSAL DISPLAY CORPORATION Passivation of electroluminescent organic devices
5736207, Oct 27 1994 SCHOTT AG Vessel of plastic having a barrier coating and a method of producing the vessel
5747182, Jul 27 1992 Cambridge Display Technology Limited Manufacture of electroluminescent devices
5757126, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivated organic device having alternating layers of polymer and dielectric
5759329, Jan 06 1992 MARTINREA INDUSTRIES INC Fluoropolymer composite tube and method of preparation
5771177, May 17 1993 Kyoei Automatic Control Technology Co., Ltd. Method and apparatus for measuring dynamic load
5771562, May 02 1995 UNIVERSAL DISPLAY CORPORATION Passivation of organic devices
5782355, Sep 30 1994 FUJIFILM Corporation Cassette case
5792550, Oct 24 1989 JDS Uniphase Corporation Barrier film having high colorless transparency and method
5795399, Jun 30 1994 Kabushiki Kaisha Toshiba Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product
5811177, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivation of electroluminescent organic devices
5811183, Apr 06 1995 3M Innovative Properties Company Acrylate polymer release coated sheet materials and method of production thereof
5821692, Nov 26 1996 UNIVERSAL DISPLAY CORPORATION Organic electroluminescent device hermetic encapsulation package
5844363, Jan 23 1997 TRUSTEES OF PRINCETON UNIVERSITY, THE Vacuum deposited, non-polymeric flexible organic light emitting devices
5869791, Apr 18 1995 U.S. Philips Corporation Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element
5872355, Apr 09 1997 Innolux Corporation Electroluminescent device and fabrication method for a light detection system
5891554, Feb 25 1994 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
5895228, Nov 14 1996 Innolux Corporation Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives
5902641, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Flash evaporation of liquid monomer particle mixture
5902688, Jul 16 1996 AVAGO TECHNOLOGIES ECBU IP SINGAPORE PTE LTD Electroluminescent display device
5904958, Mar 20 1998 REXAM IMAGE PRODUCTS INC Adjustable nozzle for evaporation or organic monomers
5912069, Dec 19 1996 Sigma Laboratories of Arizona, LLC Metal nanolaminate composite
5919328, Jan 30 1996 Becton Dickinson and Company Blood collection tube assembly
5920080, Jun 23 1997 ALLIGATOR HOLDINGS, INC Emissive display using organic light emitting diodes
5922161, Jun 30 1995 Commonwealth Scientific and Industrial Research Organisation Surface treatment of polymers
5929562, Apr 18 1995 Cambridge Display Technology Limited Organic light-emitting devices
5934856, May 23 1994 Tokyo Electron Limited Multi-chamber treatment system
5945174, Apr 06 1995 3M Innovative Properties Company Acrylate polymer release coated sheet materials and method of production thereof
5948552, Aug 27 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Heat-resistant organic electroluminescent device
5952778, Mar 18 1997 Innolux Corporation Encapsulated organic light emitting device
5955161, Jan 30 1996 Becton, Dickinson and Company Blood collection tube assembly
5965907, Sep 29 1997 UNIVERSAL DISPLAY CORPORATION Full color organic light emitting backlight device for liquid crystal display applications
5968620, Jan 30 1996 Becton Dickinson and Company Blood collection tube assembly
5994174, Sep 29 1997 Lawrence Livermore National Security LLC Method of fabrication of display pixels driven by silicon thin film transistors
5996498, Mar 12 1998 MARK ANDY, INC Method of lithographic imaging with reduced debris-generated performance degradation and related constructions
6013337, Jan 30 1996 Becton Dickinson and Company Blood collection tube assembly
6040017, Oct 02 1998 Sigma Laboratories of Arizona, LLC Formation of multilayered photonic polymer composites
6045864, Dec 01 1997 3M Innovative Properties Company Vapor coating method
6066826, Mar 16 1998 Sigma Laboratories of Arizona, LLC Apparatus for plasma treatment of moving webs
6083313, Jul 27 1999 Sulzer Metaplas GmbH Hardcoats for flat panel display substrates
6083628, Nov 04 1994 Sigma Laboratories of Arizona, LLC Hybrid polymer film
6084702, Oct 15 1998 BYKER, HARLAN; BYKER, TERRI Thermochromic devices
6087007, Sep 30 1994 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Heat-Resistant optical plastic laminated sheet and its producing method
6092269, Apr 04 1996 Sigma Laboratories of Arizona, Inc. High energy density capacitor
6106627, Apr 04 1996 Sigma Laboratories of Arizona, Inc. Apparatus for producing metal coated polymers
6117266, Apr 22 1997 INTERUNIVERSIFAIR MICRO-ELEKTRONICA CENTRUM IMEC VZW Furnace for continuous, high throughput diffusion processes from various diffusion sources
