A multilayer plastic substrate. The substrate comprises a plurality of thin film layers of at least one polymer, the plurality of thin film layers being adjacent to one another and having sufficient strength to be self-supporting, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
|
1. A multilayer plastic substrate consisting essentially of:
a plurality of flash evaporated thin film layers of at least one polymer, the plurality of thin film layers being adjacent to one another and having sufficient strength to be self-supporting, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%, wherein the multilayer plastic substrate comprises at least about 50 thin film layers, and wherein the multilayer plastic substrate has a surface roughness of less than about 10 nm.
2. The multilayer plastic substrate of
3. The multilayer plastic substrate of
4. The multi layer plastic substrate of
5. The multilayer plastic substrate of
6. The multilayer plastic substrate of
7. The multilayer plastic substrate of
8. The multilayer plastic substrate of
9. The multilayer plastic substrate of
10. The multilayer plastic substrate of
11. The multilayer plastic substrate of
12. The multilayer plastic substrate of
13. The multilayer plastic substrate of
14. The multilayer plastic substrate of
15. The multilayer plastic substrate of
16. The multilayer plastic substrate of
17. The multilayer plastic substrate of
18. The multilayer plastic substrate of
19. The multilayer plastic substrate of
20. The multilayer plastic substrate of
21. The multilayer plastic substrate of
23. The multilayer plastic substrate of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 09/427,138, filed Oct. 25, 1999, entitled “Environmental Barrier Material For Organic Light Emitting Device and Method Of Making,” now U.S. Pat. No. 6,522,067, issued Feb. 18, 2003.
The present invention relates generally to plastic substrates which may be useful in products including, but not limited to, visual display devices, and more particularly to multilayer plastic substrates having improved light transmittance.
As used herein, the term “(meth)acrylic” is defined as “acrylic or methacrylic.” Also, (meth)acrylate is defined as “acrylate or methacrylate.”
As used herein, the term “average visible light transmittance” means the average light transmittance over the visible range from 400 to 800 nm.
As used herein, the term “peak visible light transmittance” means the peak light transmittance over the visible range from 400 to 800 nm.
As used herein, the term “polymer precursor” includes monomers, oligomers, and resins, and combinations thereof. As used herein, the term “monomer” is defined as a molecule of simple structure and low molecular weight that is capable of combining with a number of like or unlike molecules to form a polymer. Examples include, but are not limited to, simple acrylate molecules, for example, hexanedioldiacrylate, or tetraethyleneglycoldiacrylate, styrene, methyl styrene, and combinations thereof. The molecular weight of monomers is generally less than 1000, while for fluorinated monomers, it is generally less than 2000. Monomers may be combined to form oligomers and resins but do not combine to form other monomers.
As used herein, the term “oligomer” is defined as a compound molecule of at least two monomers that maybe cured by radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing. Oligomers include low molecular weight resins. Low molecular weight is defined herein as about 1000 to about 20,000 exclusive of fluorinated monomers. Oligomers are usually liquid or easily liquifiable. Oligomers do not combine to form monomers.
As used herein, the term “resin” is defined as a compound having a higher molecular weight (generally greater than 20,000) which is generally solid with no definite melting point. Examples include, but are not limited to, polystyrene resins, epoxy polyamine resins, phenolic resins, and acrylic resins (for example, polymethylmethacrylate), and combinations thereof.
There is a need for versatile visual display devices for electronic products of many different types. Although many current displays use glass substrates, manufacturers have attempted to produce commercial products, primarily liquid crystal display devices, using unbreakable plastic substrates. These attempts have not been completely successful to date because of the quality, temperature, and permeation limitations of polymeric materials. Flexible plastic substrates, such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and polyether sulfone (PES), have been used in thicknesses from about 0.004 inches to 0.007 inches. However, the surface quality of these substrates is often poor, with the surface having large numbers of scratches, digs, pits, and other defects.
In addition, many polymers exhibit poor oxygen and water vapor permeation resistance, often several orders of magnitude below what is required for product performance. For example, the oxygen transmission rates for materials such polyethylene terephthalate (PET) are as high as 1550 cc/m2/day/micron of thickness (or 8.7 cc/m2/day for 7 mil thickness PET), and the water vapor transmission rates are also in this range. Certain display applications, such as those using organic light emitting devices (OLEDs), require encapsulation that has a maximum oxygen transmission rate of 10−4 to 10−2 cc/m2/day, and a maximum water vapor transmission rate of 10−5 to 10−6 g/m2/day.
Barrier coatings have been applied to plastic substrates to decrease their gas and liquid permeability. Barrier coatings typically consist of single layer thin film inorganic materials, such as Al, SiOx, AlOx, and Si3N4 vacuum deposited on polymeric substrates. A single layer coating on PET reduces oxygen permeability to levels of about 0.1 to 1.0 cc/m2/day, and water vapor permeability of about 0.1 to 1.0 g/m2/day. However, those levels are still insufficient for many display devices.
Additionally, many processes used in the manufacture of displays require relatively high temperatures that most polymer substrates cannot tolerate. For example, the recrystallization of amorphous Si to poly-Si in thin film transistors requires substrate temperatures of at least 160°-250° C., even with pulsed excimer laser anneals. The conductivity of a transparent electrode, which is typically made of indium tin oxide (ITO), is greatly improved if deposition occurs above 220° C. Polyimide curing generally requires temperatures of 250° C. In addition, many of the photolithographic process steps for patterning electrodes are operated in excess of 120° C. to enhance processing speeds in the fabrication. These processes are used extensively in the manufacture of display devices, and they have been optimized on glass and silicon substrates. The high temperatures needed for such processes can deform and damage a plastic substrate, and subsequently destroy the display. If displays are to be manufactured on flexible plastic materials, the plastic must be able to withstand the necessary processing conditions, including high temperatures over 100° C., harsh chemicals, and mechanical damage.
Thus, there is a need for an improved plastic substrate for visual display devices, and for a method of making such a substrate.
The present invention meets this need by providing a multilayer plastic substrate. The substrate consists essentially of a plurality of thin film layers of at least one polymer, the plurality of thin films layers being adjacent to one another and having sufficient strength to be self-supporting, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%. The average visible light transmittance is typically greater than about 85%, and it can be greater than about 90%. The peak visible transmittance is typically greater than about 85% and it can be greater than about 90%.
There are typically at least about 50 thin film layers. The number of layers depends on the thickness of the thin film layers and the desired overall thickness of the multilayer plastic substrate. The multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick. Each thin film layer is typically less than about 50 μm thick.
Polymers include, but are not limited to (meth)acrylate-containing polymers, styrene containing polymers, methyl styrene containing polymers, and fluorinated polymers, and combinations thereof. The glass transition temperature of the at least one polymer is generally greater than about 150° C., and it may be greater than about 200° C.
The surface roughness of the multilayer plastic substrate is generally less than about 10 nm, and it may be less than about 5 nm, or less than about 2 nm.
The multilayer plastic substrate can have a refractive index of greater than about 1.4 or greater than about 1.5.
The multilayer plastic substrate can include additional layers, including, but not limited to, scratch resistant layers, antireflective coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, to provide functionality to the substrate if desired.
