A method of manufacturing a semiconductor device having a flat surface and an interlayer insulating film having superior crack resistance is disclosed. A first silicon oxide film having a superior crack resistance is formed on a semiconductor substrate so as to cover the surface of a stepped pattern. A second silicon oxide film having a superior step coverage is deposited on the above-mentioned first silicon oxide film so as to fill the recessed portions of said stepped pattern and to cover said stepped pattern. The above-described second silicon oxide film is etched to a prescribed thickness. A third silicon oxide film superior in filling of recesses is placed into the recessed portions existing on the surface of the above-described second silicon oxide film after its etching. A fourth silicon oxide film is formed on said semiconductor substrate including the above-described second silicon oxide film and third silicon oxide film.

Patent
   5319247
Priority
Oct 30 1990
Filed
Oct 25 1991
Issued
Jun 07 1994
Expiry
Oct 25 2011
Assg.orig
Entity
Large
285
9
all paid
7. A semiconductor device comprising:
a semiconductor substrate;
a pattern of conductive material formed on a surface above said semiconductor substrate;
a first silicon oxide film having excellent crack resistance covering the surface of said pattern and exposed portions of the surface on which the pattern is formed;
a second silicon oxide film having superior step coverage deposited on said first silicon oxide film and filling recessed portions existing on the surface of said first silicon oxide film;
a third silicon oxide film being superior in filling of recesses filling in recessed portions existing on the surface of said second silicon oxide film to provide a flattened surface; and
a fourth silicon oxide film formed on said second silicon oxide film and said third silicon oxide film,
wherein the second silicon oxide film is formed of a composition having more sioh bonds than a composition of which said first silicon oxide film is formed, and said third silicon oxide film is formed of a composition having more sioh bonds than the composition of which said second silicon oxide film is formed.
1. A semiconductor device, comprising:
a semiconductor substrate;
a pattern of conductive material formed on a surface above said semiconductor substrate;
a first silicon oxide film having excellent crack resistance covering the surface of said pattern and exposed portions of the surface on which the pattern is formed, said first silicon oxide film being formed by plasma chemical vapor deposition;
a second silicon oxide film having superior step coverage deposited on said first silicon oxide film and filling recessed portions existing on the surface of said first silicon oxide film, said second silicon oxide film being formed by atmospheric chemical vapor deposition using ozone and organic silicon;
a third silicon oxide film being superior in filling of recesses filling in recessed portions existing on the surface of said second silicon oxide film to provide a flattened surface, said third silicon oxide film being formed by applying a spin on glass film; and
a fourth silicon oxide film formed on said second silicon oxide film and said third silicon oxide film, said fourth silicon oxide film being formed by a technique selected from the group consisting of (i) plasma chemical vapor deposition, (ii) atmospheric pressure chemical vapor deposition using organic silicon, and (iii) atmospheric pressure chemical vapor deposition using SiH4, PH3 and O2.
2. The semiconductor device in accordance with claim 1, wherein said second silicon oxide film is formed under a pressure greater than 700 Torr.
3. The semiconductor device in accordance with claim 1, wherein said second silicon oxide film comprises an element selected from the group consisting of boron and phosphorus.
4. The semiconductor device in accordance with claim 1, wherein said pattern is formed of an aluminum interconnection.
5. The semiconductor device in accordance with claim 1, wherein the film thickness of said second silicon oxide film is not more than 0.5 μm over an uppermost surface of the conductive material.
6. The semiconductor device in accordance with claim 5, wherein the film thickness of said second silicon oxide film is less than 0.2 μm over an uppermost surface of the conductive material.

1. Field of the Invention

The present invention relates generally to a semiconductor device, and more specifically to a semiconductor device including an interlayer insulating film having higher crack resistance and insulation. The present invention further relates to a method of manufacturing such a device.

2. Description of the Background Art

Recently, in the field of manufacturing large scale integrated circuit devices (hereinafter referred to as LSI devices), mass production of 4M bit DRAMs has been practiced on a full scale. Miniaturizing LSI devices requires miniaturization of interconnection widths, interconnection spaces, etc., resulting in increase in steps formed on the surface of a substrate. The increase of steps formed on the surface of the substrate results in the following problems. Referring to FIG. 7, a first interconnection pattern 52 is provided on a substrate 51. The first interconnection pattern 52 has a number of stepped portions 52a. An interlayer insulating film 53 is provided covering the first interconnection pattern 52.

Affected by the stepped portions 52a of the first interconnection pattern 52, the surface of the interlayer insulating film 53 is unevenly shaped. Forming a second interconnection pattern 54 on the unevenly shaped surface of the interlayer insulating film 53 gives rise to formation of a narrow portion 54a to the second interconnection patter 54. The narrow portion 54a can result in disconnection. Also, patterning does not proceed in an accurate manner in forming the second interconnection pattern 54, with the surface of the interlayer insulating film 53 being unevenly shaped. Consequently, the residue of material forming the interconnection pattern remains in areas other than intended, resulting in shorting.

Various planar techniques have been proposed for flattening interlayer insulating films in order to solve this problem. However, no definitely effective and efficient process has been discovered yet at present.

FIGS. 6A-6C are sectional views showing a conventional process of a planar technique for flattening interlayer insulating films (Semicon News June, 1989).

Referring to FIG. 6A, a semiconductor substrate 1 has a stepped pattern 2. A silicon oxide film 3 (hereinafter plasma oxide film 3) is formed to cover the surface of the stepped pattern 2 by plasma chemical vapor deposition (hereinafter plasma CVD). The thickness of the plasma oxide film 3 is between about 0.1-0.3 μm. The plasma oxide film 3 is formed using silane (SiH4)/nitrous oxide (N2 O) or tetra-ethyl-ortho-silicate (TEOS)/oxygen O2 as a material gas. The plasma oxide film 3 is superior in insulation and crack resistance, but on the other hand is inferior in step coverage and filling of recesses.

Referring to FIG. 6B, a silicon oxide film 4 (hereinafter atmospheric pressure TEOS oxide film 4) is deposited by atmospheric pressure CVD using TEOS/ozone (O3), so as to cover the stepped pattern 2, filling up the recesses of the stepped pattern 2. The atmospheric pressure TEOS oxide film 4 has a thickness in the range of approximately 0.6-0.8 μm in the step 2a of the stepped pattern 2. The plasma oxide film 3 plus the atmospheric pressure TEOS oxide film 4 equals approximately 0.9 μm in film thickness.

Referring to FIG. 6C, a spin on glass film 5 (hereinafter SOG film 5) is applied onto the atmospheric pressure TEOS oxide film 4 so as to fill up recess 4a existing on the surface of the atmospheric pressure TEOS oxide film 4 and to cover the atmospheric TEOS oxide film 4, and annealing is performed thereon. Thereafter, the SOG film 5 is etched in such a manner that the SOG film 5 remains only in the recess 4a of the atmospheric pressure TEOS oxide film 4. A three-layer structured interlayer insulating film 24 is thus formed on the semiconductor substrate 1.

The manufacturing process of a conventional interlayer insulating film is composed as described above. The plasma oxide film 3 formed by the above-mentioned method is superior in insulation and crack resistance compared to the atmospheric TEOS oxide film 4. The plasma oxide film 3 does not easily change its film characteristics by heat-treatment. Even with the difference in shrinkage factors between the stepped pattern 2 (an aluminum interconnection which is an underlying step) and the atmospheric pressure TEOS oxide film 4, cracks in the atmospheric pressure TEOS oxide film 4 due to the difference can be prevented by using the plasma oxide film 3 as the underlying film of the atmospheric pressure TEOS oxide film 4.

The atmospheric pressure TEOS oxide film 4 is superior in step coverage and filling of recesses. The atmospheric pressure TEOS oxide film 4 fills up very small trenches completely which may produce voids if the plasma oxide film 3 is used.

Neither the plasma oxide film 3 nor the atmospheric pressure TEOS oxide film 4 is independently suitable as an interlayer insulating film. The combination of these two kinds of films permits the advantages of these films to be united, thereby forming a superior interlayer insulating film.

In the above conventional example, referring to FIG. 6C, the interlayer insulating film is not flat enough at a wide trench 2a, and, therefore, the SOG film 5 fills the recess 4a of the atmospheric pressure TEOS oxide film 4. The flatness of the surface of the interlayer insulating film is improved by filling the recesses 4a with the SOG film 5.

In the conventional interlayer insulating film thus structured, referring to FIG. 6C, cracks are produced in the SOG film 5 or the atmospheric pressure TEOS oxide film 4 in the process of annealing the SOG film 5 formed last, or in a subsequent heat treatment process, because of the difference in shrinkage factors between the SOG film 5 and the atmospheric pressure TEOS oxide film 4.

The cracks produced in the SOG film 5 and atomospheric TEOS oxide film 4 cause problems as described below.

Referring to FIG. 8, with a crack 60 formed in the SOG film 5 and TEOS oxide film 4, Al enters the crack 60 at the time of sputtering for forming a second Al interconnection 25.

Also, if the crack 60 is too large, the second Al interconnection 25 is formed with a part disconnected as shown in FIG. 8. The residue left behind at the time of etching the second A; interconnection 25 remains along the crack 60, causing shorting.

It is therefore an object of the present invention to provide a semiconductor device including an interlayer insulating film having its surface flattened.

Another object of the present invention is to provide a semiconductor device including an interlayer insulating film having higher crack resistance and insulation.

Yet another object of the present invention is to provide a semiconductor device in which the crack resistance and insulation of an interlayer insulating film are not deteriorated due to heat treatment.

Still another object of the present invention is to provide a method of manufacturing a semiconductor device including an interlayer insulating film having higher crack resistance and insulation.

A semiconductor device in accordance with the present invention includes a semiconductor substrate, and a stepped pattern formed on the semiconductor substrate. A first silicon oxide film superior in crack resistance is formed on the semiconductor substrate so as to cover the surface of the stepped pattern. A second silicon oxide film superior in step coverage is deposited on the first silicon oxide film so as to fill up the recesses existing on the surface of the first silicon oxide film, covering the stepped pattern. A third silicon oxide film superior in filling of recesses fills the recesses existing on the surface of the second silicon oxide film in order to flatten the surface of the second silicon oxide film. A fourth silicon oxide film is formed on the semiconductor substrate including the above-mentioned second and third silicon oxide films.

In one preferred embodiment of a semiconductor device in accordance with the present invention, the first silicon oxide film is formed by plasma CVD. The second silicon oxide film is formed by atmospheric pressure CVD, using an organic silicon and ozone and an alkoxyl group. The third silicon oxide film is formed by applying a spin on glass film thereon.

In a method of manufacturing the semiconductor device in accordance with another aspect of the present invention, first, a stepped pattern is formed on a semiconductor substrate. A first silicon oxide film having superior crack resistance is formed on the semiconductor substrate so as to cover the surface of the stepped pattern. A second silicon oxide film having superior step coverage is deposited over the first silicon oxide film so as to fill up the recesses of the stepped pattern, covering the stepped pattern. The second silicon oxide film is then etched to attain a prescribed film thickness. A third silicon oxide film superior in filling of recesses fills the recesses on the surface of the etched second silicon oxide film. A fourth silicon oxide film is formed on the semiconductor substrate including the second silicon oxide film and the third silicon oxide film.

Another preferred embodiment of a manufacturing method of a semiconductor device in accordance with another aspect of the present invention, the formation of the first silicon oxide film is performed by plasma CVD. The formation of the second silicon oxide film is performed by atmospheric pressure CVD, using organic silicon and ozone and an alkoxyl group. The third silicon oxide film is formed by applying a spin on glass film onto the semiconductor substrate.

In a semiconductor device in accordance with the present invention, an interlayer insulating film includes a first silicon oxide film having superior crack resistance provided so as to cover the surface of a stepped pattern, and a second silicon oxide film having superior step coverage provided on the first silicon oxide film. Further, a third silicon oxide film superior in filling of recesses fills recesses existing on the surface of the second silicon oxide film. A fourth silicon oxide film is provided so as to cover the second silicon oxide film and the third silicon oxide film. With the interlayer insulating film being in a multilayered structure having silicon oxide films with different characteristics as described above, the advantages provided by the respective silicon oxide films are coupled with each other. As a result, the surface of the interlayer insulating film is flattened, and the interlayer insulating film attains superior crack resistance.

In a method of manufacturing a semiconductor device in accordance with another aspect of the present invention, a first silicon oxide film having superior crack resistance covers the surface of a stepped pattern. Then, a second silicon oxide film having superior step coverage is deposited over the first silicon oxide film so as to fill up the recesses of the stepped pattern as well as to cover the stepped pattern.

Then, the second silicon oxide film is etched to attain a prescribed thickness. The second silicon oxide film is on one hand advantageous with superior step coverage, but on the other hand disadvantageous with inferior crack resistance. The above-described etching treatment allows the thickness of the second silicon oxide film to be thin, so that the disadvantage can be suppressed as much as possible.

Subsequently, a third silicon oxide film having superior in filling of recesses fills the recesses existing on the surface of second silicon oxide film. The surface of the obtained layered films is thus flattened.

A fourth silicon oxide film is then formed on the surface of the flattened layered films.

Formed as described above, the interlayer insulating film has its surface flattened and is superior in crack resistance.

The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

FIG. 1 is a sectional view showing a semiconductor device in accordance with one embodiment of the present invention;

FIGS. 2A-2F are sectional views showing a manufacturing process of the semiconductor device shown in FIG. 1;

FIG. 3 is a view schematically showing how a silicon oxide film is formed by atmospheric pressure CVD using TEOS/O3 ;

FIG. 4A is a representation showing the chemical structure of a TEOS oxide film formed by low pressure CVD;

FIG. 4B is a representation showing the chemical structure of a TEOS oxide film formed by atmospheric CVD;

FIG. 5 is a graphic representation showing a comparison in current leakage between an atmospheric CVD.TEOS film and a low pressure CVD.TEOS oxide film; and

FIGS. 6A-6C are sectional views showing a conventional process of manufacturing an interlayer insulating film;

FIG. 7 is a view for illustrating problems associated with forming a second interconnection pattern on a conventional interlayer insulating film with a surface not flattened; and

FIG. 8 is a view for illustrating problems associated with forming a second Al interconnection on a conventional interlayer insulating film with a surface flattened with SOG film.

Now, description will be given on the preferred embodiments of the present invention in conjunction with the drawings. FIG. 1 is a sectional view showing a semiconductor device in accordance with the present invention.

A transistor 20 is formed on a semiconductor substrate 11 (a silicon semiconductor substrate). An insulating film 12 is provided so as to cover the transistor 20. Placed in the insulating film 12 is a bit line 21. A contact hole 12a for exposing the junction 22 of the semiconductor substrate 11 is formed in the insulating film 12. A stepped pattern 13, formed of a first Al interconnection is formed on the interlayer insulating film 12. The stepped pattern 13 is partially buried inside the contact hole 12a, so as to be connected to the junction 22 of the semiconductor substrate 11. The first Al interconnection is for connecting the bit lines.

A first silicon oxide film 15 (hereinafter a plasma oxide film 15) having superior crack resistance is formed on the semiconductor substrate 11 so as to cover the surface of the stepped pattern 13. The plasma oxide film 15 is formed by plasma CVD, using SiH4 /N2 O or TEOS/O2 as a material gas, which will be described later on. The thickness of the plasma oxide film 15 is about in the range of 0.1-0.2 μm. A silicon oxide film formed by plasma CVD has few SiOH bonds, and has superior insulation as well as crack resistance.

A second silicon oxide film 16 (hereinafter referred to as an atmospheric pressure TEOS oxide film 16) having superior step coverage is provided on the plasma oxide film 15 so as to fill up recesses 15a existing on the surface thereof and to cover the stepped pattern 13. The atmospheric pressure TEOS oxide film 16, as will be described later, is formed by atmospheric CVD, using TEOS and ozone. The thickness (t2) of the atmospheric pressure TEOS oxide film 16 is less than 0.5 μm and preferably not more than 0.2 μm in the recesses of the stepped pattern 13. A silicon oxide film formed by atmospheric pressure CVD includes more SiOH bonds than the plasma oxide film 15, and, as will be described later, is superior in step coverage as well as filling of recesses. The silicon oxide film is however, disadvantageous because of its inferiority in insulation and crack resistance. But if the film thickness t2 is less than 0.5 μm and preferably not more than 0.2 μm, the inferiority in crack resistance is overcome.

A third silicon oxide film 17 (hereinafter SOG film 17) superior in filling of recesses is provided in concaves 16a existing on the surface of the atmospheric pressure TEOS oxide film 16, in order to flatten the surface of the atmospheric pressure TEOS oxide film 16. The SOG film 17 has more SiOH bonds than the atmospheric pressure TEOS oxide film 16 and is superior in filling of recesses.

A fourth silicon oxide film, i.e. a plasma oxide film 18 is formed so as to cover the surface of the SOG film 17 and the atmospheric pressure TEOS oxide film 16. The fourth silicon oxide film is preferably formed by plasma CVD, but may be formed by atmospheric pressure CVD using a TEOS/O3 gas.

An interlayer insulating film 24 comprising a layered structure having layered silicon oxide films 15, 16, 17, 18 having different characteristics results, whereby the advantages of the respective silicon oxide films join together. As a result, the surface of the interlayer insulating film 24 is flattened, and the resultant interlayer insulating film 24 attains superior crack resistance and insulation.

A second Al interconnection 25 is formed on the interlayer insulating film 24. The second Al interconnection 25 is connected to the stepped and convex pattern 13 which is the first Al interconnection.

FIGS. 2A-2F are sectional views showing a process of manufacturing the semiconductor device in FIG. 1.

Referring to FIG. 2A, an insulating film 12 is formed on a semiconductor substrate 11 on which elements (not shown) are formed. The insulating film 12 is provided with a contact hole 12a for exposing a junction 22 on the semiconductor substrate 11. Sputtering is made entirely over the surface of the semiconductor substrate 11 and an aluminum film is deposited thereon. The aluminum film is patterned into a prescribed form, and then the step of the aluminum interconnection, the stepped pattern 13 is formed. A plasma oxide film 15 is formed so as to cover the surface of the stepped pattern 13. The plasma oxide film 15 is deposited using a SiH4 /N2 O gas or a TEOS/2 gas as a material gas at a temperature about in the range of 300-400°C, under a pressure about in the range of 0.1-10 Torr, until the film grows as thick as 0.1-0.2 μm.

Referring to FIG. 2B, an atmospheric pressure TEOS oxide film 16 is formed entirely over the surface of the semiconductor substrate 11 by CVD, using TEOS and ozone at a temperature in the range of 350-450°C, under an atmospheric pressure (more than 760 Torr) or a quasi atmospheric pressure (700-760 Torr). The ratio of O3 /TEOS is preferably more than 6. The atmospheric pressure TEOS oxide film 16 is deposited in the concave of the stepped pattern 13 until the film thickness (t3) grows as thick as 1.0-1.5 μm.

Now, description will be given on the reason why the atmospheric pressure TEOS oxide film 16 is superior in step coverage and filling of recesses.

FIG. 3 is a view schematically showing how an atmospheric pressure TEOS oxide film is formed by atmospheric pressure CVD using TEOS/O3. In the reaction of TEOS and O3, the ozone is first decomposed by heat and generates oxygen radicals. The polymerization reaction of the oxygen radicals and TEOS takes place in a vapor phase. An intermediate produced by the polymerization reaction is considered to be a low molecular weight TEOS polymer formed of coupled n pieces of TEOS. The TEOS polymers and oxygen radicals produced in the vapor phase are transported to the surface of the semiconductor substrate having the stepped pattern 13, and a further polymerization reaction takes place on the surface, resulting in a film. The TEOS polymers possesses characteristics similar to liquid, and gather at the recessed portion as the flow of water. The surface thereof attains a smooth form. This is the reason why the atmospheric pressure TEOS oxide film is superior in step coverage and filling of recesses.

Referring to FIG. 2C, the atmospheric TEOS oxide film 16 is etched back until its film thickness (t2) at the stepped portion of the stepped pattern 13 is less than 0.5 μm.

Referring to FIG. 2D, an SOG film 17 is applied onto the atmospheric pressure TEOS oxide film 16 so as to fill in the recessed portion 16a existing on the surface of the etched atmospheric pressure TEOS oxide film 16, and annealing is formed thereon.

Now, referring to FIGS. 2D and 2E, the SOG film 17 is etched so that the SOG film 17 is left only in the recessed portion 16a.

Referring to FIG. 2F, a plasma oxide film 18 is formed on the semiconductor substrate 11 including the atmospheric pressure TEOS oxide film 16 and the SOG film 17. The formation of the plasma oxide film 18 is performed under conditions identical to the conditions under which the plasma oxide film 15 is formed in FIG. 2A.

The plasma oxide film 18 is deposited so that the total film thickness of the interlayer insulating film 24 becomes approximately 0.9 μm. The semiconductor device shown in FIG. 1 is obtained by forming a second Al interconnection on the interlayer insulating film 24.

Referring to FIGS. 2A and 2B, forming the plasma oxide film 15 to cover the surface of the stepped pattern allows the expansion of the aluminum interconnection which is the stepped pattern 13 to be suppressed. Cracks in the atmospheric pressure TEOS oxide film 16 can be thus prevented.

Referring to FIGS. 2B and 2C, the atmospheric pressure TEOS oxide film 16 can be deposited thicker than conventional ones i.e. to a thickness between 1.0-1.5 μm (conventionally about 0.6-0.8 μm), because the atmospheric pressure TEOS oxide film 16 is etched back later. The surface of the atmospheric pressure TEOS oxide film 16 is therefore further flattened as compared to the conventional ones.

Referring to FIGS. 2D and 2E, when the SOG film 17 (upon its annealing)is formed, the film thickness of the atmospheric pressure TEOS oxide film 16 is less than 0.5 μm, so that no crack will be produced on the atmospheric pressure TEOS oxide film 16.

As described above, in the present embodiment, the insulation and crack resistance of the interlayer insulating film are tremendously improved compared to the conventional ones. Also, the film thickness of the atmospheric pressure TEOS oxide film can be formed to be thicker than conventional, so that the interlayer insulating film is further flattened.

Although in the above-described embodiment, TEOS is used as the organic silicon, the present invention is by no means limited thereto and it is to be noted that similar effects can be obtained if tetra-methyl-ortho-silicate (TMOS), tetra-propyl-ortho-silicate (TPOS) and polysiloxane polymers such as hexa-methyl-di-siloxane (HMDS), octa-methyl-cyclo-tetra-siloxane (OMCTS) are used. Although in the above-described embodiment, the organic silicon is independently used, the present invention is not limited thereto and trimethyl-borate (TMB), triethyl-borate (TEB), tri-n-propyl-borate (TnPB), trimethyl-phosphate (TMPO), and trimethyl-phosphite (TMP) may be added.

Also, in the above-described embodiment, the plasma oxide film is formed as the fourth silicon oxide film, but the invention is by no means limited, and an atmospheric pressure TEOS oxide film or a phosphorous glass film formed by atmospheric pressure CVD or low pressure CVD using SiH4 PH3 /O2, etc. as a material gas may be used. In the above-described embodiment, the cases have been described in which the second silicon film is an atmospheric pressure TEOS oxide film formed by atmospheric pressure CVD, but the second silicon oxide film may be formed by low pressure CVD. The TEOS oxide film produced by atmospheric pressure CVD is, however, superior in various points as compared to the one produced by low pressure CVD. In the following, a result of comparison between both films will be described.

FIG. 4A represents the chemical structure of a TEOS oxide film produced by low pressure (100 Torr) CVD, and FIG. 4B represents the chemical structure of a TEOS oxide film produced by atmospheric pressure CVD. As can be clearly seen from the figures, in the atmospheric TEOS oxide film, less SiOH bonds are observed than in the low pressure TEOS oxide film. The atmospheric pressure TEOS oxide film has therefore a molecular volume larger than that of the low pressure TEOS oxide film. A polymer produced by atmospheric pressure CVD bears a closer resemblance to liquid than a polymer produced by low pressure CVD does. Consequently, referring to FIG. 3, a film formed by atmospheric CVD provides superior step coverage compared to the one formed by low pressure CVD.

Also, comparison is made between the atmospheric pressure CVD.TEOS oxide film and the low pressure CVD.TEOS oxide film as to the shrinkage factors of the films. As a result of annealing both films at 450°C in a nitrogen atmosphere for 30 minutes, a film shrinkage factors of 20% is observed on the low pressure CVD.TEOS oxide film and a film shrinkage factor of 1% on the atmospheric pressure CVD.TEOS oxide film.

Then, comparison is made between both films in crack resistance. The result will be shown in Table 1.

TABLE 1
______________________________________
film
thickness (μm)
0.1 0.3 0.5 0.8 1.0 1.2 1.5 2.0
______________________________________
low pressure
x x x -- --
CVD.TEOS
oxide film
atmospheric
x
pressure
CVD.TEOS
oxide film
______________________________________
∘ . . . no crack
x . . . cracks formed

As is apparent from Table 1, the atmospheric pressure CVD.TEOS oxide film is superior to the low pressure CVD.TEOS oxide film in crack resistance. A TEOS oxide film having more than 1.5 μm film thickness was not obtained by low pressure CVD after all.

FIG. 5 is a graphic representation showing the result of current leakage observed on each of the films.

A curve (1) represents the case of the atmospheric pressure CVD.TEOS oxide film, and a curve (2) represents the low pressure CVD.TEOS oxide film. The atmospheric CVD.TEOS oxide film indicated lower leakage current than the low pressure CVD.TEOS oxide film.

As described above, in accordance with a semiconductor device of the present invention, an interlayer insulating film is of a multilayered structure formed of multilayers of silicon oxide films having different characteristics (in flatness and crack resistance), and, therefore, advantages brought about by the respective silicon oxide film are combined. As a result, the surface of the interlayer insulating film is flattened, and the film is superior in crack resistance.

Also, by a method of manufacturing a semiconductor device in accordance with the present invention, an interlayer insulating film superior in crack resistance and having a flat surface is produced, and, therefore, a semiconductor device having high reliability can be produced.

Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Matsuura, Masazumi

Patent Priority Assignee Title
10026621, Nov 14 2016 Applied Materials, Inc SiN spacer profile patterning
10032606, Aug 02 2012 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
10043674, Aug 04 2017 Applied Materials, Inc Germanium etching systems and methods
10043684, Feb 06 2017 Applied Materials, Inc Self-limiting atomic thermal etching systems and methods
10049891, May 31 2017 Applied Materials, Inc Selective in situ cobalt residue removal
10062575, Sep 09 2016 Applied Materials, Inc Poly directional etch by oxidation
10062578, Mar 14 2011 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
10062579, Oct 07 2016 Applied Materials, Inc Selective SiN lateral recess
10062585, Oct 04 2016 Applied Materials, Inc Oxygen compatible plasma source
10062587, Jul 18 2012 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
10128086, Oct 24 2017 Applied Materials, Inc Silicon pretreatment for nitride removal
10147620, Aug 06 2015 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
10163696, Nov 11 2016 Applied Materials, Inc Selective cobalt removal for bottom up gapfill
10170282, Mar 08 2013 Applied Materials, Inc Insulated semiconductor faceplate designs
10170336, Aug 04 2017 Applied Materials, Inc Methods for anisotropic control of selective silicon removal
10186428, Nov 11 2016 Applied Materials, Inc. Removal methods for high aspect ratio structures
10224180, Oct 04 2016 Applied Materials, Inc. Chamber with flow-through source
10224210, Dec 09 2014 Applied Materials, Inc Plasma processing system with direct outlet toroidal plasma source
10242908, Nov 14 2016 Applied Materials, Inc Airgap formation with damage-free copper
10256079, Feb 08 2013 Applied Materials, Inc Semiconductor processing systems having multiple plasma configurations
10256112, Dec 08 2017 Applied Materials, Inc Selective tungsten removal
10283321, Jan 18 2011 Applied Materials, Inc Semiconductor processing system and methods using capacitively coupled plasma
10283324, Oct 24 2017 Applied Materials, Inc Oxygen treatment for nitride etching
10297458, Aug 07 2017 Applied Materials, Inc Process window widening using coated parts in plasma etch processes
10319600, Mar 12 2018 Applied Materials, Inc Thermal silicon etch
10319603, Oct 07 2016 Applied Materials, Inc. Selective SiN lateral recess
10319649, Apr 11 2017 Applied Materials, Inc Optical emission spectroscopy (OES) for remote plasma monitoring
10319739, Feb 08 2017 Applied Materials, Inc Accommodating imperfectly aligned memory holes
10325923, Feb 08 2017 Applied Materials, Inc Accommodating imperfectly aligned memory holes
10354843, Sep 21 2012 Applied Materials, Inc. Chemical control features in wafer process equipment
10354889, Jul 17 2017 Applied Materials, Inc Non-halogen etching of silicon-containing materials
10403507, Feb 03 2017 Applied Materials, Inc Shaped etch profile with oxidation
10424463, Aug 07 2015 Applied Materials, Inc. Oxide etch selectivity systems and methods
10424464, Aug 07 2015 Applied Materials, Inc. Oxide etch selectivity systems and methods
10424485, Mar 01 2013 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
10431429, Feb 03 2017 Applied Materials, Inc Systems and methods for radial and azimuthal control of plasma uniformity
10465294, May 28 2014 Applied Materials, Inc. Oxide and metal removal
10468267, May 31 2017 Applied Materials, Inc Water-free etching methods
10468276, Aug 06 2015 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
10468285, Feb 03 2015 Applied Materials, Inc. High temperature chuck for plasma processing systems
10490406, Apr 10 2018 Applied Materials, Inc Systems and methods for material breakthrough
10490418, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
10497573, Mar 13 2018 Applied Materials, Inc Selective atomic layer etching of semiconductor materials
10497579, May 31 2017 Applied Materials, Inc Water-free etching methods
10504700, Aug 27 2015 Applied Materials, Inc Plasma etching systems and methods with secondary plasma injection
10504754, May 19 2016 Applied Materials, Inc Systems and methods for improved semiconductor etching and component protection
10522371, May 19 2016 Applied Materials, Inc Systems and methods for improved semiconductor etching and component protection
10529737, Feb 08 2017 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
10541113, Oct 04 2016 Applied Materials, Inc. Chamber with flow-through source
10541184, Jul 11 2017 Applied Materials, Inc Optical emission spectroscopic techniques for monitoring etching
10541246, Jun 26 2017 Applied Materials, Inc 3D flash memory cells which discourage cross-cell electrical tunneling
10546729, Oct 04 2016 Applied Materials, Inc Dual-channel showerhead with improved profile
10566206, Dec 27 2016 Applied Materials, Inc Systems and methods for anisotropic material breakthrough
10573496, Dec 09 2014 Applied Materials, Inc Direct outlet toroidal plasma source
10573527, Apr 06 2018 Applied Materials, Inc Gas-phase selective etching systems and methods
10593523, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
10593553, Aug 04 2017 Applied Materials, Inc. Germanium etching systems and methods
10593560, Mar 01 2018 Applied Materials, Inc Magnetic induction plasma source for semiconductor processes and equipment
10600639, Nov 14 2016 Applied Materials, Inc. SiN spacer profile patterning
10607867, Aug 06 2015 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
10615047, Feb 28 2018 Applied Materials, Inc Systems and methods to form airgaps
10629473, Sep 09 2016 Applied Materials, Inc Footing removal for nitride spacer
10672642, Jul 24 2018 Applied Materials, Inc Systems and methods for pedestal configuration
10679870, Feb 15 2018 Applied Materials, Inc Semiconductor processing chamber multistage mixing apparatus
10699879, Apr 17 2018 Applied Materials, Inc Two piece electrode assembly with gap for plasma control
10699921, Feb 15 2018 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
10707061, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
10727080, Jul 07 2017 Applied Materials, Inc Tantalum-containing material removal
10755941, Jul 06 2018 Applied Materials, Inc Self-limiting selective etching systems and methods
10770346, Nov 11 2016 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
10796922, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
10854426, Jan 08 2018 Applied Materials, Inc Metal recess for semiconductor structures
10861676, Jan 08 2018 Applied Materials, Inc Metal recess for semiconductor structures
10872778, Jul 06 2018 Applied Materials, Inc Systems and methods utilizing solid-phase etchants
10886137, Apr 30 2018 Applied Materials, Inc Selective nitride removal
10892198, Sep 14 2018 Applied Materials, Inc Systems and methods for improved performance in semiconductor processing
10903052, Feb 03 2017 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
10903054, Dec 19 2017 Applied Materials, Inc Multi-zone gas distribution systems and methods
10920319, Jan 11 2019 Applied Materials, Inc Ceramic showerheads with conductive electrodes
10920320, Jun 16 2017 Applied Materials, Inc Plasma health determination in semiconductor substrate processing reactors
10943834, Mar 13 2017 Applied Materials, Inc Replacement contact process
10964512, Feb 15 2018 Applied Materials, Inc Semiconductor processing chamber multistage mixing apparatus and methods
11004689, Mar 12 2018 Applied Materials, Inc. Thermal silicon etch
11024486, Feb 08 2013 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
11049698, Oct 04 2016 Applied Materials, Inc. Dual-channel showerhead with improved profile
11049755, Sep 14 2018 Applied Materials, Inc Semiconductor substrate supports with embedded RF shield
11062887, Sep 17 2018 Applied Materials, Inc High temperature RF heater pedestals
11101136, Aug 07 2017 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
11121002, Oct 24 2018 Applied Materials, Inc Systems and methods for etching metals and metal derivatives
11158527, Aug 06 2015 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
11239061, Nov 26 2014 Applied Materials, Inc. Methods and systems to enhance process uniformity
11257693, Jan 09 2015 Applied Materials, Inc Methods and systems to improve pedestal temperature control
11264213, Sep 21 2012 Applied Materials, Inc. Chemical control features in wafer process equipment
11276559, May 17 2017 Applied Materials, Inc Semiconductor processing chamber for multiple precursor flow
11276590, May 17 2017 Applied Materials, Inc Multi-zone semiconductor substrate supports
11328909, Dec 22 2017 Applied Materials, Inc Chamber conditioning and removal processes
11361939, May 17 2017 Applied Materials, Inc Semiconductor processing chamber for multiple precursor flow
11417534, Sep 21 2018 Applied Materials, Inc Selective material removal
11437242, Nov 27 2018 Applied Materials, Inc Selective removal of silicon-containing materials
11476093, Aug 27 2015 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
11594428, Feb 03 2015 Applied Materials, Inc. Low temperature chuck for plasma processing systems
11637002, Nov 26 2014 Applied Materials, Inc Methods and systems to enhance process uniformity
11682560, Oct 11 2018 Applied Materials, Inc Systems and methods for hafnium-containing film removal
11721527, Jan 07 2019 Applied Materials, Inc Processing chamber mixing systems
11735441, May 19 2016 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
11915950, May 17 2017 Applied Materials, Inc. Multi-zone semiconductor substrate supports
5523124, Jun 17 1992 L'Air Liquide, Societe Anonyme pour l'Etude et L'Expoloitation des Process for producing a silicon oxide deposit on the surface of a metallic or metallized polymer substrate using corona discharge at pressures up to approximately atmospheric
5530293, Nov 28 1994 IBM Corporation Carbon-free hydrogen silsesquioxane with dielectric constant less than 3.2 annealed in hydrogen for integrated circuits
5569618, Mar 03 1992 NEC Electronics Corporation Method for planarizing insulating film
5607880, Apr 28 1992 NEC Corporation Method of fabricating multilevel interconnections in a semiconductor integrated circuit
5652084, Dec 22 1994 DSS TECHNOLOGY MANAGEMENT, INC Method for reduced pitch lithography
5686223, Dec 22 1994 DSS TECHNOLOGY MANAGEMENT, INC Method for reduced pitch lithography
5710061, Jan 10 1994 Cypress Semiconductor Corp. Disposable post processing for semiconductor device fabrication
5710461, Dec 17 1993 SGS-Thomson Microelectronics, Inc. SRAM cell fabrication with interlevel dielectric planarization
5723909, Aug 23 1993 Matsushita Electric Industrial Co., Ltd. Semiconductor device and associated fabrication method
5807785, Aug 02 1996 Applied Materials, Inc Low dielectric constant silicon dioxide sandwich layer
5814377, Dec 06 1995 Applied Materials, Inc. Method and apparatus for creating strong interface between in-situ SACVD and PECVD silicon oxide films
5837618, Jun 07 1995 Advanced Micro Devices, Inc. Uniform nonconformal deposition for forming low dielectric constant insulation between certain conductive lines
5861345, May 01 1995 In-situ pre-PECVD oxide deposition process for treating SOG
5876838, May 09 1994 LSI Logic Corporation Semiconductor integrated circuit processing wafer having a PECVD material layer of improved thickness uniformity
5883002, Aug 29 1996 Winbond Electronics Corporation Method of forming contact profile by improving TEOS/BPSG selectivity for manufacturing a semiconductor device
5888897, Oct 31 1996 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process for forming an integrated structure comprising a self-aligned via/contact and interconnect
5916694, Dec 15 1993 NEC Corporation Magneto-resistance element
5937323, Jun 03 1997 Applied Materials, Inc. Sequencing of the recipe steps for the optimal low-k HDP-CVD processing
5955786, Jun 07 1995 Advanced Micro Devices, INC Semiconductor device using uniform nonconformal deposition for forming low dielectric constant insulation between certain conductive lines
5976993, Mar 28 1996 Applied Materials, Inc Method for reducing the intrinsic stress of high density plasma films
6009827, Dec 06 1995 Applied Materials, Inc. Apparatus for creating strong interface between in-situ SACVD and PECVD silicon oxide films
6051869, Jul 24 1997 Intel Corporation Silicon-rich block copolymers to achieve unbalanced vias
6110814, Apr 12 1998 Canon Sales Co., Inc.; Semiconductor Process Laboratory Co., Ltd. Film forming method and semiconductor device manufacturing method
6136685, Jun 03 1997 Applied Materials, Inc. High deposition rate recipe for low dielectric constant films
6149974, May 05 1997 Applied Materials, Inc. Method for elimination of TEOS/ozone silicon oxide surface sensitivity
6217658, Jun 03 1997 Applied Materials, Inc. Sequencing of the recipe steps for the optimal low-dielectric constant HDP-CVD Processing
6222256, Mar 30 1999 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
6232246, Mar 18 1998 Sony Corporation Method of fabricating semiconductor device
6306771, Aug 27 1999 Integrated Device Technology, Inc. Process for preventing the formation of ring defects
6319324, May 05 1997 Applied Materials, Inc. Method and apparatus for elimination of TEOS/ozone silicon oxide surface sensitivity
6335288, Aug 24 2000 Applied Materials, Inc.; Applied Materials, Inc Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD
6451686, Sep 04 1997 Applied Materials, Inc Control of semiconductor device isolation properties through incorporation of fluorine in peteos films
6559046, Nov 28 1994 Dow Corning Corporation Insulator for integrated circuits and process
6802944, Oct 23 2002 Applied Materials, Inc. High density plasma CVD process for gapfill into high aspect ratio features
6821577, Mar 20 1998 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
6841006, Aug 23 2001 Applied Materials, Inc.; Applied Materials, Inc Atmospheric substrate processing apparatus for depositing multiple layers on a substrate
6869880, Jan 24 2002 Applied Materials, Inc.; Applied Materials, Inc In situ application of etch back for improved deposition into high-aspect-ratio features
6903031, Sep 03 2003 Applied Materials, Inc. In-situ-etch-assisted HDP deposition using SiF4 and hydrogen
6908862, May 03 2002 Applied Materials, Inc HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features
6929700, May 11 2001 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD
6958112, May 27 2003 Applied Materials, Inc. Methods and systems for high-aspect-ratio gapfill using atomic-oxygen generation
7049211, Sep 03 2003 Applied Materials In-situ-etch-assisted HDP deposition using SiF4
7052552, Aug 24 2000 Applied Materials Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD
7081414, May 23 2003 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
7087536, Sep 01 2004 Applied Materials Silicon oxide gapfill deposition using liquid precursors
7132134, Mar 20 1998 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
7183227, Jul 01 2004 Applied Materials, Inc Use of enhanced turbomolecular pump for gapfill deposition using high flows of low-mass fluent gas
7196021, May 11 2001 Applied Materials, Inc. HDP-CVD deposition process for filling high aspect ratio gaps
7205240, Jun 04 2003 Applied Materials, Inc.; APPLIED MAATERIALS, INC HDP-CVD multistep gapfill process
7229931, Jun 16 2004 Applied Materials, Inc. Oxygen plasma treatment for enhanced HDP-CVD gapfill
7294205, Mar 28 1996 Applied Materials, Inc. Method for reducing the intrinsic stress of high density plasma films
7329586, Jun 24 2005 NUVOTON TECHNOLOGY CORPORATION JAPAN Gapfill using deposition-etch sequence
7399707, Jan 24 2002 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
7455893, Mar 20 1998 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP-CVD
7524750, Apr 17 2006 Applied Materials, Inc Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
7595088, Jan 23 2003 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
7628897, Oct 23 2002 Applied Materials, Inc. Reactive ion etching for semiconductor device feature topography modification
7678715, Dec 21 2007 Applied Materials, Inc Low wet etch rate silicon nitride film
7691753, May 23 2003 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
7799698, May 23 2003 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
7939422, Dec 07 2006 Applied Materials, Inc Methods of thin film process
8414747, Jan 08 2005 Applied Materials, Inc. High-throughput HDP-CVD processes for advanced gapfill applications
8497211, Jun 24 2011 Applied Materials, Inc Integrated process modulation for PSG gapfill
8679982, Aug 26 2011 Applied Materials, Inc Selective suppression of dry-etch rate of materials containing both silicon and oxygen
8679983, Sep 01 2011 Applied Materials, Inc Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
8741778, Dec 14 2010 Applied Materials, Inc Uniform dry etch in two stages
8765574, Nov 09 2012 Applied Materials, Inc Dry etch process
8771536, Aug 01 2011 Applied Materials, Inc Dry-etch for silicon-and-carbon-containing films
8771539, Feb 22 2011 Applied Materials, Inc Remotely-excited fluorine and water vapor etch
8801952, Mar 07 2013 Applied Materials, Inc Conformal oxide dry etch
8808563, Oct 07 2011 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
8895449, May 16 2013 Applied Materials, Inc Delicate dry clean
8921234, Dec 21 2012 Applied Materials, Inc Selective titanium nitride etching
8927390, Sep 26 2011 Applied Materials, Inc Intrench profile
8951429, Oct 29 2013 Applied Materials, Inc Tungsten oxide processing
8956980, Sep 16 2013 Applied Materials, Inc Selective etch of silicon nitride
8969212, Nov 20 2012 Applied Materials, Inc Dry-etch selectivity
8975152, Nov 08 2011 Applied Materials, Inc Methods of reducing substrate dislocation during gapfill processing
8980763, Nov 30 2012 Applied Materials, Inc Dry-etch for selective tungsten removal
8999856, Mar 14 2011 Applied Materials, Inc Methods for etch of sin films
9012302, Sep 26 2011 Applied Materials, Inc. Intrench profile
9018108, Jan 25 2013 Applied Materials, Inc Low shrinkage dielectric films
9023732, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9023734, Sep 18 2012 Applied Materials, Inc Radical-component oxide etch
9034770, Sep 17 2012 Applied Materials, Inc Differential silicon oxide etch
9040422, Mar 05 2013 Applied Materials, Inc Selective titanium nitride removal
9064815, Mar 14 2011 Applied Materials, Inc Methods for etch of metal and metal-oxide films
9064816, Nov 30 2012 Applied Materials, Inc Dry-etch for selective oxidation removal
9093371, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9093390, Mar 07 2013 Applied Materials, Inc. Conformal oxide dry etch
9111877, Dec 18 2012 Applied Materials, Inc Non-local plasma oxide etch
9114438, May 21 2013 Applied Materials, Inc Copper residue chamber clean
9117855, Dec 04 2013 Applied Materials, Inc Polarity control for remote plasma
9132436, Sep 21 2012 Applied Materials, Inc Chemical control features in wafer process equipment
9136273, Mar 21 2014 Applied Materials, Inc Flash gate air gap
9153442, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9159606, Jul 31 2014 Applied Materials, Inc Metal air gap
9165786, Aug 05 2014 Applied Materials, Inc Integrated oxide and nitride recess for better channel contact in 3D architectures
9184055, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9190293, Dec 18 2013 Applied Materials, Inc Even tungsten etch for high aspect ratio trenches
9209012, Sep 16 2013 Applied Materials, Inc. Selective etch of silicon nitride
9236265, Nov 04 2013 Applied Materials, Inc Silicon germanium processing
9236266, Aug 01 2011 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
9245762, Dec 02 2013 Applied Materials, Inc Procedure for etch rate consistency
9263278, Dec 17 2013 Applied Materials, Inc Dopant etch selectivity control
9269590, Apr 07 2014 Applied Materials, Inc Spacer formation
9287095, Dec 17 2013 Applied Materials, Inc Semiconductor system assemblies and methods of operation
9287134, Jan 17 2014 Applied Materials, Inc Titanium oxide etch
9293568, Jan 27 2014 Applied Materials, Inc Method of fin patterning
9299537, Mar 20 2014 Applied Materials, Inc Radial waveguide systems and methods for post-match control of microwaves
9299538, Mar 20 2014 Applied Materials, Inc Radial waveguide systems and methods for post-match control of microwaves
9299575, Mar 17 2014 Applied Materials, Inc Gas-phase tungsten etch
9299582, Nov 12 2013 Applied Materials, Inc Selective etch for metal-containing materials
9299583, Dec 05 2014 Applied Materials, Inc Aluminum oxide selective etch
9309598, May 28 2014 Applied Materials, Inc Oxide and metal removal
9324576, May 27 2010 Applied Materials, Inc. Selective etch for silicon films
9343272, Jan 08 2015 Applied Materials, Inc Self-aligned process
9349605, Aug 07 2015 Applied Materials, Inc Oxide etch selectivity systems and methods
9355856, Sep 12 2014 Applied Materials, Inc V trench dry etch
9355862, Sep 24 2014 Applied Materials, Inc Fluorine-based hardmask removal
9355863, Dec 18 2012 Applied Materials, Inc. Non-local plasma oxide etch
9362130, Mar 01 2013 Applied Materials, Inc Enhanced etching processes using remote plasma sources
9368364, Sep 24 2014 Applied Materials, Inc Silicon etch process with tunable selectivity to SiO2 and other materials
9373517, Aug 02 2012 Applied Materials, Inc Semiconductor processing with DC assisted RF power for improved control
9373522, Jan 22 2015 Applied Materials, Inc Titanium nitride removal
9378969, Jun 19 2014 Applied Materials, Inc Low temperature gas-phase carbon removal
9378978, Jul 31 2014 Applied Materials, Inc Integrated oxide recess and floating gate fin trimming
9384997, Nov 20 2012 Applied Materials, Inc. Dry-etch selectivity
9385028, Feb 03 2014 Applied Materials, Inc Air gap process
9390937, Sep 20 2012 Applied Materials, Inc Silicon-carbon-nitride selective etch
9396989, Jan 27 2014 Applied Materials, Inc Air gaps between copper lines
9406523, Jun 19 2014 Applied Materials, Inc Highly selective doped oxide removal method
9412608, Nov 30 2012 Applied Materials, Inc. Dry-etch for selective tungsten removal
9418858, Oct 07 2011 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
9425058, Jul 24 2014 Applied Materials, Inc Simplified litho-etch-litho-etch process
9437451, Sep 18 2012 Applied Materials, Inc. Radical-component oxide etch
9449845, Dec 21 2012 Applied Materials, Inc. Selective titanium nitride etching
9449846, Jan 28 2015 Applied Materials, Inc Vertical gate separation
9449850, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9472412, Dec 02 2013 Applied Materials, Inc Procedure for etch rate consistency
9472417, Nov 12 2013 Applied Materials, Inc Plasma-free metal etch
9478432, Sep 25 2014 Applied Materials, Inc Silicon oxide selective removal
9478434, Sep 24 2014 Applied Materials, Inc Chlorine-based hardmask removal
9493879, Jul 12 2013 Applied Materials, Inc Selective sputtering for pattern transfer
9496167, Jul 31 2014 Applied Materials, Inc Integrated bit-line airgap formation and gate stack post clean
9499898, Mar 03 2014 Applied Materials, Inc. Layered thin film heater and method of fabrication
9502258, Dec 23 2014 Applied Materials, Inc Anisotropic gap etch
9520303, Nov 12 2013 Applied Materials, Inc Aluminum selective etch
9553102, Aug 19 2014 Applied Materials, Inc Tungsten separation
9564296, Mar 20 2014 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
9576809, Nov 04 2013 Applied Materials, Inc Etch suppression with germanium
9607856, Mar 05 2013 Applied Materials, Inc. Selective titanium nitride removal
9613822, Sep 25 2014 Applied Materials, Inc Oxide etch selectivity enhancement
9659753, Aug 07 2014 Applied Materials, Inc Grooved insulator to reduce leakage current
9659792, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9691645, Aug 06 2015 Applied Materials, Inc Bolted wafer chuck thermal management systems and methods for wafer processing systems
9704723, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
9711366, Nov 12 2013 Applied Materials, Inc. Selective etch for metal-containing materials
9721789, Oct 04 2016 Applied Materials, Inc Saving ion-damaged spacers
9728437, Feb 03 2015 Applied Materials, Inc High temperature chuck for plasma processing systems
9741593, Aug 06 2015 Applied Materials, Inc Thermal management systems and methods for wafer processing systems
9754800, May 27 2010 Applied Materials, Inc. Selective etch for silicon films
9768034, Nov 11 2016 Applied Materials, Inc Removal methods for high aspect ratio structures
9773648, Aug 30 2013 Applied Materials, Inc Dual discharge modes operation for remote plasma
9773695, Jul 31 2014 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
9837249, Mar 20 2014 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
9837284, Sep 25 2014 Applied Materials, Inc. Oxide etch selectivity enhancement
9842744, Mar 14 2011 Applied Materials, Inc. Methods for etch of SiN films
9847289, May 30 2014 Applied Materials, Inc Protective via cap for improved interconnect performance
9865484, Jun 29 2016 Applied Materials, Inc Selective etch using material modification and RF pulsing
9881805, Mar 02 2015 Applied Materials, Inc Silicon selective removal
9885117, Mar 31 2014 Applied Materials, Inc Conditioned semiconductor system parts
9887096, Sep 17 2012 Applied Materials, Inc. Differential silicon oxide etch
9903020, Mar 31 2014 Applied Materials, Inc Generation of compact alumina passivation layers on aluminum plasma equipment components
9934942, Oct 04 2016 Applied Materials, Inc Chamber with flow-through source
9947549, Oct 10 2016 Applied Materials, Inc Cobalt-containing material removal
9978564, Sep 21 2012 Applied Materials, Inc. Chemical control features in wafer process equipment
9991134, Mar 15 2013 Applied Materials, Inc. Processing systems and methods for halide scavenging
RE41670, Dec 17 1993 STMicroelectronics, Inc. Sram cell fabrication with interlevel Dielectric planarization
Patent Priority Assignee Title
4654269, Jun 21 1985 National Semiconductor Corporation Stress relieved intermediate insulating layer for multilayer metalization
4962063, Nov 10 1988 Applied Materials, Inc.; Applied Materials, Inc Multistep planarized chemical vapor deposition process with the use of low melting inorganic material for flowing while depositing
4972251, Aug 14 1985 National Semiconductor Corporation Multilayer glass passivation structure and method for forming the same
4983546, Dec 20 1988 Hyundai Electronics Industries, Co., Ltd. Method for curing spin-on-glass film by utilizing ultraviolet irradiation
5057897, Mar 05 1990 NXP B V Charge neutralization using silicon-enriched oxide layer
5079188, Jan 21 1988 Sharp Kabushiki Kaisha Method for the production of a semiconductor device
5089863, Sep 08 1988 Mitsubishi Denki Kabushiki Kaisha Field effect transistor with T-shaped gate electrode
JP185947,
JP260534,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 25 1991Mitsubishi Denki Kabushiki Kaisha(assignment on the face of the patent)
Nov 29 1991MATSUURA, MASAZUMIMitsubishi Denki Kabushiki KaishaASSIGNMENT OF ASSIGNORS INTEREST 0059620982 pdf
Mar 07 2011Mitsubishi Denki Kabushiki KaishaRenesas Electronics CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0259800219 pdf
Date Maintenance Fee Events
Apr 21 1995ASPN: Payor Number Assigned.
Nov 24 1997M183: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 15 2001M184: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 14 2005M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 07 19974 years fee payment window open
Dec 07 19976 months grace period start (w surcharge)
Jun 07 1998patent expiry (for year 4)
Jun 07 20002 years to revive unintentionally abandoned end. (for year 4)
Jun 07 20018 years fee payment window open
Dec 07 20016 months grace period start (w surcharge)
Jun 07 2002patent expiry (for year 8)
Jun 07 20042 years to revive unintentionally abandoned end. (for year 8)
Jun 07 200512 years fee payment window open
Dec 07 20056 months grace period start (w surcharge)
Jun 07 2006patent expiry (for year 12)
Jun 07 20082 years to revive unintentionally abandoned end. (for year 12)