6118218, Feb 01 1999 Sigma Laboratories of Arizona, LLC Steady-state glow-discharge plasma at atmospheric pressure
6137221, Jul 08 1998 Innolux Corporation Organic electroluminescent device with full color characteristics
6146225, Jul 30 1998 Innolux Corporation Transparent, flexible permeability barrier for organic electroluminescent devices
6146462, May 08 1998 Sigma Laboratories of Arizona, LLC Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same
6150187, Nov 20 1997 UNILOC 2017 LLC Encapsulation method of a polymer or organic light emitting device
6165566, Jan 30 1996 Becton Dickinson and Company Method for depositing a multilayer barrier coating on a plastic substrate
6178082, Feb 26 1998 International Business Machines Corporation High temperature, conductive thin film diffusion barrier for ceramic/metal systems
6195142, Dec 28 1995 JOLED INC Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element
6198217, May 12 1997 JOLED INC Organic electroluminescent device having a protective covering comprising organic and inorganic layers
6198220, Jul 11 1997 ALLIGATOR HOLDINGS, INC Sealing structure for organic light emitting devices
6203898, Aug 29 1997 3M Innovative Properties Company Article comprising a substrate having a silicone coating
6207238, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition for high and/or low index of refraction polymers
6207239, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition of conjugated polymer
6214422, Nov 04 1994 Sigma Laboratories of Arizona, LLC Method of forming a hybrid polymer film
6217947, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced polymer deposition onto fixtures
6224948, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition with low vapor pressure compounds
6228434, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making a conformal coating of a microtextured surface
6228436, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making light emitting polymer composite material
6231939, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating
6264747, Dec 15 1997 3M Innovative Properties Company Apparatus for forming multicolor interference coating
6268695, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Environmental barrier material for organic light emitting device and method of making
6274204, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making non-linear optical polymer
6322860, Nov 02 1998 Rohm and Haas Company Plastic substrates for electronic display applications
6333065, Jul 25 1997 TDK Corporation Process for the production of an organic electroluminescent device
6348237, Aug 29 1997 3M Innovative Properties Company Jet plasma process for deposition of coatings
6350034, Feb 26 1999 3M Innovative Properties Company Retroreflective articles having polymer multilayer reflective coatings
6352777, Aug 19 1998 TRUSTEES OF PRINCETON UNIVERSITY, THE Organic photosensitive optoelectronic devices with transparent electrodes
6358570, Mar 31 1999 SAMSUNG DISPLAY CO , LTD Vacuum deposition and curing of oligomers and resins
6361885, Apr 10 1998 Organic Display Technology Organic electroluminescent materials and device made from such materials
6387732, Jun 18 1999 Micron Technology, Inc. Methods of attaching a semiconductor chip to a leadframe with a footprint of about the same size as the chip and packages formed thereby
6397776, Jun 11 2001 SABIC INNOVATIVE PLASTICS IP B V Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators
6413645, Apr 20 2000 SAMSUNG DISPLAY CO , LTD Ultrabarrier substrates
6416872, Aug 30 2000 Eastman Performance Films, LLC Heat reflecting film with low visible reflectance
6420003, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating
6436544, Jul 17 1997 Toray Plastics Europe S.A. Composite metal-coated polyester films with barrier properties
6460369, Nov 03 1999 Applied Materials, Inc.; Applied Materials, Inc Consecutive deposition system
6465953, Jun 12 2000 BOE TECHNOLOGY GROUP CO , LTD Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices
6468595, Feb 13 2001 Sigma Laboratories of Arizona, LLC Vaccum deposition of cationic polymer systems
6469437, Nov 03 1997 PRINCETON UNIVERSITY, TRUSTEES OF THE Highly transparent organic light emitting device employing a non-metallic cathode
6492026, Apr 20 2000 SAMSUNG DISPLAY CO , LTD Smoothing and barrier layers on high Tg substrates
6497598, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Environmental barrier material for organic light emitting device and method of making
6497924, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making non-linear optical polymer
6509065, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition of conjugated polymer
6512561, Aug 29 1997 UNIFIED INNOVATIVE TECHNOLOGY, LLC Liquid crystal display with at least one phase compensation element
6522067, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Environmental barrier material for organic light emitting device and method of making
6537688, Dec 01 2000 UNIVERSAL DISPLAY CORPORATION Adhesive sealed organic optoelectronic structures
6544600, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition of conjugated polymer
6548912, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Semicoductor passivation using barrier coatings
6569515, Jan 13 1998 3M Innovative Properties Company Multilayered polymer films with recyclable or recycled layers
6570325, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Environmental barrier material for organic light emitting device and method of making
6573652, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Encapsulated display devices
6576351, Feb 16 2001 UNIVERSAL DISPLAY CORPORATION Barrier region for optoelectronic devices
6592969, Apr 02 1998 Cambridge Display Technology Limited Flexible substrates for organic devices
6597111, Nov 27 2001 UNIVERSAL DISPLAY CORPORATION Protected organic optoelectronic devices
6613395, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making molecularly doped composite polymer material
6614057, Feb 07 2001 UNIVERSAL DISPLAY CORPORATION Sealed organic optoelectronic structures
6624568, Mar 28 2001 UNIVERSAL DISPLAY CORPORATION Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices
6627267, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition with low vapor pressure compounds
6628071, Sep 03 2002 AU Optronics Corporation Package for organic electroluminescent device
6653780, May 11 2001 Pioneer Corporation Luminescent display device and method of manufacturing same
6656537, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition with low vapor pressure compounds
6664137, Mar 29 2001 UNIVERSAL DISPLAY CORPORATION Methods and structures for reducing lateral diffusion through cooperative barrier layers
6681716, Nov 27 2001 SABIC INNOVATIVE PLASTICS IP B V Apparatus and method for depositing large area coatings on non-planar surfaces
6720203, Apr 28 1999 LG Chem, Ltd Flexible organic electronic device with improved resistance to oxygen and moisture degradation
6734625, Jul 30 2002 LG DISPLAY CO , LTD Organic light emitting device (OLED) with multiple capping layers passivation region on an electrode
6743524, May 23 2002 BOE TECHNOLOGY GROUP CO , LTD Barrier layer for an article and method of making said barrier layer by expanding thermal plasma
6749940, May 26 2000 Kureha Corporation Moistureproof multilayered film
6765351, Dec 20 2001 The Trustees of Princeton University Organic optoelectronic device structures
6811829, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making a coating of a microtextured surface
6815887, Dec 26 2001 SAMSUNG DISPLAY CO , LTD Organic electroluminescent display device
6818291, Aug 17 2002 3M Innovative Properties Company Durable transparent EMI shielding film
6835950, Apr 12 2002 UNIVERSAL DISPLAY CORPORATION Organic electronic devices with pressure sensitive adhesive layer
6836070, Nov 27 2001 Innolux Corporation Organic electro-luminescent display and method of sealing the same
6837950, Nov 05 1998 INTERFACE, INC Separation of floor covering components for recycling
6864629, Jan 29 1999 Pioneer Corporation Organic electroluminescence (EL) cell that prevents moisture from deteriorating light-emitting characteristics and a method for producing the same
6866901, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method for edge sealing barrier films
6867539, Jul 12 2000 3M Innovative Properties Company Encapsulated organic electronic devices and method for making same
6872114, Oct 17 2001 Innolux Corporation Method of sealing organo electro-luminescent display
6872248, Mar 29 2002 Canon Kabushiki Kaisha Liquid-phase growth process and liquid-phase growth apparatus
6872428, Jun 11 2001 SABIC INNOVATIVE PLASTICS IP B V Apparatus and method for large area chemical vapor deposition using multiple expanding thermal plasma generators
6878467, Apr 10 2001 Innolux Corporation Organic electro-luminescence element used in a display device
6888305, Nov 06 2001 UNIVERSAL DISPLAY CORPORATION Encapsulation structure that acts as a multilayer mirror
6888307, Aug 21 2001 UNIVERSAL DISPLAY CORPORATION Patterned oxygen and moisture absorber for organic optoelectronic device structures
6891330, Mar 29 2002 BOE TECHNOLOGY GROUP CO , LTD Mechanically flexible organic electroluminescent device with directional light emission
6897474, Apr 12 2002 UNIVERSAL DISPLAY CORPORATION Protected organic electronic devices and methods for making the same
6897607, Sep 25 2000 Pioneer Corporation Organic electroluminescent display panel having an inorganic barrier film
6905769, Jun 08 2001 DAI NIPPON PRINTING CO , LTD Gas barrier film
6923702, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method of making encapsulated display devices
6936131, Jan 31 2002 3M Innovative Properties Company Encapsulation of organic electronic devices using adsorbent loaded adhesives
6975067, Dec 19 2002 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
6994933, Sep 16 2002 OAK RIDGE MICRO ENERGY, INC , A NEVADA CORPORATION Long life thin film battery and method therefor
6998648, Aug 25 2003 UNIVERSAL DISPLAY CORPORATION Protected organic electronic device structures incorporating pressure sensitive adhesive and desiccant
7002294, Dec 20 2001 UNIVERSAL DISPLAY CORPORATION Method of protecting organic optoelectronic devices
7012363, Jan 10 2002 UNIVERSAL DISPLAY CORPORATION OLEDs having increased external electroluminescence quantum efficiencies
7015640, Sep 11 2002 BOE TECHNOLOGY GROUP CO , LTD Diffusion barrier coatings having graded compositions and devices incorporating the same
7018713, Apr 02 2003 3M Innovative Properties Company Flexible high-temperature ultrabarrier
7029765, Apr 22 2003 UNIVERSAL DISPLAY CORPORATION Organic light emitting devices having reduced pixel shrinkage
7033850, Jun 30 2004 Global Oled Technology LLC Roll-to-sheet manufacture of OLED materials
7056584, Oct 11 2002 SABIC INNOVATIVE PLASTICS IP B V Bond layer for coatings on plastic substrates
7086918, Dec 11 2002 Applied Materials, Inc. Low temperature process for passivation applications
7156942, Dec 19 2002 3M Innovative Properties Company Organic electroluminescent device and encapsulation method
7183197, Jun 25 2004 Applied Materials, Inc. Water-barrier performance of an encapsulating film
20010015074,
20010015620,
20020022156,
20020025444,
20020068143,
20020069826,
20020102363,
20020102818,
20020125822,
20020139303,
20020140347,
20030038590,
20030085652,
20030098647,
20030124392,
20030127973,
20030184222,
20030197197,
20030218422,
20030235648,
20040029334,
20040046497,
20040071971,
20040113542,
20040115402,
20040115859,
20040119028,
20040175512,
20040175580,
20040209090,
20040219380,
20040229051,
20040241454,
20040263038,
20050003098,
20050006786,
20050051094,
20050079295,
20050079380,
20050093001,
20050093437,
20050094394,
20050095736,
20050112378,
20050122039,
20050129841,
20050133781,
20050140291,
20050146267,
20050174045,
20050212419,
20050238846,
20060003474,
20060028128,
20060061272,
20060062937,
20060063015,
20060246811,
20060250084,
20070009674,
BE704297,
CA2353506,
DE19603746,
DE69615510,
EP147696,
EP299753,
EP340935,
EP390540,
EP468440,
EP547550,
EP590467,
EP722787,
EP777280,
EP777281,
EP787824,
EP787826,
EP915105,
EP916394,
EP931850,
EP977469,
EP1021070,
EP1127381,
EP1130420,
EP1278244,
EP1514317,
JP10013083,
JP10312883,
JP1041067,
JP11017106,
JP11040344,
JP11255928,
JP2000058258,
JP2002505969,
JP2006294780,
JP2183230,
JP3290375,
JP3579556,
JP414440,
JP4267097,
JP448515,
JP5182759,
JP6136159,
JP6158305,
JP6179644,
JP6234186,
JP63136316,
JP6396895,
JP6418441,
JP6441192,
JP7074378,
JP7147189,
JP7192866,
JP8171988,
JP8179292,
JP8325713,
JP872188,
JP9059763,
JP9132774,
JP9161967,
JP9232553,
WO26973,
WO35603,
WO35604,
WO35993,
WO36661,
WO36665,
WO168360,
WO181649,
WO182336,
WO182389,
WO187825,
WO189006,
WO226978,
WO3016589,
WO3098716,
WO2004006199,
WO2004016992,
WO2004070840,
WO2004089620,
WO2005015655,
WO2005045947,
WO2005048368,
WO2006036492,
WO8707848,
WO9510117,
WO9623217,
WO9704885,
WO9716053,
WO9722631,
WO9800337,
WO9810116,
WO9818852,
WO9916557,
WO9916931,
WO9946120,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 12 2004Battelle Memorial Institute(assignment on the face of the patent)
Oct 28 2010Battelle Memorial InstituteSAMSUNG MOBILE DISPLAY CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0255160773 pdf
Jul 02 2012SAMSUNG MOBILE DISPLAY CO , LTD SAMSUNG DISPLAY CO , LTD MERGER SEE DOCUMENT FOR DETAILS 0289120083 pdf
Date Maintenance Fee Events
Feb 08 2010REM: Maintenance Fee Reminder Mailed.
Jun 15 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 15 2010M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Dec 12 2013ASPN: Payor Number Assigned.
Dec 24 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 07 20114 years fee payment window open
Apr 07 20126 months grace period start (w surcharge)
Oct 07 2012patent expiry (for year 4)
Oct 07 20142 years to revive unintentionally abandoned end. (for year 4)
Oct 07 20158 years fee payment window open
Apr 07 20166 months grace period start (w surcharge)
Oct 07 2016patent expiry (for year 8)
Oct 07 20182 years to revive unintentionally abandoned end. (for year 8)
Oct 07 201912 years fee payment window open
Apr 07 20206 months grace period start (w surcharge)
Oct 07 2020patent expiry (for year 12)
Oct 07 20222 years to revive unintentionally abandoned end. (for year 12)