A method of multi-tier classification and calibration in noninvasive blood analyte prediction minimizes prediction error by limiting co-varying spectral interferents. tissue samples are categorized based on subject demographic and instrumental skin measurements, including in vivo near-IR spectral measurements. A multi-tier intelligent pattern classification sequence organizes spectral data into clusters having a high degree of internal consistency in tissue properties. In each tier, categories are successively refined using subject demographics, spectral measurement information and other device measurements suitable for developing tissue classifications.
The multi-tier classification approach to calibration utilizes multivariate statistical arguments and multi-tiered classification using spectral features. Variables used in the multi-tiered classification can be skin surface hydration, skin surface temperature, tissue volume hydration, and an assessment of relative optical thickness of the dermis by the near-IR fat band. All tissue parameters are evaluated using the NIR spectrum signal along key wavelength segments.
|
0. 68. A method for developing a multi-tier calibration model for determining concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
through at least two tiers, classifying said exemplar measurements into classes; and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values.
0. 49. A method for developing a calibration model for estimating a target analyte property from measured tissue spectra, comprising the steps of:
providing a data set of exemplar spectral measurements from a sampling of a subject population;
classifying a majority of said exemplar measurements into classes using at least one feature of said exemplar measurements; and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values,
wherein the step of classifying comprises classifying through at least two tiers.
0. 62. A method for developing a calibration algorithm for calculating concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a data set of exemplar spectral measurements from a representative sampling of a subject population;
classifying at least one of said exemplar measurements into previously defined classes; and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values,
wherein said classes comprise groups of measurements, wherein similarity between measurements within a group is greater than similarity between groups.
18. A method of developing a multi-tiered calibration model for estimating concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
in at least one tier, classifying said exemplar measurements into previously defined classes; and
extracting at least one feature from said exemplar measurements for still further classification; and
calculating at least one localized calibration model based on said classified exemplar measurements and a set of associated reference values.
0. 24. A method for developing a calibration model for estimating a target analyte property from measured tissue spectra, comprising the steps of:
providing a data set of exemplar spectral measurements from a sampling of a subject population;
classifying a majority of said exemplar measurements into classes using at least one feature of said exemplar measurements;
wherein said feature comprises a spectral feature,
wherein said classes comprise groups of measurements wherein similarity between measurements within a group is greater than similarity between groups, and
calculating at least one localized calibration model using said classified measurements and an associated set of reference values.
1. A method of developing a multi-tiered calibration model for estimating concentration of a target blood analyte from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
initially, classifying said exemplar measurements into previously defined classes based on a priori a priori information pertaining to a corresponding subject;
further classifying said exemplar measurements into previously defined classes based on at least one instrumental measurement at a tissue measurement site;
extracting at least one feature from said exemplar measurements for still further classification, wherein a decision rule makes class assignments; and
calculating at least one localized calibration model based on said classified measurements and an associated set of reference values.
0. 50. A method for developing a calibration model for estimating a target blood analyte property from measured tissue spectra, comprising the steps of:
providing a calibration set, wherein said calibration set comprises a data set of exemplar spectral measurements from a representative sampling of a subject population;
extracting at least one feature from at least one of said exemplar measurements;
classifying at least a portion of said exemplar measurements into classes using said feature; and
calculating at least one localized calibration model for at least one of said classes based on said classified measurements and an associated set of reference values,
wherein said step of extracting at least one feature comprises:
representing structural properties and physiological state of a tissue measurement site through application of at least one mathematical transformation that enhances a quality or aspect of sample measurement for interpretation, wherein a resulting set of features is used to classify a subject and determine a calibration model.
2. The method of
in a first tier, classifying said measured spectrum exemplar measurements into previously defined classes based on subject's age; and
in a second tier, further classifying said measured spectrum exemplar measurements into previously defined classes based on subject's sex.
3. The method of
in a third tier further classsifying said exemplar measurements into previously defined classes based on an estimation of stratum corneum hydration at said tissue measurement site; and
in a fourth tier, further classifying said exemplar measurements into previously defined classes based on skin temperature at said tissue measurement site.
4. The method of
5. The method of
6. The method of
z=f(λ,x) where f(•):
7. The method of
abstract features that do not necessarily have a specific interpretation related to a physical system; and
simple features that are derived from an a priori understanding of a sample and that can be related directly to a physical phenomenon.
8. The method of
thickness of adipose tissue;
hematocrit level;
tissue hydration;
magnitude of protein absorbance;
scattering properties of said tissue;
skin thickness;
temperature related effects;
age related effects;
spectral characteristics;
pathlength estimates;
volume fraction of blood in tissue; and
spectral characteristics related to environmental influences.
9. The method of
10. The method of
employing factor-based methods to build a model capable of representing variation in a measured absorbance spectrum related to a demographic variable;
wherein projection of a measured absorption onto said model constitutes a feature that represents spectral variation related to said demographic variable.
11. The method of
12. The method of
measuring the similarity of a feature to predefined classes; and
assigning class membership.
13. The method of
using measurements and class assignments to determine a mapping from features to class assignments.
14. The method of
defining classes from said features in a supervised manner, wherein each set of features is divided into two or more regions, and wherein classes are defined by combination of feature divisions;
performing a cluster analysis on the spectral data to determine groups of said defined classes that can be combined, wherein the final number of class definitions is significantly reduced;
designing a classifier subsequent to class definition through supervised pattern recognition by determining an optimal mapping or transformation from the feature space to a class estimate that minimizes the number of misclassifications; and
creating a model based on class definitions that transforms a measured set of features to an estimated classification, wherein said class definitions are optimized to satisfy specifications of a measurement system used to take said measurements.
15. The method of
16. The method of
calculating weights, w, for said exemplar measurements according to:
W=(XTX)−1XTy, where X represents a matrix of spectral measurements, and y represents a reference value of said target analyte concentration for each measurement.
17. The method of
wherein said regression vector comprises a calibration model for said group.
19. The method of
abstract and simple features.
20. The method of
21. The method of
a priori a priori information; and
at least one instrumental measurement at a tissue measurement site at which optical samples were taken for said spectral measurements.
22. The method of
23. The pattern classification method of
classifying said exemplar measurements into previously defined classes based on subject's age;
classifying said exemplar measurements into previously defined classes based on subject's sex;
classifying said exemplar measurements into previously defined classes based on an estimation of stratum corneum hydration of said tissue measurement site; and
classifying said exemplar measurements into previously defined classes based on skin temperature at said tissue measurement site.
0. 25. The method of
a priori information;
a physical measurement; and
an optical measurement at a tissue measurement site.
0. 26. The method of
age;
gender;
hematocrit level; and
temperature.
0. 27. The method of
thickness of adipose tissue;
tissue hydration;
scattering properties of said tissue; and
skin thickness.
0. 28. The method of
magnitude of protein absorbance;
magnitude of fat absorbance;
a spectral characteristic;
a pathlength estimate;
volume fraction of blood in tissue; and
a spectral feature.
0. 29. The method of
0. 30. The method of
assigning degree of membership to at least some of said exemplar measurements according to a fuzzy membership function.
0. 31. The method of
0. 32. The method of
providing an estimation spectrum;
assigning degree of class membership to said estimation spectrum in at least one of said classes;
estimating at least one interim analyte property with said localized calibration models; and
combining said estimates to determine said analyte property.
0. 33. The method of
0. 34. The method of
0. 35. The method of
classifying said exemplar measurements into previously defined classes based on at least one instrument measurement at a tissue measurement site.
0. 36. The method of
representing structural properties and physiological state of a tissue measurement site through application of at least one mathematical transformation that enhances a quality or aspect of sample measurement for interpretation, and
using a resulting set of features i to classify a subject and determine a calibration model that is most useful for blood analyte prediction.
0. 37. The method of
representing features in a vector, zεM that is determined from a preprocessed measurement through:
z=f(λ,x) where f: N→M is a mapping space to a feature space, wherein decomposing f(•) yields specific transformations, fi(•):
0. 38. The method of
0. 39. The method of
a simple feature; and
an abstract feature.
0. 40. The method of
0. 41. The method of
dividing each set of features into two or more regions, wherein classes are defined by combinations of feature divisions, wherein classes are defined through known differences in data;
performing a cluster analysis on the exemplar measurements to determine groups of said defined classes that can be combined to reduce the final number of class definitions;
designing a classifier subsequent to class definition through supervised pattern recognition by determining an optimal mapping or transformation from the feature space to a class estimate that minimizes the number of misclassifications; and
creating a model based on class definitions that transforms a measured set of features to an estimated classification, wherein said class definitions are optimized to satisfy specifications of a measurement system used to take said measurements.
0. 42. The method of
calculating weights, W, for said measurements, according to:
W=(XTX)−1XTY, where X represents a matrix of measurements, and Y represents a reference value of a target analyte concentration for each measurement.
0. 43. The method of
wherein said regression vector comprises a calibration model for said group.
0. 44. The method of
developing clusters of data in feature space based on the measurements, wherein within-cluster homogeneity and between-cluster separation is maximized.
0. 45. The method of
0. 46. The method of
0. 47. The method of
a simple feature; and
an abstract feature.
0. 48. The method of
preprocessing prior to said step of classifying.
0. 51. The method of
0. 52. The method of
a priori information;
a physical measurement; and
an optical measurement of a tissue measurement site.
0. 53. The method of
classifying said exemplar measurements into previously defined classes based on at least one instrument measurement at a tissue measurement site.
0. 54. The method of
a simple feature; and
an abstract feature.
0. 55. The method of
0. 56. The method of
a simple feature; and
an abstract feature.
0. 57. The method of
0. 58. The method of
0. 59. The method of
0. 60. The method of
preprocessing prior to said step of extracting.
0. 61. The method of
a crisp function; and
a fuzzy function.
0. 63. The method of
a priori information;
a physical measurement; and
an optical measurement at a tissue measurement site.
0. 64. The method of
age;
gender;
hematocrit level; and
temperature.
0. 65. The method of
thickness of adipose tissue;
tissue hydration;
scattering properties of said tissue; and
skin thickness.
0. 66. The method of
magnitude of protein absorbance;
magnitude of fat absorbance;
a spectral characteristic;
a pathlength estimate;
volume fraction of blood in tissue; and
a spectral feature.
0. 67. The method of
|
where _ is defined as the covariance matrix of the interfering substances or spectral effects, Û is defined as the measurement noise, x is the spectral measurement, and k0 is the instrument baseline component present in the spectral measurement.
where f: N→RM is a mapping from the measurement space to the feature space. Decomposing f(•) will yield specific transformations, fi(•):
N→
Mi for determining a specific feature. The dimension, Mi, indicates whether the ith feature is a scalar or a vector and the aggregation of all features is the vector z. When a feature is represented as a vector or a pattern, it exhibits a certain structure indicative of an underlying physical phenomenon.
The individual features are divided into two categories:
Abstract features do not necessarily have a specific interpretation related to the physical system. Specifically, the scores of a principal component analysis are useful features although their physical interpretation is not always known. The utility of the principal component analysis is related to the nature of the tissue absorbance spectrum. The most significant variation in the tissue spectral absorbance is not caused by a blood analyte but is related to the state, structure and composition of the measurement site. This variation is modeled by the primary principal components. Therefore, the leading principal components tend to represent variation related to the structural properties and physiological state of the tissue measurement site. Simple features are derived from an a priori understanding of the sample and can be related directly to a physical phenomenon. Useful features that can be calculated from NIR spectral absorbance measurements include but are not limited to:
Spectral decomposition is employed to determine the features related to a known spectral absorbance pattern. Protein and fat, for example, have known absorbance signatures that can be used to determine their contribution to the tissue spectral absorbance. The measured contribution is used as a feature and represents the underlying variable through a single value.
Features relates to demographic information, such as age, are combinations of many different effects that cannot be represented by a single absorbance profile. Furthermore, the relationship of demographic variables and the tissue spectral absorbance is not deterministic. For example, dermal thickness and many other tissue properties are statistically related to age but also vary substantially as a result of hereditary and environmental influences. Therefore, factor based methods are employed to build models capable of representing variation in the measured absorbance related to the demographic variable. The projection of a measured absorbance spectrum onto the model constitutes a feature that represents the spectral variation related to the demographic variable. The compilation of the abstract and simple features constitutes the M-dimensional feature space. Due to redundancy of information across the set of features, optimum feature selection and/or data compression is applied to enhance the robustness of the classifier.
CLASSIFICATION
The goal of feature extraction is to define the salient characteristics of measurements that are relevant for classification. Feature extraction is performed at branching junctions of the multi-tiered classification tree structure. The goal of the classification step is to assign the calibration model(s) most appropriate for a particular noninvasive measurement. In this step the patient is assigned to one of many predefined classes for which a calibration model has been developed and tested. Since the applied calibration model is developed for similar tissue absorbance spectra, the blood analyte predictions are more accurate than those obtained from a universal calibration model.
As depicted in
The development of the classification system requires a data set of exemplar spectral measurements from a representative sampling of the population. Class definition is the assignment of the measurements in the exploratory data set to classes. After class definition, the measurements and class assignments are used to determine the mapping from the features to class assignments.
Class definition is performed through either a supervised or an unsupervised approach. See Y. Pao, Adaptive Pattern Recognition and Neural Networks, Addison-Wesley Publishing Co., Reading, Mass. (1989). In the supervised case, classes are defined through known differences in the data. The use of a priori information in this manner is the first step in supervised pattern recognition, which develops classification models when the class assignment is known. For example, the majority of observed spectral variation can be modeled by three abstract factors, which are related to several physical properties including body fat, tissue hydration and skin thickness. Categorizing patients on the basis of these three features produces eight different classes if each feature is assigned a “high” and “low” value. The drawback to this approach is that attention is not given to spectral similarity and the number of classes tends to increase exponentially with the number of features.
Unsupervised methods rely solely on the spectral measurements to explore and develop clusters or natural groupings of the data in feature space. Such an analysis optimizes the within cluster homogeneity and the between cluster separation. Clusters formed from features with physical meaning can be interpreted based on the known underlying phenomenon causing variation in the feature space. However, cluster analysis does not utilize a priori information and can yield inconsistent results.
A combination of the two approaches utilizes a priori knowledge and exploration of the feature space for naturally occurring spectral classes. In this approach, classes are first defined from the features in a supervised manner. Each set of features is divided into two or more regions and classes are defined by combinations of the feature divisions. A cluster analysis is performed on the data and the results of the two approaches are compared. Systematically, the clusters are used to determine groups of classes that can be combined. After conglomeration, the number of final class definitions is significantly reduced according to natural divisions in the data. Subsequent to class definition, a classifier is designed through supervised pattern recognition. A model is created, based on class definitions, that transforms a measured set of features to an estimated classification. Since the ultimate goal of the classifier is to produce robust and accurate calibration models, an iterative approach must be followed in which class definitions are optimized to satisfy the specifications of the measurement system.
Statistical Classification
The statistical classification methods are applied to mutually exclusive classes whose variation can be described statistically. See J. Bezdek, S. Pal, eds, Fuzzy Models for Pattern Recognition, IEEE Press, Piscataway, N.J. (1992). Once class definitions have been assigned to a set of exemplary samples, the classifier is designed by determining an optimal mapping or transformation from the feature space to a class estimate which minimizes the number of misclassifications. The form of the mapping varies by method as does the definition of “optimal”. Existing methods include linear Discriminant analysis, SIMCA, k nearest-neighbor and various forms of artificial neural networks. See Funkunaga, supra; and Hertz, et al., supra; and Martin, supra; and Duda, et al., supra; and Pao, supra; and S. Wold, M. Sjostrom, SIMCA: A method for analyzing chemical data in terms of similarity and analogy, Chemometrics: Theory and Application, ed. B. R. Kowalski, ACS Symposium Series, vol. 52 (1977); and S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Upper Saddle River. N.J. (1994). The result is a function or algorithm that maps the feature to a class, c, according to
c=f(z) (
where c is an integer on the interval [1,P] and P is the number of classes. The class is used to select or adapt the calibration model as discussed in the Calibration Section.
Fuzzy Classification
While statistically based class definitions provide a set of classes applicable to blood analyte estimation, the optical properties of the tissue sample resulting in spectral variation change over a continuum of values. Therefore, the natural variation of tissue thickness, hydration levels and body fat content, among others, results in class overlap. Distinct class boundaries do not exist and many measurements are likely to fall between classes and have a statistically equal chance of membership in any of several classes. Therefore, “hard” class boundaries and mutually exclusive membership functions appear contrary to the nature of the target population.
A more versatile method of class assignment is based on fuzzy set theory. See Bezdek, et al., supra; and C. Chen, ed., Fuzzy Logic and Neural Network Handbook, IEEE Press, Piscataway, N.J. (1996); and L. Zadeh, Fuzzy Sets, Inform. Control, vol. 8, pp. 338-353 (1965). Generally, membership in fuzzy sets is defined by a continuum of grades and a set of membership functions that map the feature space into the interval [0,1] for each class. The assigned membership grade represents the degree of class membership with “1” corresponding to the highest degree. Therefore, a sample can simultaneously be a member of more than one class.
The mapping from feature space to a vector of class memberships is given by
ck=fk(z) (2)
where k=1,2, . . . P, fk(•) is the membership function of the kth class, ckε[0,1] for all k and the vector cεP is the set of class memberships. The membership vector provides the degree of membership in each of the predefined classes and is passed to the calibration algorithm.
The design of membership functions utilizes fuzzy class definitions similar to the methods previously described. Fuzzy cluster analysis can be applied and several methods, differing according to structure and optimization approach can be used to develop the fuzzy classifier. All methods attempt to minimize the estimation error of the class membership over a population of samples.
MULTI-TIERED CALIBRATION
Blood analyte prediction occurs by the application of a calibration model to the preprocessed measurement as depicted in FIG. 2. The proposed prediction system involves a calibration or a set of calibration models that are adaptable or selected on the basis of the classification step.
DEVELOPMENT OF LOCALIZED CALIBRATION MODELS
Accurate blood analyte prediction requires calibration models that are capable of compensating for the co-varying interferents, sample heterogeneity, state and structural variations encountered. Complex mixtures of chemically absorbing species that exhibit substantial spectral overlap between the system components are solvable only with the use of multivariate statistical models. However, prediction error increases with increasing variation in interferents that also co-vary with analyte concentration in calibration data. Therefore, blood analyte prediction is best performed on measurements exhibiting smaller interference variations that correlate poorly with analyte concentration in the calibration set data. Since it may not be possible to make all interference variations random, it is desirable to limit the range of spectral interferent variation in general.
The principle behind the multi-tiered classification and calibration system is based on the properties of a generalized class of algorithm that are required to compensate for overlapped interfering signals in the presence of the desired analyte signal. See H. Martens, T. Naes, Multivariate Calibration, John Wiley and Sons, New York (1989). The models used in this application require the measurement of multiple independent variables, designated as x, to estimate a single dependent variable, designated as y. For example, y may be tissue glucose concentration, and x may represent a vector, [x1 x2 . . . xi], consisting of the noninvasive spectrum signal intensities at each of n wavelengths.
The generalized form of a model to be used in the calculation of a single glucose estimate uses a weighted summation of the noninvasive spectrum as in Equation 4. The weights, w, are referred to as the regression vector.
y=Σw
The weights define the calibration model and must be calculated from a given calibration set of noninvasive spectra in the spectral matrix X, and associated reference values y for each spectrum:
w=(XTX)−1XTyW. (5)
The modeling error that might be expected in a multivariate system using Equation 5 can be estimated using a linear additive mixture model. Linear additive mixtures are characterized by the definition that the sum of the pure spectra of the individual constituents in a mixture equals the spectra of the mixture. Linear mixture models are useful in assessing the general limitations of multivariate models that are based on linear additive systems and those, noninvasive blood analysis, for example, that can be expected to deviate somewhat from linear additive behavior.
X=B0+YKT+E (6)
The linear additive model can be broken up further into interferents and analytes as an extended mixture model.
X=B0+YKT+TPT+E (7)
In equation
where Σ is defined as the covariance matrix of the interfering substances or spectral effects, ó is defined as the measurement noise, x is the spectral measurement, and k0 is the instrument baseline component present in the spectral measurement.
Σ=PT(ttT)−1P+diag(ó2) (9)
The derived mean squared error (MSE) of such a generalized least squares predictor is found in Martens, et al., supra.
MSE(yGLS)=trace(KTΣ−1K)−1 (10)
Equation 10 describes the generalized limitations of least squares predictors in the presence of interferents. If K represents the concentrations of blood glucose, a basic interpretation of Equation 10 is: the mean squared error in glucose estimates increases with increased variation in interferences that also co-vary with glucose concentration in calibration data. Therefore, the accurate estimation of glucose is best performed on measurements exhibiting smaller interference variations that poorly correlate with glucose concentration in the calibration set data. Since it may not be possible to make all interference variations random with glucose, it is desirable to limit the range of spectral interference variation in general. The Multi-Tier Classification provides a method for limiting variation of spectral interferents by placing sample measurements into groups having a high degree of internal consistency. Groups are defined based on a priori knowledge of the sample, instrumental measurements at the tissue measurement site, and extracted features. With each successive tier, samples are further classified such that variation between spectra within a group is successively limited. Tissue parameters to be utilized in class definition may include: stratum corneum hydration, tissue temperature, and dermal thickness.
TISSUE HYDRATION
The stratum corneum (SC), or horny cell layer covers about 10-15 μm thickness of the underside of the arm. The SC is composed mainly of keratinous dead cells, water and some lipids. See D. Bommannan, R. Potts, R. Guy, Examination of the Stratum Corneum Barrier Function In Vivo by Infrared Spectroscopy, J. Invest. Dermatol., vol. 95, pp 403-408 (1990). Hydration of the SC is known to vary over time as a function of room temperature and relative humidity. See J. Middleton, B. Allen, Influence of temperature and humidity on stratum corneum and its relation to skin chapping, J. Soc. Cosmet. Chem., vol. 24, pp. 239-43 (1973). Because it is the first tissue penetrated by the spectrometer incident beam, more photons sample the SC than any other part of the tissue sample. Therefore, the variation of a strong near IR absorber like water in the first layer of the tissue sample can act to change the wavelength and depth intensity profile of the photons penetrating beneath the SC layer.
The impact of changes in SC hydration can be observed by a simple experiment. In the first part of the experiment, the SC hydration is allowed to range freely with ambient conditions. In the second part of the experiment, variations in SC hydration are limited by controlling relative humidity to a high level at the skin surface prior to measurement. Noninvasive measurements using uncontrolled and controlled hydration experiments on a single individual are plotted in
TISSUE TEMPERATURE
The temperature of the measured tissue volume varies from the core body temperature, at the deepest level of penetration, to the skin surface temperature, which is generally related to ambient temperature, location and the amount of clothing at the tissue measurement site. The spectrum of water, which comprises about 65% of living human tissue is the most dominant spectral component at all depths sampled in the 1100-2500 nm wavelength range. These two facts, along with the known temperature-induced shifting of the water band at 1450 nm, combine to substantially complicate the interpretation of information about many blood analytes, including glucose. It is apparent that a range of temperature states exist in the volume of sampled living tissue and that the range and distribution of states in the tissue depend on the skin surface temperature. Furthermore, the index of refraction of skin is known to change with temperature. Skin temperature may therefore be considered an important categorical variable for use in the Multi-Tier Classification to identify groups for the generation of calibration models and prediction.
OPTICAL THICKNESS OF DERMIS
Repeated optical sampling of the tissue is necessary to calibrate to blood constituents. Because blood represents but a part of human tissue, and blood analytes only reside in fractions of the tissue, changes in the optical sampling of tissue may change the magnitude of the analyte signal for unchanging levels of blood analytes. This kind of a sampling effect may confound efforts at calibration by changing the signal strength for specific levels of analyte.
Categorization of optical sampling depth is pursued by analyzing spectral marker bands of the different layers. For example, the first tissue layer under the skin is the subcutaneous adipose tissue, consisting mainly of fat. The strength of the fat absorbance band can be used to assess the relative photon flux that has penetrated to the subcutaneous tissue level. A more pronounced fat band means that a greater photon flux has reached the adipose tissue and returned to the detector. In
The following sections describe the calibration system for the two types of classifiers, mutually exclusive and fuzzy.
MUTUALLY EXCLUSIVE CLASSES
In the general case, the designated classification is passed to a nonlinear model that provides a blood analyte prediction based on the patient classification and spectral measurement. This process, illustrated in
This general architecture necessitates a nonlinear calibration model 101 such as nonlinear partial least squares or artificial neural networks since the mapping is highly nonlinear. The blood analyte prediction for the preprocessed measurement x with classification specified by c is given by
ŷ=g(c,x) (11)
where g(•) is a nonlinear calibration model which maps x and c to an estimate of the blood analyte concentration, ŷ.
In the preferred realization, a different calibration is realized for each class. The estimated class is used to select one of p calibration models most appropriate for blood analyte prediction using the current measurement. Given that k is the class estimate for the measurement, the blood analyte prediction is
ŷ=gk(x), (12)
where gk(•) is the calibration model associated with the kth class.
The calibrations are developed from a set of exemplar absorbance spectra with reference blood analyte values and pre-assigned classification definitions. This set, denoted the “calibration set”, must have sufficient samples to completely represent the range of physiological states to be encountered in the patient population. The p different calibration models are developed individually from the measurements assigned to each of the p classes. The models are realized using known methods including principal component regression, partial least squares regression and artificial neural networks. See Hertz, et al., supra; and Pao, supra; and Haykin, supra; and Martens, et al., supra; and N. Draper, H. Smith, Applied Regression Analysis, 2nd ed., John Wiley and Sons, New York (1981). The various models associated with each class are evaluated on the basis of an independent test set or cross validation and the “best” set of models are incorporated into the Multi-tier Classification. Each class of patients then has a calibration model specific to that class.
FUZZY CLASS MEMBERSHIP
When fuzzy classification is employed the calibration is passed a vector of memberships rather than a single estimated class. The vector, c, is utilized to determine an adaptation of the calibration model suitable for blood analyte prediction or an optimal combination of several blood analyte predictions. In the general case, illustrated in
ŷ=g(c,x) (13)
where g(•) is a nonlinear mapping determined through nonlinear regression, nonlinear partial least squares or artificial neural networks. The mapping is developed from the calibration set described previously and is generally complex.
The preferred realization, shown in
Each of the p calibration models is developed using the entire set of calibration data. However, when the kth calibration model is calculated, the calibration measurements are weighted by their respective membership in the kth class. As a result, the influence of a sample on the calibration model of a particular class is a function of its membership in the class.
In the linear case, weighted least squares is applied to calculate regression coefficients and, in the case of factor based methods, the covariance matrix. See Duda, et al., supra. Given a matrix absorbance spectra Xkεrxw and reference blood analyte concentrations Yε
r where r is the number of measurement spectra and w is the number wavelengths, let the membership in class k of each absorbance spectrum be the elements of Ckε
r. Then the principal components are given by
F=XkM, (14)
where M is the matrix of the first n eigenvectors of P. The weighted covariance matrix P is determined through
P=XkVXkT, (15)
where V is a square matrix with the elements of Ck on the diagonal. The regression matrix, B, is determined through
B=(FTVF)−1FTVY. (16)
When an iterative method is applied, such as artificial neural networks, the membership is used to determine the frequency the samples are presented to the learning algorithm. Alternatively, an extended Kalman filter is applied with a covariance matrix scaled according to V.
The purpose of defuzzification is to find an optimal combination of the p different blood analyte predictions, based on a measurement's membership vector that produces accurate blood analyte predictions. Therefore, defuzzification is a mapping from the vector of blood analyte predictions and the vector of class memberships to a single analyte prediction. The defuzzifier can be denoted as transformation such that
ŷ=d(c,[y1y2y3 . . . yp]), (17)
where d(•) is the defuzzification function, c is the class membership vector and yk is the blood analyte prediction of the kth calibration model. Existing methods of defuzzification, such as the centroid or weighted average, are applied for small calibration sets. However, if the number of samples is sufficient, d(•) is generated through a constrained nonlinear model.
INSTRUMENT DESCRIPTION
The Multi-tiered Classification and Calibration is implemented in a scanning spectrometer which determines the NIR absorbance spectrum of the subject forearm through a diffuse reflectance measurement. The instrument employs a quartz halogen lamp, a monochromator, and InGaAs detectors. The detected intensity from the sample is converted to a voltage through analog electronics and digitized through a 16-bit A/D converter. The spectrum is passed to the Intelligent Measuring System (IMS) for processing and results in either a glucose prediction or a message indicating an invalid scan.
Although the invention is described herein with reference to the preferred embodiment, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the claims included below.
Blank, Thomas B., Ruchti, Timothy L., Monfre, Stephen L., Thennadill, Suresh N.
Patent | Priority | Assignee | Title |
10475529, | Jul 19 2011 | OptiScan Biomedical Corporation | Method and apparatus for analyte measurements using calibration sets |
10736518, | Aug 31 2015 | Masimo Corporation | Systems and methods to monitor repositioning of a patient |
10765367, | Oct 07 2014 | Masimo Corporation | Modular physiological sensors |
10779098, | Jul 10 2018 | Masimo Corporation | Patient monitor alarm speaker analyzer |
10784634, | Feb 06 2015 | Masimo Corporation | Pogo pin connector |
10799160, | Oct 07 2013 | Masimo Corporation | Regional oximetry pod |
10799163, | Oct 12 2006 | Masimo Corporation | Perfusion index smoother |
10825568, | Oct 11 2013 | Masimo Corporation | Alarm notification system |
10849554, | Apr 18 2017 | Masimo Corporation | Nose sensor |
10856750, | Apr 28 2017 | Masimo Corporation | Spot check measurement system |
10856788, | Mar 01 2005 | WILLOW LABORATORIES, INC | Noninvasive multi-parameter patient monitor |
10863938, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
10869602, | Mar 25 2002 | Masimo Corporation | Physiological measurement communications adapter |
10912500, | Jul 03 2008 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
10912501, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
10912502, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
10912524, | Sep 22 2006 | Masimo Corporation | Modular patient monitor |
10918281, | Apr 26 2017 | Masimo Corporation | Medical monitoring device having multiple configurations |
10925550, | Oct 13 2011 | Masimo Corporation | Medical monitoring hub |
10932705, | May 08 2017 | Masimo Corporation | System for displaying and controlling medical monitoring data |
10932729, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
10939877, | Oct 14 2005 | Masimo Corporation | Robust alarm system |
10939878, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
10943450, | Dec 21 2009 | Masimo Corporation | Modular patient monitor |
10945648, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
10952641, | Sep 15 2008 | Masimo Corporation | Gas sampling line |
10956950, | Feb 24 2017 | Masimo Corporation | Managing dynamic licenses for physiological parameters in a patient monitoring environment |
10959652, | Jul 02 2001 | Masimo Corporation | Low power pulse oximeter |
10973447, | Jan 24 2003 | Masimo Corporation | Noninvasive oximetry optical sensor including disposable and reusable elements |
10980432, | Aug 05 2013 | Masimo Corporation | Systems and methods for measuring blood pressure |
10980455, | Jul 02 2001 | Masimo Corporation | Low power pulse oximeter |
10980457, | Apr 21 2007 | Masimo Corporation | Tissue profile wellness monitor |
10984911, | Mar 01 2005 | WILLOW LABORATORIES, INC | Multiple wavelength sensor emitters |
10987066, | Oct 31 2017 | Masimo Corporation | System for displaying oxygen state indications |
10991135, | Aug 11 2015 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
10993643, | Oct 12 2006 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
10993662, | Mar 04 2016 | Masimo Corporation | Nose sensor |
11000232, | Jun 19 2014 | Masimo Corporation | Proximity sensor in pulse oximeter |
11006867, | Oct 12 2006 | Masimo Corporation | Perfusion index smoother |
11020029, | Jul 25 2003 | Masimo Corporation | Multipurpose sensor port |
11020084, | Sep 20 2012 | Masimo Corporation | Acoustic patient sensor coupler |
11022466, | Jul 17 2013 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
11026604, | Jul 13 2017 | WILLOW LABORATORIES, INC | Medical monitoring device for harmonizing physiological measurements |
11033210, | Mar 04 2008 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
11069461, | Aug 01 2012 | Masimo Corporation | Automated assembly sensor cable |
11071480, | Apr 17 2012 | Masimo Corporation | Hypersaturation index |
11076777, | Oct 13 2016 | Masimo Corporation | Systems and methods for monitoring orientation to reduce pressure ulcer formation |
11076782, | Oct 07 2013 | Masimo Corporation | Regional oximetry user interface |
11082786, | Jul 10 2018 | Masimo Corporation | Patient monitor alarm speaker analyzer |
11083397, | Feb 09 2012 | Masimo Corporation | Wireless patient monitoring device |
11086609, | Feb 24 2017 | Masimo Corporation | Medical monitoring hub |
11087875, | Mar 04 2009 | Masimo Corporation | Medical monitoring system |
11089963, | Aug 31 2015 | Masimo Corporation | Systems and methods for patient fall detection |
11089982, | Oct 13 2011 | Masimo Corporation | Robust fractional saturation determination |
11095068, | Aug 15 2017 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
11096631, | Feb 24 2017 | Masimo Corporation | Modular multi-parameter patient monitoring device |
11103134, | Sep 18 2014 | MASIMO SEMICONDUCTOR, INC. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
11109770, | Jun 21 2011 | Masimo Corporation | Patient monitoring system |
11109818, | Apr 19 2018 | Masimo Corporation | Mobile patient alarm display |
11114188, | Oct 06 2009 | WILLOW LABORATORIES, INC | System for monitoring a physiological parameter of a user |
11132117, | Mar 25 2012 | Masimo Corporation | Physiological monitor touchscreen interface |
11133105, | Mar 04 2009 | Masimo Corporation | Medical monitoring system |
11145408, | Mar 04 2009 | Masimo Corporation | Medical communication protocol translator |
11147518, | Oct 07 2013 | Masimo Corporation | Regional oximetry signal processor |
11153089, | Jul 06 2016 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
11158421, | Mar 04 2009 | Masimo Corporation | Physiological parameter alarm delay |
11172890, | Jan 04 2012 | Masimo Corporation | Automated condition screening and detection |
11176801, | Aug 19 2011 | Masimo Corporation | Health care sanitation monitoring system |
11178776, | Feb 06 2015 | Masimo Corporation | Fold flex circuit for LNOP |
11179111, | Jan 04 2012 | Masimo Corporation | Automated CCHD screening and detection |
11179114, | Oct 13 2011 | Masimo Corporation | Medical monitoring hub |
11185262, | Mar 10 2017 | Masimo Corporation | Pneumonia screener |
11191484, | Apr 29 2016 | Masimo Corporation | Optical sensor tape |
11191485, | Jun 05 2006 | Masimo Corporation | Parameter upgrade system |
11202571, | Jul 07 2016 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
11219391, | Jul 02 2001 | Masimo Corporation | Low power pulse oximeter |
11224363, | Jan 16 2013 | Masimo Corporation | Active-pulse blood analysis system |
11229374, | Dec 09 2006 | Masimo Corporation | Plethysmograph variability processor |
11234655, | Jan 20 2007 | Masimo Corporation | Perfusion trend indicator |
11241199, | Oct 13 2011 | Masimo Corporation | System for displaying medical monitoring data |
11259745, | Jan 28 2014 | Masimo Corporation | Autonomous drug delivery system |
11272839, | Oct 12 2018 | Masimo Corporation | System for transmission of sensor data using dual communication protocol |
11272852, | Jun 21 2011 | Masimo Corporation | Patient monitoring system |
11272883, | Mar 04 2016 | Masimo Corporation | Physiological sensor |
11289199, | Jan 19 2010 | JPMorgan Chase Bank, National Association | Wellness analysis system |
11291061, | Jan 18 2017 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
11291415, | May 04 2015 | WILLOW LABORATORIES, INC | Noninvasive sensor system with visual infographic display |
11298021, | Oct 19 2017 | Masimo Corporation | Medical monitoring system |
11317837, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
11330996, | May 06 2010 | Masimo Corporation | Patient monitor for determining microcirculation state |
11331013, | Sep 04 2014 | Masimo Corporation | Total hemoglobin screening sensor |
11331043, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11342072, | Oct 06 2009 | WILLOW LABORATORIES, INC | Optical sensing systems and methods for detecting a physiological condition of a patient |
11363960, | Feb 25 2011 | Masimo Corporation | Patient monitor for monitoring microcirculation |
11367529, | Nov 05 2012 | WILLOW LABORATORIES, INC | Physiological test credit method |
11389093, | Oct 11 2018 | Masimo Corporation | Low noise oximetry cable |
11399722, | Mar 30 2010 | Masimo Corporation | Plethysmographic respiration rate detection |
11399774, | Oct 13 2010 | Masimo Corporation | Physiological measurement logic engine |
11406286, | Oct 11 2018 | Masimo Corporation | Patient monitoring device with improved user interface |
11410507, | Feb 24 2017 | Masimo Corporation | Localized projection of audible noises in medical settings |
11412939, | Aug 31 2015 | Masimo Corporation | Patient-worn wireless physiological sensor |
11412964, | May 05 2008 | Masimo Corporation | Pulse oximetry system with electrical decoupling circuitry |
11417426, | Feb 24 2017 | Masimo Corporation | System for displaying medical monitoring data |
11426103, | Jul 03 2008 | Masimo Corporation | Multi-stream data collection system for noninvasive measurement of blood constituents |
11426104, | Aug 11 2004 | Masimo Corporation | Method for data reduction and calibration of an OCT-based physiological monitor |
11426125, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11430572, | Mar 01 2005 | WILLOW LABORATORIES, INC | Multiple wavelength sensor emitters |
11432771, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11437768, | Feb 06 2015 | Masimo Corporation | Pogo pin connector |
11439329, | Jul 13 2011 | Masimo Corporation | Multiple measurement mode in a physiological sensor |
11445948, | Oct 11 2018 | Masimo Corporation | Patient connector assembly with vertical detents |
11452449, | Oct 30 2012 | Masimo Corporation | Universal medical system |
11457872, | Dec 01 2017 | Samsung Electronics Co., Ltd. | Bio-signal quality assessment apparatus and bio-signal quality assessment method |
11464410, | Oct 12 2018 | Masimo Corporation | Medical systems and methods |
11484205, | Mar 25 2002 | Masimo Corporation | Physiological measurement device |
11484229, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11484230, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11484231, | Mar 08 2010 | Masimo Corporation | Reprocessing of a physiological sensor |
11488711, | Oct 11 2013 | Masimo Corporation | Alarm notification system |
11488715, | Feb 13 2011 | Masimo Corporation | Medical characterization system |
11504002, | Sep 20 2012 | Masimo Corporation | Physiological monitoring system |
11504058, | Dec 02 2016 | Masimo Corporation | Multi-site noninvasive measurement of a physiological parameter |
11504062, | Mar 14 2013 | Masimo Corporation | Patient monitor placement indicator |
11504066, | Sep 04 2015 | WILLOW LABORATORIES, INC | Low-noise sensor system |
11515664, | Mar 11 2009 | Masimo Corporation | Magnetic connector |
11534087, | Nov 24 2009 | WILLOW LABORATORIES, INC | Physiological measurement system with automatic wavelength adjustment |
11534110, | Apr 18 2017 | Masimo Corporation | Nose sensor |
11545263, | Mar 01 2005 | WILLOW LABORATORIES, INC | Multiple wavelength sensor emitters |
11557407, | Aug 01 2012 | Masimo Corporation | Automated assembly sensor cable |
11559275, | Dec 30 2008 | Masimo Corporation | Acoustic sensor assembly |
11564593, | Sep 15 2008 | Masimo Corporation | Gas sampling line |
11564642, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
11571152, | Dec 04 2009 | Masimo Corporation | Calibration for multi-stage physiological monitors |
11576582, | Aug 31 2015 | Masimo Corporation | Patient-worn wireless physiological sensor |
11581091, | Aug 26 2014 | VCCB HOLDINGS, INC. | Real-time monitoring systems and methods in a healthcare environment |
11596363, | Sep 12 2013 | WILLOW LABORATORIES, INC | Medical device management system |
11596365, | Feb 24 2017 | Masimo Corporation | Modular multi-parameter patient monitoring device |
11602289, | Feb 06 2015 | Masimo Corporation | Soft boot pulse oximetry sensor |
11605188, | Aug 11 2015 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
11607139, | Sep 20 2006 | Masimo Corporation | Congenital heart disease monitor |
11622733, | May 02 2008 | Masimo Corporation | Monitor configuration system |
11627919, | Jun 06 2018 | Masimo Corporation | Opioid overdose monitoring |
11637437, | Apr 17 2019 | Masimo Corporation | Charging station for physiological monitoring device |
11638532, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11642036, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11642037, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11645905, | Mar 13 2013 | Masimo Corporation | Systems and methods for monitoring a patient health network |
11647914, | Jul 03 2008 | Masimo Corporation | User-worn device for noninvasively measuring a physiological parameter of a user |
11647923, | Apr 21 2007 | Masimo Corporation | Tissue profile wellness monitor |
11653862, | May 22 2015 | WILLOW LABORATORIES, INC | Non-invasive optical physiological differential pathlength sensor |
11660028, | Mar 04 2008 | Masimo Corporation | Multispot monitoring for use in optical coherence tomography |
11672447, | Oct 12 2006 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
11673041, | Dec 13 2013 | Masimo Corporation | Avatar-incentive healthcare therapy |
11678829, | Apr 17 2019 | Masimo Corporation | Physiological monitoring device attachment assembly |
11679579, | Dec 17 2015 | Masimo Corporation | Varnish-coated release liner |
11684296, | Dec 21 2018 | WILLOW LABORATORIES, INC | Noninvasive physiological sensor |
11690574, | Nov 05 2003 | Masimo Corporation | Pulse oximeter access apparatus and method |
11696712, | Jun 13 2014 | VCCB HOLDINGS, INC. | Alarm fatigue management systems and methods |
11699526, | Oct 11 2013 | Masimo Corporation | Alarm notification system |
11701043, | Apr 17 2019 | Masimo Corporation | Blood pressure monitor attachment assembly |
11705666, | Aug 15 2017 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
11706029, | Jul 06 2016 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
11717194, | Oct 07 2013 | Masimo Corporation | Regional oximetry pod |
11717210, | Sep 28 2010 | Masimo Corporation | Depth of consciousness monitor including oximeter |
11717218, | Oct 07 2014 | Masimo Corporation | Modular physiological sensor |
11721105, | Feb 13 2020 | Masimo Corporation | System and method for monitoring clinical activities |
11724031, | Jan 17 2006 | Masimo Corporation | Drug administration controller |
11730379, | Mar 20 2020 | Masimo Corporation | Remote patient management and monitoring systems and methods |
11744471, | Sep 17 2009 | Masimo Corporation | Optical-based physiological monitoring system |
11747178, | Oct 27 2011 | Masimo Corporation | Physiological monitor gauge panel |
11751773, | Jul 03 2008 | Masimo Corporation | Emitter arrangement for physiological measurements |
11751780, | Oct 07 2013 | Masimo Corporation | Regional oximetry sensor |
11752262, | May 20 2009 | Masimo Corporation | Hemoglobin display and patient treatment |
11759130, | Oct 12 2006 | Masimo Corporation | Perfusion index smoother |
11766198, | Feb 02 2018 | WILLOW LABORATORIES, INC | Limb-worn patient monitoring device |
11779247, | Jul 29 2009 | Masimo Corporation | Non-invasive physiological sensor cover |
11786183, | Oct 13 2011 | Masimo Corporation | Medical monitoring hub |
11803623, | Oct 18 2019 | Masimo Corporation | Display layout and interactive objects for patient monitoring |
11812229, | Jul 10 2018 | Masimo Corporation | Patient monitor alarm speaker analyzer |
11813036, | Apr 26 2017 | Masimo Corporation | Medical monitoring device having multiple configurations |
11816771, | Feb 24 2017 | Masimo Corporation | Augmented reality system for displaying patient data |
11816973, | Aug 19 2011 | Masimo Corporation | Health care sanitation monitoring system |
11825536, | Jan 18 2017 | Masimo Corporation | Patient-worn wireless physiological sensor with pairing functionality |
11830349, | Feb 24 2017 | Masimo Corporation | Localized projection of audible noises in medical settings |
11832940, | Aug 27 2019 | WILLOW LABORATORIES, INC | Non-invasive medical monitoring device for blood analyte measurements |
11839470, | Jan 16 2013 | Masimo Corporation | Active-pulse blood analysis system |
11839498, | Oct 14 2005 | Masimo Corporation | Robust alarm system |
11844634, | Apr 19 2018 | Masimo Corporation | Mobile patient alarm display |
11848515, | Mar 11 2009 | Masimo Corporation | Magnetic connector |
11850024, | Sep 18 2014 | MASIMO SEMICONDUCTOR, INC. | Enhanced visible near-infrared photodiode and non-invasive physiological sensor |
11857315, | Oct 12 2006 | Masimo Corporation | Patient monitor capable of monitoring the quality of attached probes and accessories |
11857319, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
11864890, | Dec 22 2016 | WILLOW LABORATORIES, INC | Methods and devices for detecting intensity of light with translucent detector |
11864922, | Sep 04 2015 | WILLOW LABORATORIES, INC | Low-noise sensor system |
11872156, | Aug 22 2018 | Masimo Corporation | Core body temperature measurement |
11877824, | Aug 17 2011 | Masimo Corporation | Modulated physiological sensor |
11877867, | Feb 16 2009 | Masimo Corporation | Physiological measurement device |
11879960, | Feb 13 2020 | Masimo Corporation | System and method for monitoring clinical activities |
11883129, | Apr 24 2018 | WILLOW LABORATORIES, INC | Easy insert finger sensor for transmission based spectroscopy sensor |
11883190, | Jan 28 2014 | Masimo Corporation | Autonomous drug delivery system |
11886858, | Feb 24 2017 | Masimo Corporation | Medical monitoring hub |
11887728, | Sep 20 2012 | Masimo Corporation | Intelligent medical escalation process |
11894640, | Feb 06 2015 | Masimo Corporation | Pogo pin connector |
11900775, | Dec 21 2009 | Masimo Corporation | Modular patient monitor |
11901070, | Feb 24 2017 | Masimo Corporation | System for displaying medical monitoring data |
11903140, | Feb 06 2015 | Masimo Corporation | Fold flex circuit for LNOP |
11911184, | Dec 01 2017 | Samsung Electronics Co., Ltd. | Bio-signal quality assessment apparatus and bio-signal quality assessment method |
11918353, | Feb 09 2012 | Masimo Corporation | Wireless patient monitoring device |
11923080, | Mar 04 2009 | Masimo Corporation | Medical monitoring system |
11925445, | Jun 21 2011 | Masimo Corporation | Patient monitoring system |
11931176, | Mar 04 2016 | Masimo Corporation | Nose sensor |
11937949, | Mar 08 2004 | Masimo Corporation | Physiological parameter system |
11944415, | Aug 05 2013 | Masimo Corporation | Systems and methods for measuring blood pressure |
11944431, | Mar 17 2006 | Masimo Corportation | Apparatus and method for creating a stable optical interface |
11951186, | Oct 25 2019 | WILLOW LABORATORIES, INC | Indicator compounds, devices comprising indicator compounds, and methods of making and using the same |
11957474, | Apr 17 2019 | Masimo Corporation | Electrocardiogram device |
11961616, | Aug 26 2014 | VCCB HOLDINGS, INC. | Real-time monitoring systems and methods in a healthcare environment |
11963736, | Jul 20 2009 | Masimo Corporation | Wireless patient monitoring system |
11963749, | Mar 13 2013 | Masimo Corporation | Acoustic physiological monitoring system |
11967009, | Aug 11 2015 | Masimo Corporation | Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue |
11969269, | Feb 24 2017 | Masimo Corporation | Modular multi-parameter patient monitoring device |
11969645, | Dec 13 2013 | Masimo Corporation | Avatar-incentive healthcare therapy |
11974833, | Mar 20 2020 | Masimo Corporation | Wearable device for noninvasive body temperature measurement |
11974841, | Oct 16 2009 | Masimo Corporation | Respiration processor |
11986067, | Aug 19 2020 | Masimo Corporation | Strap for a wearable device |
11986289, | Nov 27 2018 | WILLOW LABORATORIES, INC | Assembly for medical monitoring device with multiple physiological sensors |
11986305, | Apr 17 2019 | Masimo Corporation | Liquid inhibiting air intake for blood pressure monitor |
11988532, | Jul 17 2013 | Masimo Corporation | Pulser with double-bearing position encoder for non-invasive physiological monitoring |
11990706, | Feb 08 2012 | Masimo Corporation | Cable tether system |
11992308, | Oct 11 2018 | Masimo Corporation | Patient monitoring device with improved user interface |
11992311, | Jul 13 2017 | WILLOW LABORATORIES, INC | Medical monitoring device for harmonizing physiological measurements |
11992342, | Jan 02 2013 | Masimo Corporation | Acoustic respiratory monitoring sensor with probe-off detection |
11992361, | Sep 20 2012 | Masimo Corporation | Acoustic patient sensor coupler |
11998362, | Oct 15 2009 | Masimo Corporation | Acoustic respiratory monitoring sensor having multiple sensing elements |
12053280, | Oct 11 2018 | Masimo Corporation | Low noise oximetry cable |
12057222, | Mar 04 2009 | Masimo Corporation | Physiological alarm threshold determination |
12059274, | Oct 31 2017 | Masimo Corporation | System for displaying oxygen state indications |
12064217, | Mar 20 2020 | Masimo Corporation | Remote patient management and monitoring systems and methods |
12064240, | Dec 21 2018 | WILLOW LABORATORIES, INC | Noninvasive physiological sensor |
12066426, | Jan 16 2019 | Masimo Corporation | Pulsed micro-chip laser for malaria detection |
12067783, | Feb 13 2020 | Masimo Corporation | System and method for monitoring clinical activities |
12070293, | Jul 07 2016 | Masimo Corporation | Wearable pulse oximeter and respiration monitor |
12076159, | Feb 07 2019 | Masimo Corporation | Combining multiple QEEG features to estimate drug-independent sedation level using machine learning |
12082926, | Aug 04 2020 | Masimo Corporation | Optical sensor with multiple detectors or multiple emitters |
12089968, | Dec 22 2006 | Masimo Corporation | Optical patient monitor |
12097043, | Jun 06 2018 | Masimo Corporation | Locating a locally stored medication |
12107960, | Jul 06 2016 | Masimo Corporation | Secure and zero knowledge data sharing for cloud applications |
12109012, | Dec 09 2006 | Masimo Corporation | Plethysmograph variability processor |
12109021, | Mar 08 2010 | Masimo Corporation | Reprocessing of a physiological sensor |
12109022, | Feb 09 2012 | Masimo Corporation | Wireless patient monitoring device |
12109048, | Jun 05 2006 | Masimo Corporation | Parameter upgrade system |
12114974, | Jan 13 2020 | Masimo Corporation | Wearable device with physiological parameters monitoring |
12121333, | Dec 01 2010 | WILLOW LABORATORIES, INC | Handheld processing device including medical applications for minimally and non invasive glucose measurements |
12126683, | Aug 31 2021 | Masimo Corporation | Privacy switch for mobile communications device |
12127833, | Nov 24 2009 | WILLOW LABORATORIES, INC | Physiological measurement system with automatic wavelength adjustment |
12127834, | Feb 06 2015 | Masimo Corporation | Soft boot pulse oximetry sensor |
12127835, | Oct 12 2006 | Masimo Corporation | System and method for monitoring the life of a physiological sensor |
12127838, | Apr 22 2020 | WILLOW LABORATORIES, INC | Self-contained minimal action invasive blood constituent system |
12128213, | Jan 30 2020 | WILLOW LABORATORIES, INC | Method of operating redundant staggered disease management systems |
12131661, | Oct 03 2019 | WILLOW LABORATORIES, INC | Personalized health coaching system |
12133717, | Aug 31 2015 | Masimo Corporation | Systems and methods for patient fall detection |
12138079, | Nov 30 2016 | Masimo Corporation | Haemodynamic monitor with improved filtering |
12142136, | Mar 13 2013 | Masimo Corporation | Systems and methods for monitoring a patient health network |
12142875, | Aug 15 2017 | Masimo Corporation | Water resistant connector for noninvasive patient monitor |
12150739, | Aug 31 2015 | Masimo Corporation | Systems and methods for patient fall detection |
12150760, | May 22 2015 | WILLOW LABORATORIES, INC | Non-invasive optical physiological differential pathlength sensor |
12156732, | Oct 11 2018 | Masimo Corporation | Patient connector assembly with vertical detents |
12156733, | Apr 21 2007 | Masimo Corporation | Tissue profile wellness monitor |
12167913, | Apr 17 2012 | Masimo Corporation | Hypersaturation index |
12171552, | Oct 12 2006 | Masimo Corporation | Method and apparatus for calibration to reduce coupling between signals in a measurement system |
12178559, | May 06 2010 | Masimo Corporation | Patient monitor for determining microcirculation state |
12178572, | Jun 11 2013 | Masimo Corporation | Blood glucose sensing system |
12178581, | Apr 17 2019 | Masimo Corporation | Patient monitoring systems, devices, and methods |
12178620, | Oct 14 2005 | Masimo Corporation | Robust alarm system |
12178852, | Sep 30 2020 | WILLOW LABORATORIES, INC | Insulin formulations and uses in infusion devices |
8280140, | Jan 27 2005 | AKOYA BIOSCIENCES, INC | Classifying image features |
8385615, | Sep 23 2003 | Cambridge Research & Instrumentation, Inc. | Spectral imaging of biological samples |
8391961, | Sep 23 2003 | CAMBRIDGE RESEARCH & INSTRUMENTATION, INC | Spectral imaging |
8634607, | Sep 23 2003 | CAMBRIDGE RESEARCH & INSTRUMENTATION, INC | Spectral imaging of biological samples |
8639043, | Jan 27 2005 | AKOYA BIOSCIENCES, INC | Classifying image features |
8879812, | Sep 23 2003 | Cambridge Research & Instrumentation, Inc. | Spectral imaging of biological samples |
9351671, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus and method of use thereof |
9351672, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof |
9375170, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus with stacked filters and method of use thereof |
9442065, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for synthesis of zyotons for use in collision computing for noninvasive blood glucose and other measurements |
9448164, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing |
9448165, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for control of illumination or radiation collection for blood glucose and other analyte detection and measurement using collision computing |
9453794, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for blood glucose and other analyte detection and measurement using collision computing |
9459201, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing |
9459202, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for collision computing for detection and noninvasive measurement of blood glucose and other substances and events |
9459203, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for generating and using projector curve sets for universal calibration for noninvasive blood glucose and other measurements |
9554738, | Mar 30 2016 | ZYOMED HOLDINGS, INC | Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing |
9585604, | Jul 16 2012 | ZYOMED HOLDINGS, INC | Multiplexed pathlength resolved noninvasive analyzer apparatus with dynamic optical paths and method of use thereof |
9588099, | Sep 23 2003 | Cambridge Research & Intrumentation, Inc. | Spectral imaging |
9610018, | Sep 29 2014 | ZYOMED HOLDINGS, INC | Systems and methods for measurement of heart rate and other heart-related characteristics from photoplethysmographic (PPG) signals using collision computing |
9766126, | Jul 12 2013 | ZYOMED HOLDINGS, INC | Dynamic radially controlled light input to a noninvasive analyzer apparatus and method of use thereof |
D897098, | Oct 12 2018 | Masimo Corporation | Card holder set |
D916135, | Oct 11 2018 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
D917550, | Oct 11 2018 | Masimo Corporation | Display screen or portion thereof with a graphical user interface |
D917564, | Oct 11 2018 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D917704, | Aug 16 2019 | Masimo Corporation | Patient monitor |
D919094, | Aug 16 2019 | Masimo Corporation | Blood pressure device |
D919100, | Aug 16 2019 | Masimo Corporation | Holder for a patient monitor |
D921202, | Aug 16 2019 | Masimo Corporation | Holder for a blood pressure device |
D925597, | Oct 31 2017 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D927699, | Oct 18 2019 | Masimo Corporation | Electrode pad |
D933232, | May 11 2020 | Masimo Corporation | Blood pressure monitor |
D933233, | Aug 16 2019 | Masimo Corporation | Blood pressure device |
D933234, | Aug 16 2019 | Masimo Corporation | Patient monitor |
D950738, | Oct 18 2019 | Masimo Corporation | Electrode pad |
D965789, | May 11 2020 | Masimo Corporation | Blood pressure monitor |
D967433, | Aug 16 2019 | Masimo Corporation | Patient monitor |
D973072, | Sep 30 2020 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D973685, | Sep 30 2020 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D973686, | Sep 30 2020 | Masimo Corporation | Display screen or portion thereof with graphical user interface |
D974193, | Jul 27 2020 | Masimo Corporation | Wearable temperature measurement device |
D979516, | May 11 2020 | Masimo Corporation | Connector |
D980091, | Jul 27 2020 | Masimo Corporation | Wearable temperature measurement device |
D985498, | Aug 16 2019 | Masimo Corporation | Connector |
D989112, | Sep 20 2013 | Masimo Corporation | Display screen or portion thereof with a graphical user interface for physiological monitoring |
D989327, | Oct 12 2018 | Masimo Corporation | Holder |
ER1157, | |||
ER1295, | |||
ER1410, | |||
ER1649, | |||
ER1714, | |||
ER1777, | |||
ER2016, | |||
ER2052, | |||
ER2198, | |||
ER2485, | |||
ER2496, | |||
ER2500, | |||
ER2928, | |||
ER31, | |||
ER3469, | |||
ER3532, | |||
ER3807, | |||
ER4099, | |||
ER4184, | |||
ER419, | |||
ER4196, | |||
ER4355, | |||
ER4402, | |||
ER4576, | |||
ER4945, | |||
ER4970, | |||
ER5109, | |||
ER5214, | |||
ER5450, | |||
ER5816, | |||
ER5893, | |||
ER5918, | |||
ER612, | |||
ER6173, | |||
ER6310, | |||
ER6654, | |||
ER6678, | |||
ER6679, | |||
ER6971, | |||
ER6997, | |||
ER7036, | |||
ER7053, | |||
ER7225, | |||
ER7394, | |||
ER7489, | |||
ER7535, | |||
ER7560, | |||
ER7626, | |||
ER7821, | |||
ER8765, | |||
ER9655, | |||
RE49007, | Mar 01 2010 | Masimo Corporation | Adaptive alarm system |
RE49034, | Jan 24 2002 | Masimo Corporation | Physiological trend monitor |
Patent | Priority | Assignee | Title |
5204532, | Jan 19 1989 | FUTREX, INC | Method for providing general calibration for near infrared instruments for measurement of blood glucose |
5553616, | Nov 30 1993 | Florida Institute of Technology | Determination of concentrations of biological substances using raman spectroscopy and artificial neural network discriminator |
5576544, | Jan 19 1989 | Futrex, Inc. | Method for providing general calibration for near infrared instruments for measurement of blood glucose |
5725480, | Mar 06 1996 | Abbott Laboratories | Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds |
5798526, | Jan 24 1997 | Infrasoft International LLC | Calibration system for spectrographic analyzing instruments |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 27 2005 | Sensys Medical, Inc. | (assignment on the face of the patent) | / | |||
Jan 20 2009 | SENSYS MEDICAL, INC | GLENN PATENT GROUP | LIEN SEE DOCUMENT FOR DETAILS | 022117 | /0887 | |
Apr 14 2009 | GLENN PATENT GROUP | SENSYS MEDICAL, INC | LIEN RELEASE | 022542 | /0360 | |
Apr 28 2012 | SENSYS MEDICAL, INC | SENSYS MEDICAL, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028714 | /0623 | |
Aug 29 2012 | SENSYS MEDICAL, LIMITED | GLT ACQUISITION CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028912 | /0036 |
Date | Maintenance Fee Events |
Sep 06 2010 | REM: Maintenance Fee Reminder Mailed. |
Jan 30 2011 | EXPX: Patent Reinstated After Maintenance Fee Payment Confirmed. |
May 01 2012 | M1558: Surcharge, Petition to Accept Pymt After Exp, Unintentional. |
May 01 2012 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
May 01 2012 | PMFP: Petition Related to Maintenance Fees Filed. |
Jul 03 2012 | PMFG: Petition Related to Maintenance Fees Granted. |
Nov 09 2012 | ASPN: Payor Number Assigned. |
Jan 30 2013 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Jul 25 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 11 2013 | 4 years fee payment window open |
Nov 11 2013 | 6 months grace period start (w surcharge) |
May 11 2014 | patent expiry (for year 4) |
May 11 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 11 2017 | 8 years fee payment window open |
Nov 11 2017 | 6 months grace period start (w surcharge) |
May 11 2018 | patent expiry (for year 8) |
May 11 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 11 2021 | 12 years fee payment window open |
Nov 11 2021 | 6 months grace period start (w surcharge) |
May 11 2022 | patent expiry (for year 12) |
May 11 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |