A 4-T sram cell in which two layers of permanent SOG (with an intermediate oxide layer) are used to provide planarization between the first and topmost poly layers.

Patent
   RE41670
Priority
Dec 17 1993
Filed
Jan 20 2000
Issued
Sep 14 2010
Expiry
Dec 17 2013
Assg.orig
Entity
unknown
0
42
EXPIRED
0. 26. An integrated circuit sram cell formed in a semiconductor substrate, a plurality of active transistor regions being formed in the substrate, the sram cell comprising:
a first conductive layer disposed on the semiconductor substrate, the first conductive layer forming a plurality of respective control nodes for respective transistors in the substrate;
a second conductive layer disposed over the first conductive layer, the second conductive layer being coupled to the first conductive layer and to active transistor regions to interconnect groups of transistors and thereby form respective data latches;
an interlevel dielectric disposed on the second conductive layer and including three different dielectric layers, two of the three dielectric layers being independently planarized spin-on glass layers;
an insulating layer disposed on the interlevel dielectric; and
a third conductive layer formed on the insulating layer, the third conductive layer being coupled to the data latches to form respective resistive loads for the respective latches.
12. An integrated circuit sram cell, comprising:
at least one patterned thin-film conductor layer comprising polysilicon and being capacitively coupled to substantially monolithic semiconductor material to define field-effect transistor channels therein;
a patterned interlevel dielectric overlying said at least one patterned thin-film conductor layers , and including multiple independently planarized layers of dielectric material therein, said multiple independently planarized layers of dielectric material including at least three different layers of dielectric material, with at least two of said layers of dielectric material being independently planarized layers of spin-on glass;
an additional patterned thin-film layer comprising substantially intrinsic polysilicon, and lying on a substantially planar top surface of said patterned interlevel dielectric;
wherein said at least one patterned thin-film conductor layer are is interconnected to provide an array of latches, and said additional thin-film layer overlies said patterned interlevel dielectric and is interconnected through contact holes with said conductor layers to provide passive loads for respective ones of said latches.
0. 33. An integrated circuit sram cell formed in a semiconductor substrate, a plurality of active transistor regions being formed in the substrate, the sram cell comprising:
a first conductive layer disposed on the semiconductor substrate, the first conductive layer forming a plurality of respective control nodes for respective transistors in the substrate;
a second conductive layer disposed over the first conductive layer, the second conductive layer being coupled to the first conductive layer and to active transistor regions to interconnect groups of transistors and thereby form respective data latches;
a plurality of different independently planarized spin-on glass layers disposed on the second conductive layer;
a dielectric layer disposed between two of the independently planarized spin-on glass layers, the dielectric layer being different from the two independently planarized spin-on glass layers;
an undoped oxide layer disposed on a top one of the planarized spin-on glass layers; and
a third conductive layer formed on the insulating layer, the third conductive layer being coupled to the data latches to form respective resistive loads for the respective latches.
7. An integrated circuit sram cell, comprising:
first and second overlaid thin-film conductor layers, each comprising clad polysilicon; , at least one of said conductor layers being capacitively coupled to substantially monolithic semiconductor material to define field-effect transistor channels therein;
a patterned interlevel dielectric overlying portions of said second thin-film layer, and including multiple independently planarized layers of dielectric material therein, said multiple independently planarized layers of dielectric material including at least three different layers of dielectric material, with at least two of said layers of dielectric material being independently planarized layers of pin-on glass;
a third patterned thin-film layer comprising substantially undoped polysilicon having a very high resistivity, and lying on a substantially planar top surface of said patterned interlevel dielectric;
wherein said first patterned thin-film layer is configured to provide transistor gates, and lust first and second thin-film layers are interconnected to provide an array of latches, and said third thin-film layer overlies said patterned interlevel dielectric and is interconnected through contact holes with said first and second layers to provide passive loads for respective ones of said latches.
1. An integrated circuit sram cell, comprising:
a substrate which includes at least one substantially monolithic body of semiconductor material;
a first patterned thin-film layer comprising polysilicon;
a second patterned thin-film layer comprising polysilicon and overlying said first thin-film layer, said second layer being doped to provide high conductivity;
a patterned interlevel dielectric overlying portions of said first and second thin-film layers, said interlevel dielectric including multiple independently planarized layers of dielectric material therein, said multiple independently planarized layers including a lower portion of a spin-on glass a middle portion of a dielectric material which is not spin-on glass, and an upper portion of spin-on glass;
a third patterned thin-film layer comprising substantially undoped polysilicon having a very high resistivity;
wherein said first patterned thin-film layer is configured to provide transistor gates, and said first and second thin-film layers are interconnected to provide an array of latches, and said third thin-film layer overlies said patterned interlevel dielectric and is interconnected through contact holes with said first and second layers to provide resistive loads for each said latch.
0. 27. An integrated circuit sram cell formed in a semiconductor substrate, a plurality of active transistor regions being formed in the substrate, the sram cell comprising:
a first conductive layer disposed on the semiconductor substrate, the first conductive layer forming a plurality of respective control nodes for respective transistors in the substrate;
a second conductive layer disposed over the first conductive layer, the second conductive layer being coupled to the first conductive layer and to active transistor regions to interconnect groups of transistors and thereby form respective data latches;
a plurality of independently planarized spin-on glass layers disposed on the second conductive layer;
an insulating layer disposed on a top one of the planarizing spin-on glass layers;
a third conductive layer formed on the insulating layer, the third conductive layer being coupled to the data latches to form respective resistive loads for the respective latches; and
wherein the plurality of independently planarized spin-on glass layers includes a first independently planarized spin-on glass layer disposed on the second conductive layer, an oxide layer disposed on the first spin-on glass layer, and a second independently planarized spin-on glass layer disposed on the oxide layer.
0. 2. The integrated circuit of claim 1, wherein said first thin-film layer also comprises a silicide cladding.
0. 3. The sram cell of claim 1, wherein said interlevel dielectric comprises two layers of spin-on glass.
0. 4. The sram cell of claim 1, wherein said interlevel dielectric also comprises at least two dielectric layers which are not planarized.
0. 5. The sram cell of claim 1, wherein said second interlevel dielectric comprises at least four layers.
0. 6. The sram cell of claim 1, wherein said loads each have a resistance value of about 1TΩ.
0. 8. The sram cell of claim 7, wherein said interlevel dielectric comprises two layers of spin-on glass.
0. 9. The sram cell of claim 7, wherein said interlevel dielectric also comprises at least two dielectric layers which are not planarized.
0. 10. The sram cell of claim 7, wherein said interlevel dielectric comprises at least four layers.
0. 11. The sram cell of claim 7, wherein said loads each have a resistance value of about 1TΩ.
0. 13. The sram cell of claim 12, wherein said additional layer comprises SIPOS.
0. 14. The sram cell of claim 12, wherein said additional layer comprises polysilicon doped with chlorine.
0. 15. The sram cell of claim 12, wherein said interlevel dielectric comprises two layers of spin-on glass.
0. 16. The sram cell of claim 12, wherein said interlevel dielectric also comprises at least two dielectric layers which are not planarized.
0. 17. The sram cell of claim 12, wherein said interlevel dielectric comprises at least four layers.
0. 18. The sram cell of claim 12, wherein said loads each have a resistance value of about 1TΩ.
0. 19. The integrated circuit sram cell of claim 1 wherein the third patterned thin-film layer comprises substantially undoped polysilicon.
0. 20. The integrated circuit sram cell of claim 19 wherein the substantially undoped polysilicon comprises intrinsic polysilicon.
0. 21. The integrated circuit sram cell of claim 1 wherein the third patterned thin-film layer comprises a polysilicon layer doped with chlorine.
0. 22. The integrated circuit sram cell of claim 7 wherein the third patterned thin-film layer comprises substantially undoped polysilicon.
0. 23. The integrated circuit sram cell of claim 22 wherein the third patterned thin-film layer comprises intrinsic polysilicon.
0. 24. The integrated circuit sram cell of claim 7 wherein the third patterned thin-film layer comprises a polysilicon layer doped with chlorine.
0. 25. The integrated circuit sram cell of claim 12 wherein the third patterned thin-film layer comprises substantially intrinsic polysilicon.
0. 28. The integrated circuit sram cell of claim 26 wherein each of the conductive layers comprises a suitably doped polysilicon layer.
0. 29. The integrated circuit sram cell of claim 26 wherein the first conductive layer comprises a first polysilicon layer and a cladding layer formed on the first polysilicon layer.
0. 30. The integrated circuit sram cell of claim 29 wherein the cladding layer comprises tantalum silicide.
0. 31. The integrated circuit sram cell of claim 26 wherein the second conductive layer comprises a second polysilicon layer and a cladding layer formed on the second polysilicon layer.
0. 32. The integrated circuit sram cell of claim 31 wherein the cladding layer comprises tantalum silicide.
0. 34. The integrated circuit sram cell of claim 26 wherein the third conductive layer comprises intrinsic polysilicon.

This application is a continuation of application No. 08/328,736, filed Oct. 25, 1995, which was abandoned upon the filing herein which is a divisional of 08/49,338, filed Dec. 17, 1993, now U.S. Pat. No. 5,395,785.

The present invention relates to integrated circuit fabrication methods and structures, and particularly to integrated circuits with minimum linewidths below one-half micron.

Background: Planarization

As the degree of integration has advanced, it has become increasingly apparently that it is desirable to minimize the topographical excursion of the surface at each level, especially the upper levels. To accomplish this, various planarization schemes have been used to planarize the inter-level dielectric. Some of these include Chemical-Mechanical-Polishing (CMP), use of Permanent Spin-on-glass (left in place in the final chip), and Sacrificial Etchback Spin-on-glass (SOG).

Spin-on glass deposition is an example of a “sol-gel” process, which has been used in the semiconductor industry for many years. The unprocessed spin-on glass material (available in numerous formulations) is a fluid material (actually a gel). After the liquid material is coated onto the face of a wafer, the wafer is rotated at high speed to throw off the excess material. The surface tension and adhesion of the material provides a flat (planarized) surface with a controlled thickness. The liquid material is then baked, to drive off solvents and provide a stable solid silicate glass. See generally, e.g., Dauksher et al., “Three ‘low Dt’ options for planarizing the pre-metal dielectric on an advanced double poly BiCMOS process,” 139 J.ELECTROCHEM.SOC. 532-536 (1992), which is hereby incorporated by reference.

Background: SRAM Cell Operation

One of the two most common types of SRAM cell is the “4-T” cell, which uses resistive loads. FIG. 7 is a circuit diagram of such a cell (a 4-transistor 2-resistor MOS SRAM cell). In the example shown, the numbering of the bitlines and wordlines indicates that this cell would be in the n-th row and m-th column of an array (or subarray) of memory cells. In this cell, NMOS driver transistors D1 and D2, loaded by resistors R1 and R2, are cross-connected to form a latch. Pass transistors PT1 and PT2 are both accessed by a respective wordline WLn, to connect the two complementary nodes of the latch to a respective complementary pair of bitlines BLm and BLm* when wordline WLn goes high. Thus, in read mode, when wordline WLn goes high, whichever one of the driver transistors (D1 or D2) is ON will pull down one of the bitlines (BLm or BLm*), producing a data signal which can be read. In write mode, the bitlines will be clamped by strong drivers, and the pass transistors PT1 and PT2 will pass enough current to change the state of the latch to correspond to the bitline voltages.

In such a memory cell, the resistors R1 and R2 must pass enough current to offset the leakage currents which tend to discharge the high node of the latch. These resistors are conventionally made from nearly intrinsic polysilicon, and therefore tend to have very high resistance values (which may range from many gigaohms up to teraohms). Unfortunately, the resistivity of such polysilicon is fairly variable, and an excessive value for the resistors may cause the cell to lose data under high-temperature conditions. An excessively low value for the polysilicon resistor may lead to excess static power consumption. Thus, precise control of the resistor values would be highly desirable.

Innovative SRAM Structure and Process

This disclosure describes an improved method of four transistor SRAM cell fabrication, wherein planarization is performed before metal formation (and actually before resistor formation). The pre-metal planarization utilizes a sandwich structure comprising permanent SOG, undoped glass, and permanent SOG. The undoped glass is used as a buffer layer between two layers of spin-on-glass to prevent SOG cracks. The double SOG spin enhances the degree of planarization.

The disclosed inventions thus provide the advantages of reduced topography at the poly-2 level, and hence more accurate patterning of the poly resistors, and hence a reduced poly-R resistance value by shortening resistor length (less surface contour due to better planarity). This provides more precise manufacturing control which can be used to set speed and power more reliably.

The present invention will be described with reference to the accompanying drawings, which show important sample embodiments of the invention and which are incorporated in the specification hereof by reference, wherein:

FIG. 1 shows a section of a standard 1 Mb SRAM, and FIG. 2 shows a modification of the structure according to the disclosed innovations.

FIG. 3 is a micrograph of a plan view of a standard structure, and

FIG. 4 is a micrograph of a plan view of a comparable structure made according to the disclosed inventions.

FIG. 5 is a micrograph of a section view of a standard structure, and

FIG. 6 is a micrograph of a section view of a comparable structure made according to the disclosed inventions.

FIG. 7 is a circuit diagram of a 4-transistor 2-resistor MOS SRAM cell.

The numerous innovative teachings of the present application will be described with particular reference to the presently preferred embodiment. However, it should be understood that this class of embodiments provides only a few examples of the many advantageous uses of the innovative teachings herein. In general, statements made in the specification of the present application do not necessarily delimit any of the various claimed inventions. Moreover, some statements may apply to some inventive features but not to others.

After completion of CMOS transistor formation (and local interconnect formation in the poly-2 layer, if desired), a standard process flow (as shown in FIG. 1) would deposit e.g. 1KÅ of undoped oxide, spin on e.g. 1.5KÅ of SOG, deposit e.g. 1KÅ of undoped oxide, deposit and etch a second polysilicon layer to form polysilicon resistors, and then proceed with contact and metal formation.

In the innovative process embodiments described, fabrication of the lower poly level(s) is instead followed by:

The disclosed inventions thus provide the advantages of reduced topography at the top poly level, and hence more accurate patterning of the poly resistors. A comparison of FIGS. 3 and 4 illustrates this advantage: FIG. 3 is a micrograph of a plan view of a standard structure, and FIG. 4 is a micrograph of a plan view of a comparable structure made according to the disclosed inventions.

The disclosed inventions also provide the advantages of reduced poly-R resistance value by shortening the effective resistor length (since the reduced surface contour leads to better planarity). A comparison of FIGS. 5 and 6 illustrates this advantage: FIG. 5 is a micrograph of a section view of a standard structure, and FIG. 6 is a micrograph of a section view of a comparable structure made according to the disclosed inventions. This in turn can be used to provide faster memory operation, since the load resistors can have a greater pullup capability for the same layout area. That is, the reliably greater pullup capability of the load resistors means that the driver and pass transistor dimensions can be selected for faster operation, without risk of upsetting the latch when the pass transistors turn on.

FIG. 1 shows a cross-section through a partially fabricated triple-poly 4-T SRAM cell, which has been partially fabricated according to conventional methods. (Metallization has been omitted for clarity.) Substrate 100 includes multiple IGFET transistors 110 separated by field oxide 120. The gates of these NMOS transistors are provided by a first polysilicon layer 130, which is clad, in the presently preferred embodiment, with a tantalum silicide layer 132. (This composite layer 130/132 is referred to herein as the “poly-1” layer.) The poly-1 layer 130/132 provides gate electrodes for the transistors 110. (The gate oxide which separates the transistor gates from the substrate is too thin. e.g. 100-150 Å, to be shown in this drawing.) Sidewall spacers 112 are self-aligned to the poly-1 layer 130/132.

A second layer of polysilicon 230 (which, in the presently preferred embodiment, is also clad with a respective tantalum silicide layer 232) provides local interconnect within the cell. (This composite layer 230/232 is referred to herein as the “poly-2” layer.) A permanent SOG layer 150, overlaid by an undoped oxide layer 160, provides some planarization over the poly-2 layer. (An additional layer of undoped oxide, which is omitted from this drawing for simplicity, underlies the permanent SOG layer 150.) A shared contact, in the presently preferred embodiment, provides contacts from poly-1 and poly-2 to active.

A third polysilicon layer 330, made of substantially intrinsic polysilicon, provides the polysilicon resistors. (This layer 330 is referred to herein as the “poly-R” layer.) Another shared contact is used to provide contact from this layer to the poly-2 (and poly-1) layers.

FIG. 2 shows a cross-section through a partially fabricated triple-poly 4-T SRAM cell, which has been partially fabricated according to the disclosed innovative methods. Elements 100, 110, 120, 130, 132, 112, 230, 232, and 150 all are generally the same as the corresponding elements in FIG. 1. However, in the structure of FIG. 2, an additional layer of undoped oxide 152 overlies the SOG 150, and an additional planarizing layer 155 of permanent SOG (e.g. P114 from Allied) overlies the oxide layer 152.

This results in a structure wherein the topographic excursion H2 of the more planar poly-R layer 3300 provided by the disclosed innovations is much less than the topographic excursion H1 of the poly-R layer 330 of the more conventional structure shown in FIG. 1.

The disclosed inventions also provide the advantages of reduced topographical excursion for the contact and metal-1 layer, and hence reduced requirements for planarization after the poly-2 layer.

The resistors R1 and R2 are preferably laid out to have a target resistance value of about 1TΩ, but of course this value can be adjusted, by appropriate layout changes, to adjust for speed and power requirements as needed. However, the disclosed innovations permit the resistor value to be specified with greater precision.

Further Modifications and Variations

It will be recognized by those skilled in the art that the innovative concepts disclosed in the present application can be applied in a wide variety of contexts. Moreover, the preferred implementation can be modified in a tremendous variety of ways. Accordingly, it should be understood that the modifications and variations suggested below and above are merely illustrative. These examples may help to show some of the scope of the inventive concepts, but these examples do not nearly exhaust the full scope of variations in the disclosed novel concepts.

While the inventions have been described with primary reference to a 4-T SRAM cell, it will be readily recognized that these inventions can also be applied to other integrated circuits which use resistive loads. Note, however, that the disclosed innovations would not be as applicable to processes which include floating-gate memory cells or poly-to-poly capacitors in the top poly level, since the planarization provided by the disclosed inventions would require additional process complexity to achieve the close coupling from the top poly level to the next lower poly level.

Although the presently preferred embodiment actually uses a triple-poly cell layout, it will be readily recognized that the disclosed ideas can also be adapted for use in a double-poly resistive-load SRAM cell.

Although the resistors are formed from intrinsic polysilicon in the presently preferred embodiment, it will be recognized that a slight amount of doping may be desirable to stabilize the characteristics of this material. For example, this material may be doped with chlorine, or may be SIPOS (containing a large fraction of oxygen).

As will be recognized by those skilled in the art, the innovative concepts described in the present application can be modified and varied over a tremendous range of applications, and accordingly the scope of patented subject matter is not limited by any of the specific exemplary teachings given.

Sundaresan, Ravishankar, Nguyen, Loi

Patent Priority Assignee Title
Patent Priority Assignee Title
4676867, Jun 06 1986 Newport Fab, LLC Planarization process for double metal MOS using spin-on glass as a sacrificial layer
4797717, Apr 18 1986 Hitachi, LTD Semiconductor memory device
4920071, Mar 15 1985 National Semiconductor Corporation High temperature interconnect system for an integrated circuit
4975875, Sep 13 1988 Sony Corporation Static random access memory with tri-layer conductor construction over access transistors
4990998, Jun 21 1985 Hitachi, Ltd. Semiconductor device to prevent out-diffusion of impurities from one conductor layer to another
5001539, Jul 08 1988 Mitsubishi Denki Kabushiki Kaisha Multiple layer static random access memory device
5003062, Apr 19 1990 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Semiconductor planarization process for submicron devices
5077238, May 18 1988 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a semiconductor device with a planar interlayer insulating film
5083190, Sep 05 1989 Motorola, Inc. Shared gate CMOS transistor
5110763, Jan 29 1990 Yamaha Corporation Process of fabricating multi-level wiring structure, incorporated in semiconductor device
5132774, Feb 05 1990 MITSUBISHI DENKI KABUSHIKI KAISHA, 2-3 MARUNOUCHI 2-CHOME, CHIYODA-KU, TOKYO, JAPAN Semiconductor device including interlayer insulating film
5151376, May 31 1990 SGS-Thomson Microelectronics, Inc.; SGS-Thomson Microelectronics, Inc Method of making polycrystalline silicon resistors for integrated circuits
5159416, Apr 27 1990 NEC Electronics Corporation Thin-film-transistor having Schottky barrier
5169491, Jul 29 1991 Micron Technology, Inc. Method of etching SiO2 dielectric layers using chemical mechanical polishing techniques
5177238, Jul 16 1991 W R GRACE & CO -CONN Preparation of dialkyl allylphosphonic acid diesters
5188987, Apr 10 1989 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device using a polishing step prior to a selective vapor growth step
5204288, Nov 10 1988 Applied Materials, Inc. Method for planarizing an integrated circuit structure using low melting inorganic material
5219792, Jan 14 1991 Samsung Electronics Co., Ltd. Method for forming multilevel interconnection in a semiconductor device
5290399, Feb 05 1991 GLOBALFOUNDRIES Inc Surface planarizing methods for integrated circuit devices
5319247, Oct 30 1990 Renesas Electronics Corporation Semiconductor device having an interlayer insulating film of high crack resistance
5321280, Sep 13 1990 Renesas Electronics Corporation Composite semiconductor integrated circuit device
5373170, Mar 15 1993 Motorola Inc. Semiconductor memory device having a compact symmetrical layout
5381046, Jul 31 1990 International Business Machines Corporation Stacked conductive resistive polysilicon lands in multilevel semiconductor chips
5418393, Nov 29 1993 Motorola, Inc. Thin-film transistor with fully gated channel region
5496776, Apr 27 1995 United Microelectronics Corporation Spin-on-glass planarization process with ion implantation
5521401, Aug 21 1992 SGS-Thomson Microelectronics, Inc. P-N junction in a vertical memory cell that creates a high resistance load
5534731, Oct 28 1994 Cypress Semiconductor Corporation Layered low dielectric constant technology
5549786, Aug 29 1995 Advanced Micro Devices, Inc. Highly selective, highly uniform plasma etch process for spin-on glass
5552628, Apr 02 1990 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
5591659, Apr 16 1992 Fujitsu Semiconductor Limited Process of producing a semiconductor device in which a height difference between a memory cell area and a peripheral area is eliminated
5593921, Sep 23 1991 SGS-Thomson Microelectronics, Inc. Method of forming vias
5631197, Aug 30 1995 Taiwan Semiconductor Manufacturing Company, Ltd Sacrificial etchback layer for improved spin-on-glass planarization
5674784, Oct 02 1996 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming polish stop layer for CMP process
5702980, Mar 15 1996 Taiwan Semiconductor Manufacturing Company Ltd Method for forming intermetal dielectric with SOG etchback and CMP
5717254, Sep 20 1993 Fujitsu Semiconductor Limited Semiconductor device including a plurality of transistors
5948700, May 20 1996 Chartered Semiconductor Manufacturing Ltd. Method of planarization of an intermetal dielectric layer using chemical mechanical polishing
5973349, Mar 13 1992 Fujitsu Limited Stacked capacitor semiconductor device
20020017669,
JP99243,
JP135044,
JP2251722,
WO8700828,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 20 2000STMicroelectronics, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Sep 14 20134 years fee payment window open
Mar 14 20146 months grace period start (w surcharge)
Sep 14 2014patent expiry (for year 4)
Sep 14 20162 years to revive unintentionally abandoned end. (for year 4)
Sep 14 20178 years fee payment window open
Mar 14 20186 months grace period start (w surcharge)
Sep 14 2018patent expiry (for year 8)
Sep 14 20202 years to revive unintentionally abandoned end. (for year 8)
Sep 14 202112 years fee payment window open
Mar 14 20226 months grace period start (w surcharge)
Sep 14 2022patent expiry (for year 12)
Sep 14 20242 years to revive unintentionally abandoned end. (for year 12)