Another aspect of the invention involves a method of making the multilayer plastic substrate. The method includes providing a support, depositing a plurality of thin film layers of at least one polymer on the support so that the plurality of thin film layers have sufficient strength to be self-supporting to form the multilayer substrate, and removing the support from the multilayer substrate, wherein the multilayer plastic substrate has an average visible light transmittance of greater than about 80%.
The thin film layers can be deposited in a vacuum. One example of a vacuum deposition process is flash evaporation. In this method, depositing the plurality of thin film layers includes flash evaporating a polymer precursor, condensing the polymer precursor as a liquid film, and cross-linking the polymer precursor to form the polymer. The polymer precursor can be cross-linked by any suitable method, including, but not limited to, radiation curing, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing.
Alternatively, the plurality of thin film layers can be deposited by extruding or casting a layer of polymer precursor, and cross-linking the polymer precursor to form the polymer using any suitable cross-linking method.
Accordingly, it is an object of the present invention to provide an improved, multilayer plastic substrate and to provide a method of making such a substrate.
The multilayer plastic substrate of the present invention consists essentially of a plurality of thin film layers 120 of at least one polymer adjacent to one another. By adjacent, we mean next to, but not necessarily directly next to. In most of the multilayer plastic substrate, the polymer thin film layers will be directly next to one another. However, there can be additional layers intervening between some adjacent layers in order to provide additional functionality to the multilayer plastic substrate, as shown in FIG. 1 and described below.
The plurality of thin film layers have sufficient strength to be self-supporting after they are formed. The exact number of thin film layers is not critical. It depends on the thickness of each of the individual thin film layers and the desired overall thickness of the multilayer plastic substrate. There must be enough thin film layers so that the plurality of thin film layers have sufficient strength to be self-supporting. As used herein, the term self-supporting means the substrate can be handled and processed without the need for an underlying support once the plurality of thin film layers have been deposited. There are typically at least about 50 thin film layers, more typically at least about 100 thin film layers. There are generally in the range of about 500 thin film layers to about 1000 thin film layers or more. Each thin film layer is typically between about 0.05 to about 2 μm thick, generally between about 0.2 to about 0.3 μm. If the thin film layers are extruded, they are usually thicker, typically up to about 50 μm thick, in that case. The multilayer plastic substrate is typically at least about 0.001 inches thick, and generally at least about 0.004 inches thick. A 0.007 inch thick substrate would require about 90 to 350 passes of the web past the polymer precursor sources. The multilayer plastic substrate can be flexible or rigid.
The average visible light transmittance of the multilayer plastic substrate is greater than about 80%, generally greater than 85%, and it may be greater than 90%. The peak visible light transmittance is generally greater than 85%, and it may be greater than 90%.
The at least one polymer can be any suitable polymer, including, but not limited to, polymers made from styrene polymer precursors, polymers made from methyl styrene polymer precursors, polymers made from (meth)acrylate polymer precursors, for example, polymers made from hexanedioldiacrylate or tetraethyleneglycoldiacrylate polymer precursors, and fluorinated polymers, and combinations thereof. Polymers made from (meth)acrylate polymer precursors work well.
The multilayer plastic substrate can be flexible or rigid. Multilayer plastic substrates made from polymers including, but not limited to, (meth)acrylate polymer precursors will be flexible. One advantage of multilayer laminated materials is that they typically have greater strength and flexibility than comparable single layer substrates. A multilayer plastic substrate of the present invention generally has hundreds of cross-linked layers that provide mechanical strength and sufficient rigidity to support the circuitry and devices on the display.
A multilayer plastic substrate made from (meth)acrylate polymer precursors will have excellent transmission at visible wavelengths. Because polymers made from (meth) acrylate polymer precursors have very low optical absorption, a multilayer plastic substrate made entirely from such polymers will have high optical transparency, typically an average visible light transmittance of greater than about 90%. Multilayer substrates made entirely from fluorinated polymers will also have an average visible light transmittance of greater than 90%. Substrates made from styrene and methyl styrene polymers would have an average visible light transmittance of about 89%.
The birefringence present in many flexible substrates can be reduced or eliminated with the present invention because the multilayer plastic substrate is not mechanically stressed during deposition.
Fully cured layers of polymers made from (meth)acrylate polymer precursors generally have a refractive index of greater than about 1.5, while fully cured fluorinated polymers generally have a refractive index of greater than about 1.4. Styrene containing polymers would have a refractive index of about 1.6.
Many optical applications, such as mirrors and reflectors, and display applications, such as organic light emitting devices, require substrates with a surface roughness of less than 2 nm. Surface roughness is the root mean square of peak-to-valley measurement over a specified distance, usually 1 nm. It can be measured using an atomic force microscope or back reflection distribution function. Many substrates do not have the necessary surface smoothness. For example, the surface roughness of PET is about 20-50 nm with 100 nm spikes. In contrast, flash evaporated polymer coatings have a very low surface roughness, generally less than about 10 nm, and it may be less than 5 nm, or less than about 2 nm. Surface roughness on the order of 1 nm has been demonstrated. The surface of the multilayer plastic substrate is specular because of the exceptional smoothness of the polymer layers.
Because the polymer material is highly cross-linked, the multilayer plastic substrate can have a high glass transition temperature and excellent chemical resistance. The glass transition temperature of the at least one polymer is generally greater than about 150° C., and may be greatr than about 200° C.
Polymers including, but not limited to, (meth)acrylates, polycarbonates, polysulfones, polyethersulfones, polymides, polyamides, and polyether napthteates have demonstrated excellent resistance to solvents. This provides protection from processing chemicals, ultraviolet light exposure, and photoresists during lithography processes used to manufacture flat panel displays and their devices.
The thin film layers that form the multilayer substrate can be deposited by any suitable method, including vacuum flash evaporation, extrusion, or casting. With vacuum flash evaporation, deposition can be performed using a rotating drum or strap configuration. The polymer precursor is degassed and metered into a hot tube where it flash evaporates and exits through a nozzle as a polymer precursor gas.
The flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, continuously atomizing the polymer precursor into a continuous flow of droplets, and continuously vaporizing the droplets by continuously contacting the droplets on a heated surface having a temperature at or above a boiling point of the liquid polymer precursor, but below a pyrolysis temperature, forming the evaporate. The droplets typically range in size from about 1 micrometer to about 50 micrometers, by they could be smaller or larger.
Alteratively, the flash evaporating may be performed by supplying a continuous liquid flow of the polymer precursor into a vacuum environment at a temperature below both the decomposition temperature and the polymerization temperature of the polymer precursor, and continuously directly vaporizing the liquid flow of the polymer precursor by continuously contacting the liquid polymer precursor on a heated surface having a temperature at or above the boiling point of the liquid polymer precursor, but below the pyrolysis temperature, forming the evaporate. This may be done using the vaporizer disclosed in U.S. Pat. Nos. 5,402,314, 5,536,323, and 5,711,816, which are incorporated herein by reference.
The polymer precursor then condenses on the support as a liquid film which is subsequently cross-linked to form a polymer by any suitable method, including, but not limited to, radiation, such as ultraviolet, electron beam, or x-ray, glow discharge ionization, and spontaneous thermally induced curing. This process is capable of depositing thousands of polymer layers at web speeds up to 100 m/min.
Alteratively, after degassing, the polymer precursor can be deposited by extruding, spraying, or casting layers of polymer precursor on the support. The polymer precursor is then cross-linked using any suitable method, such as those described above.
The functionality of the multilayer plastic substrate can be increased by the incorporation of functional layers 130, 140, and 150 during the deposition process. These functional layers 130, 140, and 150 can be deposited at any time during the deposition process. They can be deposited below, 130, in between, 140, or on top of, 150, the plurality of thin film layers 120 of the multilayer plastic substrate, as shown in FIG. 1. As used herein, depositing a coating adjacent to the multilayer plastic substrate includes: depositing the coating on the top layer of the multilayer plastic coating; depositing the coating on the multilayer plastic substrate and then depositing additional layers of the multilayer plastic substrate over the coating so that the coating is between the layers of the multilayer plastic substrate; and depositing the coating first and then depositing the layers of the multilayer plastic substrate, and combinations thereof. Functional layers 130, 140, and 150 include, but are not limited to, scratch resistant coatings, antirefelctive coatings, antifingerprint coatings, antistatic coatings, conductive coatings, transparent conductive coatings, and barrier coatings, and other functional layers. Depositing these additional layers allows the multilayer plastic substrate to be specifically tailored to different applications. Little or no surface modification is necessary for deposition of other layers because of the very smooth surface of the multilayer plastic substrate. Interfaces can be graded to bond all integrated functional layers firmly during the same coating run and pumpdown.
For some applications, it may be important that the presence of functional layers not reduce the average visible light transmittance below 80%, for others, not below 85%, and still others, not below 90%. In others, it may be important that the peak visible light transmittance not drop below 85%, and for others, not below 90%. In others, it may be important that the functional layers not increase the surface roughness to greater than about 10 nm, for others, not greater than about 5 nm, and for others, not greater than 2 nm.
One type of functional layer that can be included is a barrier coating. One example of a barrier coating is described in application Ser. No. 09/427,138, filed Oct. 25, 1999, entitled “Environmental Barrier Material for Organic Light Emitting Device and Method of Making,” which is incorporated herein by reference. The barrier coating can be a barrier stack having one or more barrier layers and one or more polymer layers. There could be one polymer layer and one barrier layer, there could be one or more polymer layers on one side of one or more barrier layers, or there could be one or more polymer layers on both sides of one or more barrier layers. The important feature is that the barrier stack have at least one polymer layer and at least one barrier layer. The barrier layers and polymer layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically in the range of about 100-400 Å thick, and the polymer layers are typically in the range of about 1000-10,000 Å thick.
The number of barrier stacks is not limited. The number of barrier stacks needed depends on the material used for the polymer of the substrate and the level of permeation resistance needed for the particular application. One or two barrier stacks should provide sufficient barrier properties for some applications. The most stringent applications may require five or more barrier stacks.
The barrier layers should be transparent. Transparent barrier materials include, but are not limited to, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof. The metal oxides include, but are not limited to, silicon oxide, aluminum oxide, titanium oxide, indium oxide, tin oxide, indium tin oxide, tantalum oxide, zirconium oxide, niobium oxide, and combinations thereof. The metal carbides include, but are not limited to, boron carbide, tungsten carbide, silicon carbide, and combinations thereof. The metal nitrides include, but are not limited to, aluminum nitride, silicon nitride, boron nitride, and combinations thereof. The metal oxynitrides include, but are not limited to, aluminum oxynitride, silicon oxynitride, boron oxynitride, and combinations thereof. The metal oxyborides include, but are not limited to, zirconium oxyboride, titanium oxyboride, and combinations thereof.
The polymer layers of the barrier stacks can be made from (meth)acrylate polymer precursors. The polymer layers in the barrier stacks can be the same or different.
The barrier stacks can be made by vacuum deposition. The barrier layer can be vacuum deposited onto, or into, the multilayer plastic substrate, or another functional layer. The polymer layer is then deposited on the barrier layer, preferably by flash evaporating (meth)acrylate polymer precursors, condensing on the barrier layer, and polymerizing in situ in a vacuum chamber. U.S. Pat. Nos. 5,440,446 and 5,725,909, which are incorporated herein by reference, describe methods of depositing thin film, barrier stacks.
Vacuum deposition includes flash evaporation of (meth) acrylate polymer precursors with in situ polymerization under vacuum, plasma deposition and polymerization of (meth)acrylate polymer precursors, as well as vacuum deposition of the barrier layers by sputtering, chemical vapor deposition, plasma enhanced chemical vapor deposition, evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof.
In order to protect the integrity of the barrier layer, the formation of defects and/or microcracks in the deposited layer subsequent to deposition and prior to downstream processing should be avoided. The multilayer plastic substrate is preferably manufactured so that the barrier layers are not directly contacted by any equipment, such as rollers in a web coating system, to avoid defects that may be caused by abrasion over a roll or roller. This can be accomplished by designing the deposition system such that the barrier layers are always covered by polymer layers prior to contacting or touching any handling equipment.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.
Gross, Mark E., Martin, Peter M., Graff, Gordon L., Hall, Michael G., Mast, Eric S.
Patent | Priority | Assignee | Title |
10016338, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | Trilayer coated pharmaceutical packaging |
10189603, | Nov 11 2011 | SIO2 MEDICAL PRODUCTS, LLC | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
10201660, | Nov 30 2012 | SIO2 MEDICAL PRODUCTS, LLC | Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like |
10270048, | Mar 28 2014 | HOTALUX, LTD | Organic EL panel translucent substrate, control method for refractive index anisotrophy of organic EL panel translucent substrate, manufacturing method for organic EL panel translucent substrate, organic EL panel, and organic EL device |
10363370, | Nov 30 2012 | SIO2 MEDICAL PRODUCTS, LLC | Controlling the uniformity of PECVD deposition |
10390744, | May 13 2009 | SIO2 MEDICAL PRODUCTS, LLC | Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel |
10537273, | May 13 2009 | SIO2 MEDICAL PRODUCTS, LLC | Syringe with PECVD lubricity layer |
10537494, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | Trilayer coated blood collection tube with low oxygen transmission rate |
10577154, | Nov 11 2011 | SIO2 MEDICAL PRODUCTS, LLC | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
10912714, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | PECVD coated pharmaceutical packaging |
11066745, | Mar 28 2014 | SIO2 MEDICAL PRODUCTS, LLC | Antistatic coatings for plastic vessels |
11077233, | Aug 18 2015 | SIO2 MEDICAL PRODUCTS, LLC | Pharmaceutical and other packaging with low oxygen transmission rate |
11116695, | Nov 11 2011 | SIO2 MEDICAL PRODUCTS, LLC | Blood sample collection tube |
11123491, | Nov 12 2010 | SIO2 MEDICAL PRODUCTS, LLC | Cyclic olefin polymer vessels and vessel coating methods |
11148856, | Nov 11 2011 | SIO2 MEDICAL PRODUCTS, LLC | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
11298293, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | PECVD coated pharmaceutical packaging |
11344473, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | Coated packaging |
11393679, | Jun 13 2016 | GVD Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
11406765, | Nov 30 2012 | SIO2 MEDICAL PRODUCTS, LLC | Controlling the uniformity of PECVD deposition |
11624115, | May 12 2010 | SIO2 MEDICAL PRODUCTS, LLC | Syringe with PECVD lubrication |
11679412, | Jun 13 2016 | GVD Corporation | Methods for plasma depositing polymers comprising cyclic siloxanes and related compositions and articles |
11684546, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | PECVD coated pharmaceutical packaging |
11724860, | Nov 11 2011 | SIO2 MEDICAL PRODUCTS, LLC | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
11884446, | Nov 11 2011 | SIO2 MEDICAL PRODUCTS, LLC | Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus |
7985188, | May 13 2009 | SIO2 MEDICAL PRODUCTS, LLC | Vessel, coating, inspection and processing apparatus |
8227040, | Dec 29 2006 | 3M Innovative Properties Company | Method of curing metal alkoxide-containing films |
8512796, | May 13 2009 | SIO2 MEDICAL PRODUCTS, LLC | Vessel inspection apparatus and methods |
8834954, | May 13 2009 | SIO2 MEDICAL PRODUCTS, LLC | Vessel inspection apparatus and methods |
8846169, | Dec 28 2007 | 3M Innovative Properties Company | Flexible encapsulating film systems |
9272095, | Apr 01 2011 | SIO2 MEDICAL PRODUCTS, LLC | Vessels, contact surfaces, and coating and inspection apparatus and methods |
9312512, | Jan 02 2014 | Samsung Display Co., Ltd. | Flexible organic light-emitting display apparatus and method of manufacturing the same |
9458536, | Jul 02 2009 | SIO2 MEDICAL PRODUCTS, LLC | PECVD coating methods for capped syringes, cartridges and other articles |
9481927, | Jun 30 2008 | 3M Innovative Properties Company | Method of making inorganic or inorganic/organic hybrid barrier films |
9545360, | May 09 2012 | SIO2 MEDICAL PRODUCTS, LLC | Saccharide protective coating for pharmaceutical package |
9554968, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | Trilayer coated pharmaceutical packaging |
9572526, | May 13 2009 | SIO2 MEDICAL PRODUCTS, LLC | Apparatus and method for transporting a vessel to and from a PECVD processing station |
9662450, | Mar 01 2013 | SIO2 MEDICAL PRODUCTS, LLC | Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus |
9664626, | Nov 01 2012 | SIO2 MEDICAL PRODUCTS, LLC | Coating inspection method |
9698361, | Mar 28 2014 | HOTALUX, LTD | Organic EL panel translucent substrate, control method for refractive index anisotropy of organic EL panel translucent substrate, manufacturing method for organic EL panel translucent substrate, organic EL panel, and organic EL device |
9764093, | Nov 30 2012 | SIO2 MEDICAL PRODUCTS, LLC | Controlling the uniformity of PECVD deposition |
9863042, | Mar 15 2013 | SIO2 MEDICAL PRODUCTS, LLC | PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases |
9878101, | Nov 12 2010 | SIO2 MEDICAL PRODUCTS, LLC | Cyclic olefin polymer vessels and vessel coating methods |
9903782, | Nov 16 2012 | SIO2 MEDICAL PRODUCTS, LLC | Method and apparatus for detecting rapid barrier coating integrity characteristics |
9937099, | Mar 11 2013 | SIO2 MEDICAL PRODUCTS, LLC | Trilayer coated pharmaceutical packaging with low oxygen transmission rate |
Patent | Priority | Assignee | Title |
2382432, | |||
2384500, | |||
3475307, | |||
3607365, | |||
3941630, | Apr 29 1974 | RCA Corporation | Method of fabricating a charged couple radiation sensing device |
4061835, | Feb 27 1975 | Standard Oil Company (Indiana) | Process of forming a polypropylene coated substrate from an aqueous suspension of polypropylene particles |
4098965, | Jan 24 1977 | Polaroid Corporation | Flat batteries and method of making the same |
4266223, | Dec 08 1978 | W. H. Brady Co. | Thin panel display |
4283482, | Mar 29 1979 | Nihon Shinku Gijutsu Kabushiki Kaisha | Dry Lithographic Process |
4313254, | Oct 30 1979 | The Johns Hopkins University | Thin-film silicon solar cell with metal boride bottom electrode |
4426275, | Nov 27 1981 | BRUNSWICK CORPORATION, A CORP OF DE | Sputtering device adaptable for coating heat-sensitive substrates |
4521458, | Apr 01 1983 | 116736 CANADA INC , A COMPANY OF CANADA | Process for coating material with water resistant composition |
4537814, | Jan 27 1983 | TOYODA GOSEI CO , LTD | Resin article having a ceramics coating layer |
4555274, | Mar 15 1982 | Fuji Photo Film Co., Ltd. | Ion selective electrode and process of preparing the same |
4557978, | Dec 12 1983 | Primary Energy Research Corporation | Electroactive polymeric thin films |
4572845, | Jul 05 1983 | Draiswerke GmbH | Process for gluing wood chips and the like with liquid glue and apparatus for performing the process |
4581337, | Jul 07 1983 | DADE BEHRING INC ; BADE BEHRING INC | Polyether polyamines as linking agents for particle reagents useful in immunoassays |
4624867, | Mar 21 1984 | NIHON SHINKU GIJUTSU KABUSHIKI KAISHA, ALSO TRADING AS ULVAC CORPORATION | Process for forming a synthetic resin film on a substrate and apparatus therefor |
4695618, | May 23 1986 | AMERON INTERNATIONAL CORPORATION, A CORPORATION OF DELAWARE | Solventless polyurethane spray compositions and method for applying them |
4710426, | Nov 28 1983 | Polaroid Corporation, Patent Dept. | Solar radiation-control articles with protective overlayer |
4722515, | Nov 06 1984 | SPECTRUM CONTROL, INC | Atomizing device for vaporization |
4768666, | May 26 1987 | Tamper proof container closure | |
4842893, | Dec 19 1983 | 3M Innovative Properties Company | High speed process for coating substrates |
4843036, | Jun 29 1987 | Eastman Kodak Company | Method for encapsulating electronic devices |
4854186, | Dec 02 1987 | KUSTER + CO GMBH | Apparatus for adjusting the length of a bowden cable |
4855186, | Mar 06 1987 | Hoechst Aktiengesellschaft | Coated plastic film and plastic laminate prepared therefrom |
4889609, | Sep 06 1988 | OIS OPTICAL IMAGING SYSTEMS, INC | Continuous dry etching system |
4913090, | Oct 02 1987 | Mitsubishi Denki Kabushiki Kaisha | Chemical vapor deposition apparatus having cooling heads adjacent to gas dispersing heads in a single chamber |
4931158, | Mar 22 1988 | The Regents of the Univ. of Calif. | Deposition of films onto large area substrates using modified reactive magnetron sputtering |
4934315, | Jul 23 1984 | Alcatel N.V. | System for producing semicondutor layer structures by way of epitaxial growth |
4954371, | Jun 23 1986 | 3M Innovative Properties Company | Flash evaporation of monomer fluids |
4977013, | Jun 03 1988 | ABLECO FINANCE LLC, AS COLLATERAL AGENT | Tranparent conductive coatings |
5032461, | Dec 19 1983 | 3M Innovative Properties Company | Method of making a multi-layered article |
5036249, | Dec 11 1989 | Molex Incorporated | Electroluminescent lamp panel and method of fabricating same |
5047131, | Nov 08 1989 | Von Ardenne Anlagentechnik GmbH; Applied Films Corporation | Method for coating substrates with silicon based compounds |
5059861, | Jul 26 1990 | Global Oled Technology LLC | Organic electroluminescent device with stabilizing cathode capping layer |
5124204, | Jul 14 1988 | Sharp Kabushiki Kaisha | Thin film electroluminescent (EL) panel |
5189405, | Jan 26 1989 | Sharp Kabushiki Kaisha | Thin film electroluminescent panel |
5203898, | Dec 16 1991 | Corning Incorporated | Method of making fluorine/boron doped silica tubes |
5204314, | Jul 06 1990 | Entegris, Inc | Method for delivering an involatile reagent in vapor form to a CVD reactor |
5237439, | Sep 30 1991 | Sharp Kabushiki Kaisha | Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide |
5260095, | Aug 21 1992 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers |
5336324, | Dec 04 1991 | Veeco Instruments INC | Apparatus for depositing a coating on a substrate |
5354497, | Apr 20 1992 | Sharp Kabushiki Kaisha | Liquid crystal display |
5356947, | Mar 29 1990 | Minnesota Mining and Manufacturing Company | Controllable radiation curable photoiniferter prepared adhesives for attachment of microelectronic devices and a method of attaching microelectronic devices therewith |
5376467, | Mar 26 1992 | Sony Corporation | Organic electrolyte battery |
5393607, | Jan 13 1992 | Mitsui Chemicals, Inc | Laminated transparent plastic material and polymerizable monomer |
5395644, | Aug 21 1992 | Battelle Memorial Institute; Battelle Memorial Institute K1-53 | Vacuum deposition and curing of liquid monomers |
5402314, | Feb 10 1992 | Sony Corporation | Printed circuit board having through-hole stopped with photo-curable solder resist |
5427638, | Jun 04 1992 | AlliedSignal Inc. | Low temperature reaction bonding |
5440446, | Oct 04 1993 | 3M Innovative Properties Company | Acrylate coating material |
5451449, | May 11 1994 | ENGELHARD CORPORATION, A CORPORATION OF NEW JERSEY | Colored iridescent film |
5461545, | Aug 24 1990 | Thomson-CSF | Process and device for hermetic encapsulation of electronic components |
5464667, | Aug 16 1994 | Minnesota Mining and Manufacturing Company | Jet plasma process and apparatus |
5510173, | Aug 20 1993 | SOUTHWALL TECHNOLOGIES INC | Multiple layer thin films with improved corrosion resistance |
5512320, | Jan 28 1993 | Applied Materials, Inc. | Vacuum processing apparatus having improved throughput |
5536323, | Jul 06 1990 | Entegris, Inc | Apparatus for flash vaporization delivery of reagents |
5547508, | Aug 21 1992 | Battelle Memorial Institute | Vacuum deposition and curing of liquid monomers apparatus |
5554220, | May 19 1995 | PORTAL CONNECT, INC | Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities |
5576101, | Dec 18 1992 | Bridgestone Corporation | Gas barrier rubber laminate for minimizing refrigerant leakage |
5578141, | Jul 01 1993 | Canon Kabushiki Kaisha | Solar cell module having excellent weather resistance |
5607789, | Jan 23 1995 | GILLETTE COMPANY, THE | Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same |
5620524, | Feb 27 1995 | IPPRIME INC | Apparatus for fluid delivery in chemical vapor deposition systems |
5629389, | Jun 06 1995 | Innolux Corporation | Polymer-based electroluminescent device with improved stability |
5652192, | Jul 10 1992 | Battelle Memorial Institute; Battelle Memorial Institute K1-53 | Catalyst material and method of making |
5654084, | Jul 22 1994 | Martin Marietta Energy Systems, Inc. | Protective coatings for sensitive materials |
5660961, | Jan 11 1996 | Xerox Corporation | Electrophotographic imaging member having enhanced layer adhesion and freedom from reflection interference |
5665280, | Jan 30 1996 | Blood collection tube assembly | |
5681615, | Jul 27 1995 | Battelle Memorial Institute | Vacuum flash evaporated polymer composites |
5681666, | Jan 23 1995 | GILLETTE COMPANY, THE | Light transparent multilayer moisture barrier for electrochemical celltester and cell employing same |
5684084, | Dec 21 1995 | AXALTA COATING SYSTEMS IP CO , LLC | Coating containing acrylosilane polymer to improve mar and acid etch resistance |
5686360, | Nov 30 1995 | UNIVERSAL DISPLAY CORPORATION | Passivation of organic devices |
5693956, | Jul 29 1996 | UNIVERSAL DISPLAY CORPORATION | Inverted oleds on hard plastic substrate |
5695564, | Aug 19 1994 | Tokyo Electron Limited | Semiconductor processing system |
5711816, | Jul 06 1990 | Entegris, Inc | Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same |
5725909, | Oct 04 1993 | 3M Innovative Properties Company | Acrylate composite barrier coating process |
5731661, | Jul 15 1996 | UNIVERSAL DISPLAY CORPORATION | Passivation of electroluminescent organic devices |
5736207, | Oct 27 1994 | SCHOTT AG | Vessel of plastic having a barrier coating and a method of producing the vessel |
5747182, | Jul 27 1992 | Cambridge Display Technology Limited | Manufacture of electroluminescent devices |
5757126, | Nov 30 1995 | UNIVERSAL DISPLAY CORPORATION | Passivated organic device having alternating layers of polymer and dielectric |
5759329, | Jan 06 1992 | MARTINREA INDUSTRIES INC | Fluoropolymer composite tube and method of preparation |
5771177, | May 17 1993 | Kyoei Automatic Control Technology Co., Ltd. | Method and apparatus for measuring dynamic load |
5771562, | May 02 1995 | UNIVERSAL DISPLAY CORPORATION | Passivation of organic devices |
5782355, | Sep 30 1994 | FUJIFILM Corporation | Cassette case |
5792550, | Oct 24 1989 | JDS Uniphase Corporation | Barrier film having high colorless transparency and method |
5795399, | Jun 30 1994 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing apparatus, method for removing reaction product, and method of suppressing deposition of reaction product |
5811177, | Nov 30 1995 | UNIVERSAL DISPLAY CORPORATION | Passivation of electroluminescent organic devices |
5811183, | Apr 06 1995 | 3M Innovative Properties Company | Acrylate polymer release coated sheet materials and method of production thereof |
5821138, | Feb 16 1995 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device using a metal which promotes crystallization of silicon and substrate bonding |
5821692, | Nov 26 1996 | UNIVERSAL DISPLAY CORPORATION | Organic electroluminescent device hermetic encapsulation package |
5844363, | Jan 23 1997 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Vacuum deposited, non-polymeric flexible organic light emitting devices |
5869791, | Apr 18 1995 | U.S. Philips Corporation | Method and apparatus for a touch sensing device having a thin film insulation layer about the periphery of each sensing element |
5872355, | Apr 09 1997 | Innolux Corporation | Electroluminescent device and fabrication method for a light detection system |
5891554, | Feb 25 1994 | Idemitsu Kosan Co., Ltd. | Organic electroluminescence device |
5895228, | Nov 14 1996 | Innolux Corporation | Encapsulation of organic light emitting devices using Siloxane or Siloxane derivatives |
5902641, | Sep 29 1997 | SAMSUNG DISPLAY CO , LTD | Flash evaporation of liquid monomer particle mixture |
5902688, | Jul 16 1996 | AVAGO TECHNOLOGIES ECBU IP SINGAPORE PTE LTD | Electroluminescent display device |
5904958, | Mar 20 1998 | REXAM IMAGE PRODUCTS INC | Adjustable nozzle for evaporation or organic monomers |
5912069, | Dec 19 1996 | Sigma Laboratories of Arizona, LLC | Metal nanolaminate composite |
5919328, | Jan 30 1996 | Becton Dickinson and Company | Blood collection tube assembly |
5920080, | Jun 23 1997 | ALLIGATOR HOLDINGS, INC | Emissive display using organic light emitting diodes |
5922161, | Jun 30 1995 | Commonwealth Scientific and Industrial Research Organisation | Surface treatment of polymers |
5929562, | Apr 18 1995 | Cambridge Display Technology Limited | Organic light-emitting devices |
5934856, | May 23 1994 | Tokyo Electron Limited | Multi-chamber treatment system |
5945174, | Apr 06 1995 | 3M Innovative Properties Company | Acrylate polymer release coated sheet materials and method of production thereof |
5948552, | Aug 27 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Heat-resistant organic electroluminescent device |
5952778, | Mar 18 1997 | Innolux Corporation | Encapsulated organic light emitting device |
5955161, | Jan 30 1996 | Becton, Dickinson and Company | Blood collection tube assembly |
5965907, | Sep 29 1997 | UNIVERSAL DISPLAY CORPORATION | Full color organic light emitting backlight device for liquid crystal display applications |
5968620, | Jan 30 1996 | Becton Dickinson and Company | Blood collection tube assembly |
5994174, | Sep 29 1997 | Lawrence Livermore National Security LLC | Method of fabrication of display pixels driven by silicon thin film transistors |
5996498, | Mar 12 1998 | MARK ANDY, INC | Method of lithographic imaging with reduced debris-generated performance degradation and related constructions |
6013337, | Jan 30 1996 | Becton Dickinson and Company | Blood collection tube assembly |
6040017, | Oct 02 1998 | Sigma Laboratories of Arizona, LLC | Formation of multilayered photonic polymer composites |
6045864, | Dec 01 1997 | 3M Innovative Properties Company | Vapor coating method |
6066826, | Mar 16 1998 | Sigma Laboratories of Arizona, LLC | Apparatus for plasma treatment of moving webs |
6083313, | Jul 27 1999 | Sulzer Metaplas GmbH | Hardcoats for flat panel display substrates |
6083628, | Nov 04 1994 | Sigma Laboratories of Arizona, LLC | Hybrid polymer film |
6084702, | Oct 15 1998 | BYKER, HARLAN; BYKER, TERRI | Thermochromic devices |
6087007, | Sep 30 1994 | Kanegafuchi Kagaku Kogyo Kabushiki Kaisha | Heat-Resistant optical plastic laminated sheet and its producing method |
6092269, | Apr 04 1996 | Sigma Laboratories of Arizona, Inc. | High energy density capacitor |
6106627, | Apr 04 1996 | Sigma Laboratories of Arizona, Inc. | Apparatus for producing metal coated polymers |
6117266, | Apr 22 1997 | INTERUNIVERSIFAIR MICRO-ELEKTRONICA CENTRUM IMEC VZW | Furnace for continuous, high throughput diffusion processes from various diffusion sources |
6118218, | Feb 01 1999 | Sigma Laboratories of Arizona, LLC | Steady-state glow-discharge plasma at atmospheric pressure |
6146225, | Jul 30 1998 | Innolux Corporation | Transparent, flexible permeability barrier for organic electroluminescent devices |
6146462, | May 08 1998 | Sigma Laboratories of Arizona, LLC | Structures and components thereof having a desired surface characteristic together with methods and apparatuses for producing the same |
6150187, | Nov 20 1997 | UNILOC 2017 LLC | Encapsulation method of a polymer or organic light emitting device |
6165566, | Jan 30 1996 | Becton Dickinson and Company | Method for depositing a multilayer barrier coating on a plastic substrate |
6178082, | Feb 26 1998 | International Business Machines Corporation | High temperature, conductive thin film diffusion barrier for ceramic/metal systems |
6195142, | Dec 28 1995 | JOLED INC | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
6198217, | May 12 1997 | JOLED INC | Organic electroluminescent device having a protective covering comprising organic and inorganic layers |
6198220, | Jul 11 1997 | ALLIGATOR HOLDINGS, INC | Sealing structure for organic light emitting devices |
6203898, | Aug 29 1997 | 3M Innovative Properties Company | Article comprising a substrate having a silicone coating |
6207238, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition for high and/or low index of refraction polymers |
6207239, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition of conjugated polymer |
6214422, | Nov 04 1994 | Sigma Laboratories of Arizona, LLC | Method of forming a hybrid polymer film |
6217947, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced polymer deposition onto fixtures |
6224948, | Sep 29 1997 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition with low vapor pressure compounds |
6228434, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Method of making a conformal coating of a microtextured surface |
6228436, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Method of making light emitting polymer composite material |
6231939, | Oct 04 1993 | 3M Innovative Properties Company | Acrylate composite barrier coating |
6264747, | Dec 15 1997 | 3M Innovative Properties Company | Apparatus for forming multicolor interference coating |
6268695, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Environmental barrier material for organic light emitting device and method of making |
6274204, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Method of making non-linear optical polymer |
6322860, | Nov 02 1998 | Rohm and Haas Company | Plastic substrates for electronic display applications |
6333065, | Jul 25 1997 | TDK Corporation | Process for the production of an organic electroluminescent device |
6348237, | Aug 29 1997 | 3M Innovative Properties Company | Jet plasma process for deposition of coatings |
6350034, | Feb 26 1999 | 3M Innovative Properties Company | Retroreflective articles having polymer multilayer reflective coatings |
6352777, | Aug 19 1998 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Organic photosensitive optoelectronic devices with transparent electrodes |
6358570, | Mar 31 1999 | SAMSUNG DISPLAY CO , LTD | Vacuum deposition and curing of oligomers and resins |
6361885, | Apr 10 1998 | Organic Display Technology | Organic electroluminescent materials and device made from such materials |
6397776, | Jun 11 2001 | SABIC INNOVATIVE PLASTICS IP B V | Apparatus for large area chemical vapor deposition using multiple expanding thermal plasma generators |
6413645, | Apr 20 2000 | SAMSUNG DISPLAY CO , LTD | Ultrabarrier substrates |
6416872, | Aug 30 2000 | Eastman Performance Films, LLC | Heat reflecting film with low visible reflectance |
6420003, | Oct 04 1993 | 3M Innovative Properties Company | Acrylate composite barrier coating |
6436544, | Jul 17 1997 | Toray Plastics Europe S.A. | Composite metal-coated polyester films with barrier properties |
6460369, | Nov 03 1999 | Applied Materials, Inc.; Applied Materials, Inc | Consecutive deposition system |
6465953, | Jun 12 2000 | BOE TECHNOLOGY GROUP CO , LTD | Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices |
6468595, | Feb 13 2001 | Sigma Laboratories of Arizona, LLC | Vaccum deposition of cationic polymer systems |
6469437, | Nov 03 1997 | PRINCETON UNIVERSITY, TRUSTEES OF THE | Highly transparent organic light emitting device employing a non-metallic cathode |
6492026, | Apr 20 2000 | SAMSUNG DISPLAY CO , LTD | Smoothing and barrier layers on high Tg substrates |
6497598, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Environmental barrier material for organic light emitting device and method of making |
6497924, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Method of making non-linear optical polymer |
6509065, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition of conjugated polymer |
6512561, | Aug 29 1997 | UNIFIED INNOVATIVE TECHNOLOGY, LLC | Liquid crystal display with at least one phase compensation element |
6522067, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Environmental barrier material for organic light emitting device and method of making |
6537688, | Dec 01 2000 | UNIVERSAL DISPLAY CORPORATION | Adhesive sealed organic optoelectronic structures |
6544600, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition of conjugated polymer |
6548912, | Oct 25 1999 | SAMSUNG DISPLAY CO , LTD | Semicoductor passivation using barrier coatings |
6569515, | Jan 13 1998 | 3M Innovative Properties Company | Multilayered polymer films with recyclable or recycled layers |
6570325, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Environmental barrier material for organic light emitting device and method of making |
6573652, | Oct 25 1999 | SAMSUNG DISPLAY CO , LTD | Encapsulated display devices |
6576351, | Feb 16 2001 | UNIVERSAL DISPLAY CORPORATION | Barrier region for optoelectronic devices |
6592969, | Apr 02 1998 | Cambridge Display Technology Limited | Flexible substrates for organic devices |
6597111, | Nov 27 2001 | UNIVERSAL DISPLAY CORPORATION | Protected organic optoelectronic devices |
6613395, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Method of making molecularly doped composite polymer material |
6614057, | Feb 07 2001 | UNIVERSAL DISPLAY CORPORATION | Sealed organic optoelectronic structures |
6624568, | Mar 28 2001 | UNIVERSAL DISPLAY CORPORATION | Multilayer barrier region containing moisture- and oxygen-absorbing material for optoelectronic devices |
6627267, | Sep 29 1997 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition with low vapor pressure compounds |
6628071, | Sep 03 2002 | AU Optronics Corporation | Package for organic electroluminescent device |
6653780, | May 11 2001 | Pioneer Corporation | Luminescent display device and method of manufacturing same |
6656537, | Sep 29 1997 | SAMSUNG DISPLAY CO , LTD | Plasma enhanced chemical deposition with low vapor pressure compounds |
6660409, | Sep 16 1999 | JOLED INC | Electronic device and process for producing the same |
6664137, | Mar 29 2001 | UNIVERSAL DISPLAY CORPORATION | Methods and structures for reducing lateral diffusion through cooperative barrier layers |
6681716, | Nov 27 2001 | SABIC INNOVATIVE PLASTICS IP B V | Apparatus and method for depositing large area coatings on non-planar surfaces |
6720203, | Apr 28 1999 | LG Chem, Ltd | Flexible organic electronic device with improved resistance to oxygen and moisture degradation |
6734625, | Jul 30 2002 | LG DISPLAY CO , LTD | Organic light emitting device (OLED) with multiple capping layers passivation region on an electrode |
6737753, | Sep 28 2001 | Osram Opto Semiconductor GmbH | Barrier stack |
6743524, | May 23 2002 | BOE TECHNOLOGY GROUP CO , LTD | Barrier layer for an article and method of making said barrier layer by expanding thermal plasma |
6749940, | May 26 2000 | Kureha Corporation | Moistureproof multilayered film |
6765351, | Dec 20 2001 | The Trustees of Princeton University | Organic optoelectronic device structures |
6803245, | Sep 28 2001 | OSRAM Opto Semiconductors GmbH | Procedure for encapsulation of electronic devices |
6811829, | Dec 16 1998 | SAMSUNG DISPLAY CO , LTD | Method of making a coating of a microtextured surface |
6815887, | Dec 26 2001 | SAMSUNG DISPLAY CO , LTD | Organic electroluminescent display device |
6818291, | Aug 17 2002 | 3M Innovative Properties Company | Durable transparent EMI shielding film |
6835950, | Apr 12 2002 | UNIVERSAL DISPLAY CORPORATION | Organic electronic devices with pressure sensitive adhesive layer |
6836070, | Nov 27 2001 | Innolux Corporation | Organic electro-luminescent display and method of sealing the same |
6837950, | Nov 05 1998 | INTERFACE, INC | Separation of floor covering components for recycling |
6864629, | Jan 29 1999 | Pioneer Corporation | Organic electroluminescence (EL) cell that prevents moisture from deteriorating light-emitting characteristics and a method for producing the same |
6866901, | Oct 25 1999 | SAMSUNG DISPLAY CO , LTD | Method for edge sealing barrier films |
6867539, | Jul 12 2000 | 3M Innovative Properties Company | Encapsulated organic electronic devices and method for making same |
6872114, | Oct 17 2001 | Innolux Corporation | Method of sealing organo electro-luminescent display |
6872248, | Mar 29 2002 | Canon Kabushiki Kaisha | Liquid-phase growth process and liquid-phase growth apparatus |
6872428, | Jun 11 2001 | SABIC INNOVATIVE PLASTICS IP B V | Apparatus and method for large area chemical vapor deposition using multiple expanding thermal plasma generators |
6878467, | Apr 10 2001 | Innolux Corporation | Organic electro-luminescence element used in a display device |
6888305, | Nov 06 2001 | UNIVERSAL DISPLAY CORPORATION | Encapsulation structure that acts as a multilayer mirror |
6888307, | Aug 21 2001 | UNIVERSAL DISPLAY CORPORATION | Patterned oxygen and moisture absorber for organic optoelectronic device structures |
6891330, | Mar 29 2002 | BOE TECHNOLOGY GROUP CO , LTD | Mechanically flexible organic electroluminescent device with directional light emission |
6897474, | Apr 12 2002 | UNIVERSAL DISPLAY CORPORATION | Protected organic electronic devices and methods for making the same |
6897607, | Sep 25 2000 | Pioneer Corporation | Organic electroluminescent display panel having an inorganic barrier film |
6905769, | Jun 08 2001 | DAI NIPPON PRINTING CO , LTD | Gas barrier film |
6923702, | Oct 25 1999 | SAMSUNG DISPLAY CO , LTD | Method of making encapsulated display devices |
6936131, | Jan 31 2002 | 3M Innovative Properties Company | Encapsulation of organic electronic devices using adsorbent loaded adhesives |
6975067, | Dec 19 2002 | 3M Innovative Properties Company | Organic electroluminescent device and encapsulation method |
6994933, | Sep 16 2002 | OAK RIDGE MICRO ENERGY, INC , A NEVADA CORPORATION | Long life thin film battery and method therefor |
6998648, | Aug 25 2003 | UNIVERSAL DISPLAY CORPORATION | Protected organic electronic device structures incorporating pressure sensitive adhesive and desiccant |
7002294, | Dec 20 2001 | UNIVERSAL DISPLAY CORPORATION | Method of protecting organic optoelectronic devices |
7012363, | Jan 10 2002 | UNIVERSAL DISPLAY CORPORATION | OLEDs having increased external electroluminescence quantum efficiencies |
7015640, | Sep 11 2002 | BOE TECHNOLOGY GROUP CO , LTD | Diffusion barrier coatings having graded compositions and devices incorporating the same |
7018713, | Apr 02 2003 | 3M Innovative Properties Company | Flexible high-temperature ultrabarrier |
7029765, | Apr 22 2003 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting devices having reduced pixel shrinkage |
7033850, | Jun 30 2004 | Global Oled Technology LLC | Roll-to-sheet manufacture of OLED materials |
7056584, | Oct 11 2002 | SABIC INNOVATIVE PLASTICS IP B V | Bond layer for coatings on plastic substrates |
7086918, | Dec 11 2002 | Applied Materials, Inc. | Low temperature process for passivation applications |
7122418, | Oct 04 2002 | AU Optronics Corporation | Method of fabricating organic light emitting diode device |
7156942, | Dec 19 2002 | 3M Innovative Properties Company | Organic electroluminescent device and encapsulation method |
7166007, | Dec 17 1999 | OSRAM Opto Semiconductors GmbH; Institute of Materials Research and Engineering | Encapsulation of electronic devices |
7183197, | Jun 25 2004 | Applied Materials, Inc. | Water-barrier performance of an encapsulating film |
7186465, | Nov 02 1998 | 3M Innovative Properties Company | Transparent conductive oxides for plastic flat panel displays |
7221093, | Jun 10 2002 | Institute of Materials Research and Engineering; Osram Opto Semiconductor GmbH | Patterning of electrodes in OLED devices |
7255823, | Sep 06 2000 | Institute of Materials Research and Engineering | Encapsulation for oled devices |
20010015074, | |||
20010015620, | |||
20020022156, | |||
20020025444, | |||
20020068143, | |||
20020069826, | |||
20020102363, | |||
20020102818, | |||
20020125822, | |||
20020139303, | |||
20020140347, | |||
20030038590, | |||
20030045021, | |||
20030085652, | |||
20030098647, | |||
20030117068, | |||
20030124392, | |||
20030127973, | |||
20030134487, | |||
20030184222, | |||
20030197197, | |||
20030218422, | |||
20030235648, | |||
20040029334, | |||
20040046497, | |||
20040071971, | |||
20040113542, | |||
20040115402, | |||
20040115859, | |||
20040119028, | |||
20040175512, | |||
20040175580, | |||
20040209090, | |||
20040219380, | |||
20040229051, | |||
20040241454, | |||
20040263038, | |||
20050003098, | |||
20050006786, | |||
20050051094, | |||
20050079295, | |||
20050079380, | |||
20050093001, | |||
20050093437, | |||
20050094394, | |||
20050095422, | |||
20050095736, | |||
20050112378, | |||
20050115603, | |||
20050122039, | |||
20050129841, | |||
20050133781, | |||
20050140291, | |||
20050146267, | |||
20050174045, | |||
20050202646, | |||
20050212419, | |||
20050224935, | |||
20050238846, | |||
20060001040, | |||
20060003474, | |||
20060028128, | |||
20060061272, | |||
20060062937, | |||
20060063015, | |||
20060132461, | |||
20060246811, | |||
20060250084, | |||
20060291034, | |||
20070009674, | |||
20070281089, | |||
BE704297, | |||
CA2353506, | |||
DE19603746, | |||
DE69615510, | |||
EP147696, | |||
EP299753, | |||
EP340935, | |||
EP390540, | |||
EP468440, | |||
EP547550, | |||
EP590467, | |||
EP722787, | |||
EP777280, | |||
EP777281, | |||
EP787824, | |||
EP787826, | |||
EP915105, | |||
EP916394, | |||
EP931850, | |||
EP977469, | |||
EP1021070, | |||
EP1127381, | |||
EP1130420, | |||
EP1278244, | |||
EP1426813, | |||
EP1514317, | |||
GB2210826, | |||
JP10013083, | |||
JP10016150, | |||
JP10312883, | |||
JP10334744, | |||
JP1041067, | |||
JP10725, | |||
JP11017106, | |||
JP11040344, | |||
JP11149826, | |||
JP11255923, | |||
JP2000058258, | |||
JP2002505969, | |||
JP2003282239, | |||
JP2006294780, | |||
JP2183230, | |||
JP3183759, | |||
JP3290375, | |||
JP3579556, | |||
JP41440, | |||
JP414440, | |||
JP4267097, | |||
JP448515, | |||
JP5147678, | |||
JP5182759, | |||
JP5217158, | |||
JP6136159, | |||
JP6158305, | |||
JP6179644, | |||
JP6234186, | |||
JP63136316, | |||
JP6396895, | |||
JP6418441, | |||
JP6441192, | |||
JP7074378, | |||
JP7147189, | |||
JP7192868, | |||
JP8171988, | |||
JP8179292, | |||
JP8318590, | |||
JP8325713, | |||
JP872188, | |||
JP9059763, | |||
JP9132774, | |||
JP9161967, | |||
JP9201897, | |||
JP9232553, | |||
WO53423, | |||
WO2004112165, | |||
WO2005050754, | |||
WO2008140313, | |||
WO2008142645, | |||
WO26973, | |||
WO35603, | |||
WO35604, | |||
WO35993, | |||
WO36661, | |||
WO36665, | |||
WO168360, | |||
WO181649, | |||
WO182336, | |||
WO182389, | |||
WO187825, | |||
WO189006, | |||
WO226973, | |||
WO3016589, | |||
WO3098716, | |||
WO2004006199, | |||
WO2004016992, | |||
WO2004070840, | |||
WO2004089620, | |||
WO2005015655, | |||
WO2005045947, | |||
WO2005048368, | |||
WO2006036492, | |||
WO8707848, | |||
WO8900337, | |||
WO9510117, | |||
WO9623217, | |||
WO9704885, | |||
WO9716053, | |||
WO9722631, | |||
WO9810116, | |||
WO9818852, | |||
WO9916557, | |||
WO9916931, | |||
WO9946120, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 12 2004 | Battelle Memorial Institute | (assignment on the face of the patent) | / | |||
Oct 28 2010 | Battelle Memorial Institute | SAMSUNG MOBILE DISPLAY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025516 | /0773 | |
Jul 02 2012 | SAMSUNG MOBILE DISPLAY CO , LTD | SAMSUNG DISPLAY CO , LTD | MERGER SEE DOCUMENT FOR DETAILS | 028912 | /0083 |
Date | Maintenance Fee Events |
Feb 18 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 11 2015 | ASPN: Payor Number Assigned. |
Mar 12 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |