A substrate processing equipment comprises two pod supporting stages and two independently operable pod door openers. Each pod supporting stage is capable of placing thereon a pod for containing substrates therein. Each pod door openers having means for permitting access to the substrates inside the pod placed on a corresponding pod supporting stage.

Patent
   RE43023
Priority
Apr 17 2000
Filed
Mar 15 2010
Issued
Dec 13 2011
Expiry
Apr 16 2021
Assg.orig
Entity
Large
302
30
all paid
7. A substrate processing equipment comprising:
at least one two pod door doors opening mechanism for permitting access to substrates disposed inside a pod having a door;
wherein each of the pod door opening mechanism moves the door of the pod horizontally from a position where the door of the pod is closed to a retreated position where the pod is completely open thereby allowing substrates to be unloaded from the pod.
1. A substrate processing equipment comprising:
at least two pod supporting stages, each for placing thereon a pod for containing substrates therein, the pod having a door;
at least two independently operable pod doors opening mechanisms, each for permitting access to substrates inside the pod placed on a corresponding one of the pod supporting stages; and
wherein each of the pod door opening mechanisms horizontally removes the door from the corresponding pod to thereby allow substrates disposed inside of the corresponding pod to be unloaded therefrom.
9. A substrate processing method for use in a substrate processing equipment including at least two pod supporting stages, each for placing thereon a pod for containing substrates therein, the pod having a door, the method comprising the steps of:
(a) placing a first pod on one pod supporting stage;
(b) opening a door of the first pod only independently of a door of a second pod in substantially horizontal directions;
(c) loading or unloading substrates to or from the first pod; and
(d) placing a the second pod on another pod supporting stage during the loading or unloading step (c).
8. A substrate processing equipment comprising:
a pod supporting stage for placing thereon a pod for containing substrates therein, the pod having an opening;
a mapping apparatus mounted on the pod supporting stage for detecting the locations of substrates in the pod placed on the pod supporting stage through the opening of the pod;
a substrate handling apparatus for unloading substrates from the pod placed on the pod supporting stage through the opening of the pod; and
wherein the mapping apparatus pivotally moves between a mapping position at which a mapping process is carried out and a standby position located away from the opening of the pod to allow a substrates unloading process to be carried out through the opening.
0. 19. A substrate processing method for use in a substrate processing equipment including at least two pod supporting stages, each for placing thereon a pod for containing substrates therein, the pod having a door, the method comprising the steps of:
(a) placing a first pod on one pod supporting stage;
(b) opening a door of the first pod only in substantially horizontal directions;
(c) loading or unloading substrates to or from the first pod;
(d) placing a second pod on another pod supporting stage during the loading or unloading step (c);
(e) opening a door of the second pod during the loading or unloading step (c); and
(f) detecting a position of the substrate in the second pod during the loading or unloading step (c).
0. 18. A substrate processing method for use in a substrate processing equipment including at least two pod supporting stages, each for placing thereon a pod for containing substrates therein, the pod having a door, the method comprising the steps of:
(a) placing a first pod on one pod supporting stage;
(b) opening a door of the first pod only in substantially horizontal directions;
(c) loading or unloading substrates to or from the first pod;
(d) placing a second pod on another pod supporting stage during the loading or unloading step (c);
(e) opening a door of the second pod during the loading or unloading step (c);
(f) loading or unloading substrates to or from the second pod; and
(g) closing the door of the first pod in substantially horizontal directions during the loading or unloading step (f).
0. 17. A substrate processing method for use in a substrate processing equipment including at least two pod supporting stages, each for placing thereon a pod for containing substrates therein, the pod having a door, the method comprising the steps of:
(a) placing a first pod on one pod supporting stage;
(b) opening a door of the first pod only in substantially horizontal directions;
(c) loading or unloading substrates to or from the first pod;
(d) placing a second pod on another pod supporting stage during the loading or unloading step (c); and
(e) opening a door of the second pod from a position where the door of the second pod is closed to a retreated position where the second pod is open thereby allowing substrates to be loaded or be unloaded from the second pod during the loading or unloading step (c).
0. 10. A substrate processing equipment comprising:
at least two pod supporting stages, each for placing thereon a pod for containing a plurality of substrates therein, the pod having an opening for loading and unloading the substrates and a door for opening and closing the opening of the pod wherein at least two substrate loading ports for loading and unloading the plurality of substrates out of the opening of the pod are disposed vertically; and
at least two pod doors opening mechanisms, each for opening and closing the opening of the pod containing closures smaller than width in the vertical direction in the door at intervals in the vertical direction and horizontal guide rails which are parallel with the opening of the pod, provided at substrate loading ports, each for permitting access to substrates inside the pod placed on a corresponding one of the pod supporting stages,
wherein each of the closures moves the door horizontally with the opening of the opening of the pod in horizontal same direction independently by guide rails and the each of the closure moves the door horizontally with the opening of the closing of the pod in horizontal same direction independently by guide rails, such that each of the pod door opening mechanisms horizontally removes the door from the corresponding pod to thereby allow substrates disposed inside of the corresponding pod to be unloaded therefrom.
0. 16. A substrate processing method for use in a substrate processing equipment including at least two pod supporting stages, each for placing thereon a pod for containing a plurality of substrates therein, the pod having an opening for loading and unloading the substrates and a door, for opening and closing the opening of the pod wherein at least two substrate loading ports for loading and unloading the plurality of substrates out of the opening of the pod are disposed vertically smaller than width in the vertical direction in the door at intervals in the vertical direction,
at least two pod doors opening mechanisms, each for opening and closing the opening of the pod containing closures smaller than width in the vertical direction in the door at intervals in the vertical direction and horizontal guide rails which are parallel with the opening of the pod, provided at substrate loading ports, each for permitting access to substrates inside the pod placed on a corresponding one of the pod supporting stages, the method comprising the steps of:
(a) placing a first pod on one pod supporting stage;
(b) opening a door of the first pod only in substantially the first horizontal direction and in parallel with the opening of the pod by a first closure and a first guide rail;
(c) loading or unloading substrates to or from the first pod; and
(d) placing a second pod on another pod supporting stage during the loading or unloading step (c),
wherein the another pod door opening mechanism moves the door of the second pod the first horizontal direction and in parallel with the opening of the pod by a second closure and a second guide rail.
2. The substrate processing equipment of claim 1, wherein the at least two pod supporting stages are vertically arranged.
3. The substrate processing equipment of claim 1, wherein each of the pod supporting stages includes a mapping apparatus for detecting locations of the substrates in the pod placed thereon.
4. The substrate processing equipment of claim 3, wherein the mapping apparatus moves between a mapping position at which a mapping process is carried out and a standby position located away from a pod entrance of the corresponding pod to allow a substrate loading or unloading process to be carried out through the pod entrance.
5. The substrate processing equipment of claim 1, further comprising:
a substrate handling apparatus for loading substrates to a pod or unloading substrates from a pod placed on one of the pod supporting stages; and
a pod transferring apparatus for placing another pod on the other pod supporting stage while the substrate handling apparatus loads substrates to the pod or unloads substrates from the pod placed on said one of the pod supporting stages.
6. The substrate processing equipment of claim 1, wherein each pod door opening mechanism moves the door of the pod between a position where the door of the pod is closed and a retreated position where the corresponding pod is completely opened.
0. 11. The substrate processing equipment of claim 10, further comprising:
an air cylinder for reciprocally operating the closure horizontally and in parallel with the opening of the pod, which are provided at each of the substrate loading ports.
0. 12. The substrate processing equipment of claim 10, wherein each of the substrate loading ports includes a mapping apparatus for detecting locations of the substrates in the pod placed thereon.
0. 13. The substrate processing equipment of claim 12, wherein the mapping apparatus moves between a mapping position at which a mapping process is carried out and a standby position located away from a pod entrance of the corresponding pod to allow a substrate loading or unloading process to be carried out through the pod entrance.
0. 14. The substrate processing equipment of claim 10, further comprising:
a substrate handling apparatus for loading substrates to a pod or unloading substrates from a pod placed on one of the pod supporting stages; and
a pod transferring apparatus for placing another pod on the other pod supporting stage while the substrate handling apparatus loads substrates to the pod or unloads substrates from the pod places on said one of the pod supporting stages.
0. 15. The substrates processing equipment of claim 10, wherein each pod door opening mechanism moves the door of the pod between a position where the door of the pod is closed and a retreated position where the corresponding pod is completely opened.
0. 20. The substrate processing method for use in a substrate processing equipment according to claim 17, wherein each of said at least two pod supporting stages is disposed vertically, the method further comprising: opening the door of the first pod in substantially horizontal and in parallel with the opening of the first pod in step (b); and opening the door of the second pod in substantially horizontal and in parallel with the opening of the second pod in step (e).
can firmly abuts with the periphery of the opening 22 by moving forward the back/forth slider 34 against the bulkhead 21 and, thereby closing the opening 22 can be closed.

Further, as shown in FIGS. 5 to 6A, a packing member 55, e.g., an O-ring, may be provided around the peripheral surface of the closure 40 in order to air-tightly seal against the rear side wall of the bulkhead 21 around the opening 22 when the closure 40 abuts with the bulkhead 21. Another packing member 56 may be provided on the peripheral region of the central front surface in order to seal against the pod door 10a lodged on the wafer loading port 13 when the closure 40 abuts with the bulkhead 21. The packing member 56 serves to prevent potential contaminants on the door 10a of the pod 10 from entering into the processing area where the wafer carry assembly 15 is located. An additional packing member 54 may also be provided on the region of the front side wall of the bulkhead 21 around the opening 22 in order to seal against the door frame of the pod 10 when the pod 10 is arranged to move against the bulkhead 21.

As shown in FIGS. 2 and 4, a pair of rotatable keys 41 are arranged on the left and the right sides of the central front surface of the closure 40. The keys 41 are located along the horizontal centerline on the central front surface. Each key is coupled with a pulley 42 provided on the rear surface of the closure 40. Both pulleys 42 are connected by a belt 43 which has a connection plate 44. An air cylinder 45 is horizontally mounted above one of the pulleys 42 and a piston rod thereof is connected to the connection plate 44 such that extension and retraction of the air cylinder 45 can produce a reciprocating rotary motion of the pulleys 42, thereby inducing the keys 41 to rotate. In addition, each key 41 includes a coupling member 41a at the end portion thereof for engaging with a locking mechanism (not shown) on the door 10a of the pod 10.

As shown in FIG. 2, a pair of suction elements 46 capable of holding the pod door 10a by vacuum suction are diagonally provided on two corner regions of the central front surface of the closure 40. Each suction element 46 has a suction pipe 47 and the suction pipe 47 is connected with an air exhaust/supply pipe (not shown). End portions of the suction pipes 47 are adapted to match with aligning holes in the pod door 10a. Therefore, the suction pipes also act as supporting members for holding the pod door 10a.

Referring to FIGS. 2, 4, 6A and 6B, on the front side wall of the bulkhead 21, a rotary actuator 50 having a vertically oriented rotary shaft 50a is installed beside the opening 22. A C-shaped arm 51 is provided to pass through an opening 52 in the bulkhead 21. One end of the C-shaped arm 51 is connected to the rotary shaft 50a and a mapping device 53 for detecting the locations of wafers in the pod 10 is installed at the other end. The C-shaped arm 51 can be rotated in a horizontal plane.

In operation, the pods 10 are loaded onto the pod stage 11 through the pod load/unload opening and then transferred by the pod handler 14 to predetermined positions on the pod shelf 12 for temporary storage as shown in FIG. 1.

FIG. 7 illustrates the pod transferring process between the pod shelf 12 and the wafer loading ports 13 and also the wafer transferring process between the pods on the wafer loading ports 13 and the wafer boat 8 in accordance with the first embodiment of the present invention.

The two pod openers 20 are arranged to close the openings 22 such that the packing member 55 seals against the rear side wall of the bulkhead 21. One pod 10 is transferred from the pod shelf 12 to, e.g., the upper wafer loading port 13 by the pod handler 14 and disposed on the loading platform 27. The three alignment pins 28 on the loading platform 27 engage with the corresponding three holes (not shown) formed under the pod 10 to thereby complete the alignment of the pod 10 on the loading platform 27.

The pod 10 provided on the loading platform 27 is moved toward the bulkhead 21 by the extension of the air cylinder 26 in such a manner that the respective packing members 54 and 56 are airtightly in contact with the pod door 10a and the pod frame therearound as shown in FIG. 6A. The keys 41 and the suction pipes 47 of the closure 40 are also inserted in the key holes (not shown) and the aligning holes provided on the door 10a, respectively. The pod transferring process described above is generally represented as a process “A” at the first stage in FIG. 7.

After completing the pod transferring process “A”, a negative pressure is applied through the air exhaust/supply pipes 47 inside the suction elements 46 so that the suction elements 46 hold the door 10a by vacuum suction. Thereafter, the keys 41 are rotated by the air cylinder 45 so that the coupling members 41a unlock the door 10a.

Next, the back/forth slider 34 is moved away from the bulkhead 21 by the rotary actuator 37 and then the angle-shaped slider 31 is moved away from the opening 22 by the air cylinder 32 so that the closure 40 holding the pod door 10a by the suction elements 46 is moved to a retreated position. By such movement of the closure 40, the door 10a is separated from the pod 10 and the pod is opened as shown in FIG. 6B, thereby the wafers 9 loaded in the pod 10 is put under a condition that the wafer carry assembly 15 can access thereto. The pod door opening process described above is represented as a process “B” at the first stage in FIG. 7.

Thereafter, as shown in FIG. 6B, the mapping device 53 is moved to the wafers inside the pod 10 through the opening 22 by the rotary actuator 50 and performs mapping by detecting the positions of the wafers, i.e., by identifying slots holding the wafers. After mapping is completed, the mapping apparatus 53 is returned to its initial position by the rotary actuator 50. The mapping process described above is generally represented as a process “C” at the first stage in FIG. 7.

Next, the wafers in the pod 10 on the wafer loading port 13 are transferred to the wafer boat 8 by the wafer transfer assembly 15. The wafer transferring process described above is generally represented as a process “D” at after the first stage in FIG. 7.

While the wafer transferring process “D” is performed at after the first stage, e.g., the upper wafer loading port 13, the pod transferring process “A”, the pod door opening process “B” and the mapping process “C” are sequentially carried out at the second stage, e.g., the lower wafer loading port 13. the The second wafer loading port 13 waits (process E “F”) until the wafer transferring process “D” at the first wafer loading port 13 is completed.

Accordingly, upon the completion of the wafer transferring process “D” of the first wafer loading port 13 at, for which the second stage is waiting (process “F”), the wafer transferring process “D” can be started at the second wafer loading port 13 as shown in FIG. 7 (third stage). As a result, the wafer transferring operation can be alternatively performed by the wafer loading port ports 13 without interruption due to the replacement of the pods 10 and thus the system efficiency or the throughput of the semiconductor processing equipment can be improved.

During the third stage shown in FIG. 7, where the wafer transferring process “D” is carried out by the second wafer loading port 13, a pod door closing process “E”, a pod changing process “A”, the pod door opening process “B”, the mapping process “C” and the waiting process “F” are sequentially carried out in that order, so that the wafer transferring process “D” can be started by the first wafer loading port 13 immediately after the completion of the process “D” at the second wafer loading port 13 (fourth stage).

The pod door closing process is carried out as follows. The closure 40 holding the pod door 10a is removed from the retreated position toward the opening 22 by the air cylinder 32 and then toward the empty pod 10 by the rotary actuator 37 to close the pod 10 by the pod door 10a thereafter, the keys 41 are rotated by the air cylinder 45 to actuate the locking mechanism of the pod door 10a. After locking, the negative pressure inside the suction element 46 is removed by supplying a positive pressure through the pipe 47 and the closure 40. The closure 40 remains in that position until the pod door opening process “B” is resumed.

The pod changing process “A” is carried out as follows. After the pod door 10a is restored on the empty pod 10 by the pod door closing process “E”, the loading platform 27 of the first wafer loading port holding the empty pod is moved away from the bulkhead 21 by the air cylinder 26. The empty pod 10 is then stored back to the pod shelf 12 and a new pod holding wafer therein is transferred to the first wafer loading port. Thereafter, the newly supplied pod is provided to the closure 40 in an identical manner as in the pod transferring process “A”. The remaining process “B”, “C” and “F” are identical to those of the second stage.

The wafer loading processes are repeated until the described number of wafers are loaded from the pods 10 to the wafer boat 8. After transferring the described number of wafers, the last two empty pods may be removed to the pod shelf 12 or stayed on the wafer loading ports 13. Alternatively, only one empty port 13 may remain at the one wafer loading port 13. The number of wafers which the wafer boat 8 can hold for one batch process is, e.g., 100 to 150, which is several times greater than that of wafers which one pod can contain therein, e.g., 25.

After the predetermined number of unprocessed wafers are loaded on the wafer boat 8, the boat elevator 7 lifts the wafer boat 8 into the process tube 4. When the wafer boat 8 is introduced into the process tube 4, a lower end opening of the process tube 4 is hermetically sealed by the boat receptacle 8a.

Next, the process tube 4 is evacuated through the exhaust pipe 6 to reduce the pressure therein down to a predetermined vacuum level. Thereafter, a desired wafer process, e.g., a diffusion or a CVD process, is carried out on the loaded wafers by controlling temperatures at desired levels by using the heater unit 3 while supplying predetermined process gases into the process tube 4 through the gas supply line 5.

After a predetermined processing time has elapsed, the wafer boat 8 holding processed wafers is discharged from the process tube 4 and returned to its initial position. During the period in which the wafer boat 8 is loaded into and unloaded from the process tube 4 and the wafers are processed in the process tube 4, either one or both of the pods 10 may be prepared at the corresponding wafer loading ports 13 in order to receive the processed wafers.

Thereafter, the wafer transfer assembly 15 transfers a portion of the processed wafers held in the wafer boat 8 to one empty pod 10 disposed on, e.g., the first wafer loading port 13 (upper loading port) with the door 10a opened. This process corresponds to the wafer transferring process “D” at the second stage shown in FIG. 7. After completing the wafer transferring process “D” at one wafer loading port, the same process is carried out at the other wafer loading port with the door thereof being opened. This process corresponds to the process “D” at the third stage in FIG. 7.

While the wafer loading process “D” is carried out at the second wafer loading port, the pod door closing process “E”, the pod changing process “A”, the pod door opening process “B” and the waiting process “F” are carried out at the first wafer loading port as in the third stage of FIG. 7. The mapping process “C” is not performed because the processed wafers are transferred into an empty pod at this time.

The process “E”, “A”, “B” and “F” are identical to those described with respect to the wafer loading process from the pods 10 to the wafer boat 8, excepting that the pod changing process “A” represents the process transferring a pod containing the processed wafers to the pod shelf 12 from a wafer loading port and moving an empty pod from the pod shelf 12 to the wafer loading port 13.

In case all the empty pods have been transferred from the wafer loading ports 13 to the pod shelf 12 after loading all the wafers onto the boat 8, the processed wafer unloading process can be accomplished as follows. First, one empty pod is transferred from the pod shelf 12 to one of the wafer loading ports and the pod door 10a thereof is opened. These correspond to the process “A” and “B” of the first stage in FIG. 7. The timing of the processes “A” and “B” can be controlled such that the wafer transferring process “D” at the second stage can be started immediately after completing the pod door opening process “B” at the first stage. Of course, the mapping process “C” is omitted at the first stage because the pod is empty.

Thereafter at the second stage, the wafer transferring process “D” is carried out at the first wafer loading port 12, while the process “A”, “B” and “F” are sequentially performed at the second wafer loading port. Then, the process at the third stage can be carried out as described above.

The processes are repeated until transferring all the processed wafers from the wafer boat 8 to the empty pods, which in turn are returned to the pod shelf 12.

As described above, since the wafer transfer assembly 15 can transfer the processed wafers from the wafer boat 8 to the pods 10 continuously without having to wait for the replacement of the pods 10 on the wafer loading ports 13, the throughput of semiconductor processing equipment 1 can be substantially increased.

The pods 10 containing the processed wafers are temporarily stored in the pod shelf 12 and then transferred to the pod stage 11 by the pod handler 14. Next, the pods on the pod stage 11 are transferred through the pod load/unload opening (not shown) to another equipment for a subsequent process and new pods containing unprocessed wafers are charged on the pod stage 11.

The processes of transferring pods between the pod shelf 12 and the pod stage 11 and charging and discharging pods into and from the semiconductor processing equipment 1 can be carried out while wafers are being processed in the process tube 4 and transferred between the wafer boat 8 and the pods 10 on the wafer loading ports 13. As a result, the total process time of the semiconductor processing equipment 1 can be reduced.

Referring to FIGS. 8 to 10, there are illustrated wafer transferring sequences in accordance with further preferred embodiments of the present invention. In the sequences shown FIGS. 8 to 10, wafer mapping is completed at least for the pods containing wafers required for one batch process before the continuous wafer loading process begins for that batch process, e.g., by transferring the corresponding pods from the pod stage 11 to the wafer loading ports 13 in order to carry out the mapping and then moving them to pod shelf 12. Therefore, the process sequences in FIGS. 8 to 10 will be described by assuming that the wafer mapping has been completed for the pods stored on the pod shelf 12 containing wafers needed for one batch process. The processes identified as reference numerals “A” to “F” and “A” in FIGS. 8 to 10 are basically identical to those of FIG. 7.

The wafer transferring sequence in accordance with the second embodiment of the present invention will be described with reference to FIG. 8. At the first stage of the sequence for transferring unprocessed wafers to the wafer boat 8, a first pod containing unprocessed wafers is transferred from the pod shelf 12 to a first wafer loading port (process “A”) and the door of the first pod is opened (process “B”).

Immediately thereafter at the second stage, wafer transferring from the first pod to the wafer boat 8 (process “D”) starts and, at the same time, a second pod containing the unprocessed wafers are transferred to a second wafer loading port (process “A”) and waits until the wafer transferring process “D” at the first wafer loading port is completed (process “F”).

At the third stage, the door of the second pod is opened (process “B”) and the wafers therein are transferred to the boat 8 (process “D”) and the door is restored on the empty first pod (process “E”), which is then replaced with another pod carrying unprocessed wafer (process “A”), the new pod remaining at the first wafer loading port until the wafer loading process at the second wafer loading port is completed (process “F”). The processes described in connection with the third stage are alternately carried out until all the required wafers for one batch process are transferred to the wafer boat 8.

As described above in the second embodiment of the present invention, the pod transferring process “A” and the pod changing process “A” for one wafer loading port are carried out during the wafer transferring process “D” at the other wafer loading port; and the pod door opening process “B” for one wafer loading port and the pod door closing process “E” for the other wafer loading port are simultaneously conducted.

The process sequence of the second embodiment for transferring processed wafers to empty pods is identical to that for transferring unprocessed wafers to the wafer boat 8, excepting that the pod changing process “A” in the process sequence for transferring processed wafers represents the process of transferring a pod containing the processed wafers from a wafer loading port to the pod shelf 12 and then moving an empty pod from the pod shelf 12 to that wafer loading port. The process “A” of transferring a first empty wafer to one of the wafer loading ports is controlled in such a manner that the wafer transferring from the boat to the first empty pod can be conducted immediately after completing the opening of the door of the first pod.

The sequence shown in FIG. 9 in accordance with the third embodiment of the present invention is identical to that of the second embodiment shown in FIG. 8, excepting that the pod door opening process “B” at one wafer loading port is conducted during the wafer transferring process “D” at the other wafer loading port in such a manner that the process “D” at one wafer loading port can be started upon the completion of the process “D” at the other wafer loading port. Also, the door closing process “E” at one wafer loading port and the wafer transferring process “D” at the other wafer loading port start simultaneously.

FIG. 10 illustrates a wafer transferring process in accordance with the fourth embodiment of the present invention. The process sequence shown in FIG. 10 is identical to that of the third embodiment shown in FIG. 9, excepting that the sequence of the waiting process “F” and the pod door opening process “B” is reversed at every stage.

Following advantages can be achieved in accordance with the present invention.

    • 1) By vertically installing a pair of the pod door openers each of which is capable of independently opening and restoring the door of a pod on each wafer loading port, the wafer transferring process can be independently conducted at one wafer loading port while the other loading port is preparing for the subsequent wafer transferring process. As a result, the total process time can be considerably reduced and therefore the throughput of the semiconductor processing equipment can be increased.
    • 2) By vertically arranging the wafer loading ports, the system efficiency can be improved without increasing the floor area or footprint of the semiconductor processing equipment.
    • 3) The vertically arranged wafer loading ports eliminates the need for the left-right movement of the wafer carry assembly 15, thereby simplifying the structure thereof and improving the system efficiency without increasing the width of the processing equipment.
    • 4) The independently operable mapping devices provided to the respective wafer loading ports enables the mapping process at one wafer loading port and the wafer transferring process at the other to be conducted simultaneously. As a result, the loading time needed for the subsequent wafer transferring process can be eliminated and therefore the total process time of the semiconductor processing equipment can be considerably reduced, thereby increasing the system efficiency.
    • 5) Simplified and small sized mapping device can be obtained by employing the rotary actuating mechanism therefor, wherein the rotary actuator is mounted on the front side wall of the bulkhead and the arm fixedly coupled thereto passes through the opening in the bulkhead and the mapping device is attached at the end of the arm, enabling the mapping device to approach the wafers in a pod by the rotation of the rotary actuator.
    • 6) Any vertical component in the motion of the pod openers would result in the height increase thereof, which in turn makes the pod shelf located above the pod openers to be disposed at a higher position and increases the height of the semiconductor processing equipment. The increased number of vertically arranged pod openers would impose the multiplicative effect in the vertical position of the pod shelf and the height increase of the processing equipment itself. The higher vertical position of the pod shelf will entails the increase of the pod-transfer time, thereby decreasing the throughput of the equipment.

In contrast, the pod openers 20 in accordance with the present invention solely operate along horizontal directions and do not contribute at all to the height increase of the equipment and the pod-transfer time. Further, the pod shelf is arranged to receive two columns of pods along the width direction of the processing equipment, whereas only one column of wafer transferring ports is provided under the pod shelf. As a result, the purely transitional lateral motion of the pod openers can be accommodated by the reserved space under the pod shelf and, therefore, the system efficiency and the throughput can be improved without increasing the pod transfer time and sacrificing the floor area of the processing equipment.

It is to be appreciated that the configuration of the semiconductor processing equipment may be varied appropriately if necessary.

For instance, the number of the wafer loading ports is not limited to two but more than two wafer loading ports can be installed vertically of if the height increase can be accommodated.

In addition, in lieu of the rotary actuator for actuating the mapping device, another mechanism using an X-Y axis robot can be employed. Moreover, the mapping device can be omitted if so required.

Furthermore, the processing equipment can be of the type capable of processing other substrates, e.g., photo masks, printed circuit boards, liquid crystal panels, compact disks and magnetic disk, than the semiconductor wafers.

The processing equipment can be of the type adapted to perform, e.g., oxide formation, diffusion process and other types of heat treating process in place of the CVD. The present invention is also applicable to other types of semiconductor processing equipments than the batch type vertical processor.

While the invention has been shown and described with respect to the preferred embodiments, it will be understood by those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.

Matsunaga, Tatsuhisa, Nakashima, Takanobu, Yanagawa, Hidehiro

Patent Priority Assignee Title
10559458, Nov 26 2018 ASM IP Holding B.V. Method of forming oxynitride film
10561975, Oct 07 2014 ASM IP Holdings B.V. Variable conductance gas distribution apparatus and method
10590535, Jul 26 2017 ASM IP HOLDING B V Chemical treatment, deposition and/or infiltration apparatus and method for using the same
10600673, Jul 07 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Magnetic susceptor to baseplate seal
10604847, Mar 18 2014 ASM IP Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
10612136, Jun 29 2018 ASM IP HOLDING B V ; ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
10622375, Nov 07 2016 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by using the method
10643826, Oct 26 2016 ASM IP HOLDING B V Methods for thermally calibrating reaction chambers
10643904, Nov 01 2016 ASM IP HOLDING B V Methods for forming a semiconductor device and related semiconductor device structures
10644025, Nov 07 2016 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by using the method
10655221, Feb 09 2017 ASM IP Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
10658181, Feb 20 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of spacer-defined direct patterning in semiconductor fabrication
10658205, Sep 28 2017 ASM IP HOLDING B V Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
10665452, May 02 2016 ASM IP Holdings B.V. Source/drain performance through conformal solid state doping
10672636, Aug 09 2017 ASM IP Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
10683571, Feb 25 2014 ASM IP Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
10685834, Jul 05 2017 ASM IP Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
10692741, Aug 08 2017 ASM IP Holdings B.V.; ASM IP HOLDING B V Radiation shield
10707106, Jun 06 2011 ASM IP Holding B.V.; ASM IP HOLDING B V High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
10714315, Oct 12 2012 ASM IP Holdings B.V.; ASM IP HOLDING B V Semiconductor reaction chamber showerhead
10714335, Apr 25 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Method of depositing thin film and method of manufacturing semiconductor device
10714350, Nov 01 2016 ASM IP Holdings, B.V.; ASM IP HOLDING B V Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10714385, Jul 19 2016 ASM IP Holding B.V. Selective deposition of tungsten
10720322, Feb 19 2016 ASM IP Holding B.V. Method for forming silicon nitride film selectively on top surface
10720331, Nov 01 2016 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10731249, Feb 15 2018 ASM IP HOLDING B V Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
10734223, Oct 10 2017 ASM IP Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
10734244, Nov 16 2017 ASM IP Holding B.V. Method of processing a substrate and a device manufactured by the same
10734497, Jul 18 2017 ASM IP HOLDING B V Methods for forming a semiconductor device structure and related semiconductor device structures
10741385, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
10755922, Jul 03 2018 ASM IP HOLDING B V Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
10755923, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
10767789, Jul 16 2018 ASM IP Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
10770286, May 08 2017 ASM IP Holdings B.V.; ASM IP HOLDING B V Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
10770336, Aug 08 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate lift mechanism and reactor including same
10784102, Dec 22 2016 ASM IP Holding B.V. Method of forming a structure on a substrate
10787741, Aug 21 2014 ASM IP Holding B.V. Method and system for in situ formation of gas-phase compounds
10797133, Jun 21 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
10804098, Aug 14 2009 ASM IP HOLDING B V Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
10811256, Oct 16 2018 ASM IP Holding B.V. Method for etching a carbon-containing feature
10818758, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
10829852, Aug 16 2018 ASM IP Holding B.V. Gas distribution device for a wafer processing apparatus
10832903, Oct 28 2011 ASM IP Holding B.V. Process feed management for semiconductor substrate processing
10844484, Sep 22 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
10844486, Apr 06 2009 ASM IP HOLDING B V Semiconductor processing reactor and components thereof
10847365, Oct 11 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming conformal silicon carbide film by cyclic CVD
10847366, Nov 16 2018 ASM IP Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
10847371, Mar 27 2018 ASM IP Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
10851456, Apr 21 2016 ASM IP Holding B.V. Deposition of metal borides
10854498, Jul 15 2011 ASM IP Holding B.V.; ASM JAPAN K K Wafer-supporting device and method for producing same
10858737, Jul 28 2014 ASM IP Holding B.V.; ASM IP HOLDING B V Showerhead assembly and components thereof
10865475, Apr 21 2016 ASM IP HOLDING B V Deposition of metal borides and silicides
10867786, Mar 30 2018 ASM IP Holding B.V. Substrate processing method
10867788, Dec 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming a structure on a substrate
10872771, Jan 16 2018 ASM IP Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
10883175, Aug 09 2018 ASM IP HOLDING B V Vertical furnace for processing substrates and a liner for use therein
10892156, May 08 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
10896820, Feb 14 2018 ASM IP HOLDING B V Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
10910262, Nov 16 2017 ASM IP HOLDING B V Method of selectively depositing a capping layer structure on a semiconductor device structure
10914004, Jun 29 2018 ASM IP Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
10923344, Oct 30 2017 ASM IP HOLDING B V Methods for forming a semiconductor structure and related semiconductor structures
10928731, Sep 21 2017 ASM IP Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
10934619, Nov 15 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Gas supply unit and substrate processing apparatus including the gas supply unit
10941490, Oct 07 2014 ASM IP Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
10943771, Oct 26 2016 ASM IP Holding B.V. Methods for thermally calibrating reaction chambers
10950432, Apr 25 2017 ASM IP Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
10975470, Feb 23 2018 ASM IP Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
11001925, Dec 19 2016 ASM IP Holding B.V. Substrate processing apparatus
11004977, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
11015245, Mar 19 2014 ASM IP Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
11018002, Jul 19 2017 ASM IP Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
11018047, Jan 25 2018 ASM IP Holding B.V. Hybrid lift pin
11022879, Nov 24 2017 ASM IP Holding B.V. Method of forming an enhanced unexposed photoresist layer
11024523, Sep 11 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus and method
11031242, Nov 07 2018 ASM IP Holding B.V. Methods for depositing a boron doped silicon germanium film
11049751, Sep 14 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
11053591, Aug 06 2018 ASM IP Holding B.V. Multi-port gas injection system and reactor system including same
11056344, Aug 30 2017 ASM IP HOLDING B V Layer forming method
11056567, May 11 2018 ASM IP Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
11069510, Aug 30 2017 ASM IP Holding B.V. Substrate processing apparatus
11081345, Feb 06 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of post-deposition treatment for silicon oxide film
11087997, Oct 31 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus for processing substrates
11088002, Mar 29 2018 ASM IP HOLDING B V Substrate rack and a substrate processing system and method
11094546, Oct 05 2017 ASM IP Holding B.V. Method for selectively depositing a metallic film on a substrate
11094582, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
11101370, May 02 2016 ASM IP Holding B.V. Method of forming a germanium oxynitride film
11107676, Jul 28 2016 ASM IP Holding B.V. Method and apparatus for filling a gap
11114283, Mar 16 2018 ASM IP Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
11114294, Mar 08 2019 ASM IP Holding B.V. Structure including SiOC layer and method of forming same
11127589, Feb 01 2019 ASM IP Holding B.V. Method of topology-selective film formation of silicon oxide
11127617, Nov 27 2017 ASM IP HOLDING B V Storage device for storing wafer cassettes for use with a batch furnace
11139191, Aug 09 2017 ASM IP HOLDING B V Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
11139308, Dec 29 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Atomic layer deposition of III-V compounds to form V-NAND devices
11158513, Dec 13 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
11164955, Jul 18 2017 ASM IP Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
11168395, Jun 29 2018 ASM IP Holding B.V. Temperature-controlled flange and reactor system including same
11171025, Jan 22 2019 ASM IP Holding B.V. Substrate processing device
11205585, Jul 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus and method of operating the same
11217444, Nov 30 2018 ASM IP HOLDING B V Method for forming an ultraviolet radiation responsive metal oxide-containing film
11222772, Dec 14 2016 ASM IP Holding B.V. Substrate processing apparatus
11227782, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11227789, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
11230766, Mar 29 2018 ASM IP HOLDING B V Substrate processing apparatus and method
11232963, Oct 03 2018 ASM IP Holding B.V. Substrate processing apparatus and method
11233133, Oct 21 2015 ASM IP Holding B.V. NbMC layers
11242598, Jun 26 2015 ASM IP Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
11244825, Nov 16 2018 ASM IP Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
11251035, Dec 22 2016 ASM IP Holding B.V. Method of forming a structure on a substrate
11251040, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method including treatment step and apparatus for same
11251068, Oct 19 2018 ASM IP Holding B.V. Substrate processing apparatus and substrate processing method
11270899, Jun 04 2018 ASM IP Holding B.V. Wafer handling chamber with moisture reduction
11274369, Sep 11 2018 ASM IP Holding B.V. Thin film deposition method
11282698, Jul 19 2019 ASM IP Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
11286558, Aug 23 2019 ASM IP Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
11286562, Jun 08 2018 ASM IP Holding B.V. Gas-phase chemical reactor and method of using same
11289326, May 07 2019 ASM IP Holding B.V. Method for reforming amorphous carbon polymer film
11295980, Aug 30 2017 ASM IP HOLDING B V Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
11296189, Jun 21 2018 ASM IP Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
11306395, Jun 28 2017 ASM IP HOLDING B V Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
11315794, Oct 21 2019 ASM IP Holding B.V. Apparatus and methods for selectively etching films
11339476, Oct 08 2019 ASM IP Holding B.V. Substrate processing device having connection plates, substrate processing method
11342216, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
11345999, Jun 06 2019 ASM IP Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
11355338, May 10 2019 ASM IP Holding B.V. Method of depositing material onto a surface and structure formed according to the method
11361990, May 28 2018 ASM IP Holding B.V. Substrate processing method and device manufactured by using the same
11374112, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
11378337, Mar 28 2019 ASM IP Holding B.V. Door opener and substrate processing apparatus provided therewith
11387106, Feb 14 2018 ASM IP Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
11387120, Sep 28 2017 ASM IP Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
11390945, Jul 03 2019 ASM IP Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
11390946, Jan 17 2019 ASM IP Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
11390950, Jan 10 2017 ASM IP HOLDING B V Reactor system and method to reduce residue buildup during a film deposition process
11393690, Jan 19 2018 ASM IP HOLDING B V Deposition method
11396702, Nov 15 2016 ASM IP Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
11398382, Mar 27 2018 ASM IP Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
11401605, Nov 26 2019 ASM IP Holding B.V. Substrate processing apparatus
11410851, Feb 15 2017 ASM IP Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
11411088, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
11414760, Oct 08 2018 ASM IP Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
11417545, Aug 08 2017 ASM IP Holding B.V. Radiation shield
11424119, Mar 08 2019 ASM IP HOLDING B V Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
11430640, Jul 30 2019 ASM IP Holding B.V. Substrate processing apparatus
11430674, Aug 22 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
11437241, Apr 08 2020 ASM IP Holding B.V. Apparatus and methods for selectively etching silicon oxide films
11443926, Jul 30 2019 ASM IP Holding B.V. Substrate processing apparatus
11447861, Dec 15 2016 ASM IP HOLDING B V Sequential infiltration synthesis apparatus and a method of forming a patterned structure
11447864, Apr 19 2019 ASM IP Holding B.V. Layer forming method and apparatus
11453943, May 25 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
11453946, Jun 06 2019 ASM IP Holding B.V. Gas-phase reactor system including a gas detector
11469098, May 08 2018 ASM IP Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
11473195, Mar 01 2018 ASM IP Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
11476109, Jun 11 2019 ASM IP Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
11482412, Jan 19 2018 ASM IP HOLDING B V Method for depositing a gap-fill layer by plasma-assisted deposition
11482418, Feb 20 2018 ASM IP Holding B.V. Substrate processing method and apparatus
11482533, Feb 20 2019 ASM IP Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
11488819, Dec 04 2018 ASM IP Holding B.V. Method of cleaning substrate processing apparatus
11488854, Mar 11 2020 ASM IP Holding B.V. Substrate handling device with adjustable joints
11492703, Jun 27 2018 ASM IP HOLDING B V Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11495459, Sep 04 2019 ASM IP Holding B.V. Methods for selective deposition using a sacrificial capping layer
11499222, Jun 27 2018 ASM IP HOLDING B V Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11499226, Nov 02 2018 ASM IP Holding B.V. Substrate supporting unit and a substrate processing device including the same
11501956, Oct 12 2012 ASM IP Holding B.V. Semiconductor reaction chamber showerhead
11501968, Nov 15 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Method for providing a semiconductor device with silicon filled gaps
11501973, Jan 16 2018 ASM IP Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
11515187, May 01 2020 ASM IP Holding B.V.; ASM IP HOLDING B V Fast FOUP swapping with a FOUP handler
11515188, May 16 2019 ASM IP Holding B.V. Wafer boat handling device, vertical batch furnace and method
11521851, Feb 03 2020 ASM IP HOLDING B V Method of forming structures including a vanadium or indium layer
11527400, Aug 23 2019 ASM IP Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
11527403, Dec 19 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
11530483, Jun 21 2018 ASM IP Holding B.V. Substrate processing system
11530876, Apr 24 2020 ASM IP Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
11532757, Oct 27 2016 ASM IP Holding B.V. Deposition of charge trapping layers
11551912, Jan 20 2020 ASM IP Holding B.V. Method of forming thin film and method of modifying surface of thin film
11551925, Apr 01 2019 ASM IP Holding B.V. Method for manufacturing a semiconductor device
11557474, Jul 29 2019 ASM IP Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
11562901, Sep 25 2019 ASM IP Holding B.V. Substrate processing method
11572620, Nov 06 2018 ASM IP Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
11581186, Dec 15 2016 ASM IP HOLDING B V Sequential infiltration synthesis apparatus
11581220, Aug 30 2017 ASM IP Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
11587814, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11587815, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11587821, Aug 08 2017 ASM IP Holding B.V. Substrate lift mechanism and reactor including same
11594450, Aug 22 2019 ASM IP HOLDING B V Method for forming a structure with a hole
11594600, Nov 05 2019 ASM IP Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
11605528, Jul 09 2019 ASM IP Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
11610774, Oct 02 2019 ASM IP Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
11610775, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
11615970, Jul 17 2019 ASM IP HOLDING B V Radical assist ignition plasma system and method
11615980, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
11626308, May 13 2020 ASM IP Holding B.V. Laser alignment fixture for a reactor system
11626316, Nov 20 2019 ASM IP Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
11629406, Mar 09 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
11629407, Feb 22 2019 ASM IP Holding B.V. Substrate processing apparatus and method for processing substrates
11637011, Oct 16 2019 ASM IP Holding B.V. Method of topology-selective film formation of silicon oxide
11637014, Oct 17 2019 ASM IP Holding B.V. Methods for selective deposition of doped semiconductor material
11639548, Aug 21 2019 ASM IP Holding B.V. Film-forming material mixed-gas forming device and film forming device
11639811, Nov 27 2017 ASM IP HOLDING B V Apparatus including a clean mini environment
11643724, Jul 18 2019 ASM IP Holding B.V. Method of forming structures using a neutral beam
11644758, Jul 17 2020 ASM IP Holding B.V. Structures and methods for use in photolithography
11646184, Nov 29 2019 ASM IP Holding B.V. Substrate processing apparatus
11646197, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
11646204, Jun 24 2020 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming a layer provided with silicon
11646205, Oct 29 2019 ASM IP Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
11649546, Jul 08 2016 ASM IP Holding B.V. Organic reactants for atomic layer deposition
11658029, Dec 14 2018 ASM IP HOLDING B V Method of forming a device structure using selective deposition of gallium nitride and system for same
11658030, Mar 29 2017 ASM IP Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
11658035, Jun 30 2020 ASM IP HOLDING B V Substrate processing method
11664199, Oct 19 2018 ASM IP Holding B.V. Substrate processing apparatus and substrate processing method
11664245, Jul 16 2019 ASM IP Holding B.V. Substrate processing device
11664267, Jul 10 2019 ASM IP Holding B.V. Substrate support assembly and substrate processing device including the same
11674220, Jul 20 2020 ASM IP Holding B.V. Method for depositing molybdenum layers using an underlayer
11676812, Feb 19 2016 ASM IP Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
11680839, Aug 05 2019 ASM IP Holding B.V. Liquid level sensor for a chemical source vessel
11682572, Nov 27 2017 ASM IP Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
11685991, Feb 14 2018 ASM IP HOLDING B V ; Universiteit Gent Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
11688603, Jul 17 2019 ASM IP Holding B.V. Methods of forming silicon germanium structures
11694892, Jul 28 2016 ASM IP Holding B.V. Method and apparatus for filling a gap
11695054, Jul 18 2017 ASM IP Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
11705333, May 21 2020 ASM IP Holding B.V. Structures including multiple carbon layers and methods of forming and using same
11718913, Jun 04 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Gas distribution system and reactor system including same
11725277, Jul 20 2011 ASM IP HOLDING B V Pressure transmitter for a semiconductor processing environment
11725280, Aug 26 2020 ASM IP Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
11735414, Feb 06 2018 ASM IP Holding B.V. Method of post-deposition treatment for silicon oxide film
11735422, Oct 10 2019 ASM IP HOLDING B V Method of forming a photoresist underlayer and structure including same
11735445, Oct 31 2018 ASM IP Holding B.V. Substrate processing apparatus for processing substrates
11742189, Mar 12 2015 ASM IP Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
11742198, Mar 08 2019 ASM IP Holding B.V. Structure including SiOCN layer and method of forming same
11746414, Jul 03 2019 ASM IP Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
11749562, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
11767589, May 29 2020 ASM IP Holding B.V. Substrate processing device
11769670, Dec 13 2018 ASM IP Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
11769682, Aug 09 2017 ASM IP Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
11776846, Feb 07 2020 ASM IP Holding B.V. Methods for depositing gap filling fluids and related systems and devices
11781221, May 07 2019 ASM IP Holding B.V. Chemical source vessel with dip tube
11781243, Feb 17 2020 ASM IP Holding B.V. Method for depositing low temperature phosphorous-doped silicon
11795545, Oct 07 2014 ASM IP Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
11798830, May 01 2020 ASM IP Holding B.V. Fast FOUP swapping with a FOUP handler
11798834, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
11798999, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
11802338, Jul 26 2017 ASM IP Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
11804364, May 19 2020 ASM IP Holding B.V. Substrate processing apparatus
11804388, Sep 11 2018 ASM IP Holding B.V. Substrate processing apparatus and method
11810788, Nov 01 2016 ASM IP Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
11814715, Jun 27 2018 ASM IP Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11814747, Apr 24 2019 ASM IP Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
11821078, Apr 15 2020 ASM IP HOLDING B V Method for forming precoat film and method for forming silicon-containing film
11823866, Apr 02 2020 ASM IP Holding B.V. Thin film forming method
11823876, Sep 05 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus
11827978, Aug 23 2019 ASM IP Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
11827981, Oct 14 2020 ASM IP HOLDING B V Method of depositing material on stepped structure
11828707, Feb 04 2020 ASM IP Holding B.V. Method and apparatus for transmittance measurements of large articles
11830730, Aug 29 2017 ASM IP HOLDING B V Layer forming method and apparatus
11830738, Apr 03 2020 ASM IP Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
11837483, Jun 04 2018 ASM IP Holding B.V. Wafer handling chamber with moisture reduction
11837494, Mar 11 2020 ASM IP Holding B.V. Substrate handling device with adjustable joints
11840761, Dec 04 2019 ASM IP Holding B.V. Substrate processing apparatus
11848200, May 08 2017 ASM IP Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
11851755, Dec 15 2016 ASM IP Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
11866823, Nov 02 2018 ASM IP Holding B.V. Substrate supporting unit and a substrate processing device including the same
11873557, Oct 22 2020 ASM IP HOLDING B V Method of depositing vanadium metal
11876008, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11876356, Mar 11 2020 ASM IP Holding B.V. Lockout tagout assembly and system and method of using same
11885013, Dec 17 2019 ASM IP Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
11885020, Dec 22 2020 ASM IP Holding B.V. Transition metal deposition method
11885023, Oct 01 2018 ASM IP Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
11887857, Apr 24 2020 ASM IP Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
11891696, Nov 30 2020 ASM IP Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
11898242, Aug 23 2019 ASM IP Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
11898243, Apr 24 2020 ASM IP Holding B.V. Method of forming vanadium nitride-containing layer
11901175, Mar 08 2019 ASM IP Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
11901179, Oct 28 2020 ASM IP HOLDING B V Method and device for depositing silicon onto substrates
11908684, Jun 11 2019 ASM IP Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
11908733, May 28 2018 ASM IP Holding B.V. Substrate processing method and device manufactured by using the same
11915929, Nov 26 2019 ASM IP Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
8919756, Aug 28 2008 Tokyo Ohka Kogyo Co., Ltd. Substrate processing system, carrying device, and coating device
9002494, Sep 07 2010 Tokyo Electron Limited Substrate transfer method and storage medium
9214372, Aug 28 2008 Tokyo Ohka Kogyo Co., Ltd. Substrate processing system, carrying device and coating device
D876504, Apr 03 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Exhaust flow control ring for semiconductor deposition apparatus
D900036, Aug 24 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Heater electrical connector and adapter
D903477, Jan 24 2018 ASM IP HOLDING B V Metal clamp
D913980, Feb 01 2018 ASM IP Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
D922229, Jun 05 2019 ASM IP Holding B.V. Device for controlling a temperature of a gas supply unit
D930782, Aug 22 2019 ASM IP Holding B.V. Gas distributor
D931978, Jun 27 2019 ASM IP Holding B.V. Showerhead vacuum transport
D935572, May 24 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Gas channel plate
D940837, Aug 22 2019 ASM IP Holding B.V. Electrode
D944946, Jun 14 2019 ASM IP Holding B.V. Shower plate
D947913, May 17 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Susceptor shaft
D948463, Oct 24 2018 ASM IP Holding B.V. Susceptor for semiconductor substrate supporting apparatus
D949319, Aug 22 2019 ASM IP Holding B.V. Exhaust duct
D965044, Aug 19 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Susceptor shaft
D965524, Aug 19 2019 ASM IP Holding B.V. Susceptor support
D975665, May 17 2019 ASM IP Holding B.V. Susceptor shaft
D979506, Aug 22 2019 ASM IP Holding B.V. Insulator
D980813, May 11 2021 ASM IP HOLDING B V Gas flow control plate for substrate processing apparatus
D980814, May 11 2021 ASM IP HOLDING B V Gas distributor for substrate processing apparatus
D981973, May 11 2021 ASM IP HOLDING B V Reactor wall for substrate processing apparatus
ER3967,
ER4489,
ER6015,
ER6328,
ER8750,
Patent Priority Assignee Title
5239182, Apr 19 1991 Tokyo Electron Limited Wafer conveyor apparatus and method for detecting inclination of wafer inside cassette
5308993, Mar 28 1993 Avalon Engineering, Inc. Semiconductor wafer cassette mapper having dual vertical column of light emitting apertures and a single vertical column of light receiving apertures
5319216, Jul 26 1991 Tokyo Electron Limited Substrate detector with light emitting and receiving elements arranged in staggered fashion and a polarization filter
5407181, Nov 26 1992 Tokyo Electron Limited Vertical heat treating device
5609459, Jul 06 1995 Brooks Automation, Inc Door drive mechanisms for substrate carrier and load lock
5772386, Mar 28 1995 Brooks Automation GmbH Loading and unloading station for semiconductor processing installations
6042324, Mar 26 1999 ASM America, Inc. Multi-stage single-drive FOUP door system
6050891, Feb 06 1998 Applied Materials, Inc. Vacuum processing system with turbo-axial fan in clean-air supply system of front end environment
6057662, Feb 25 1998 Applied Materials, Inc Single motor control for substrate handler in processing system
6071059, Mar 28 1995 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Loading and unloading station for semiconductor processing installations
6074154, Aug 29 1996 Tokyo Electron Limited Substrate treatment system, substrate transfer system, and substrate transfer method
6142722, Jun 17 1998 GENMARK AUTOMATION, INC Automated opening and closing of ultra clean storage containers
6247245, Nov 18 1998 Tokyo Electron Limited Processing unit for substrate manufacture
6375403, Mar 28 1995 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Loading and unloading station for semiconductor processing installations
6425722, Aug 29 1996 Tokyo Electron Limited Substrate treatment system, substrate transfer system, and substrate transfer method
6461094, Mar 28 1995 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Loading and unloading station for semiconductor processing installations
6481945, Jun 05 1998 ASM IP HOLDING B V Method and device for transferring wafers
6609876, Mar 28 1995 BROOKS AUTOMATION HOLDING, LLC; Brooks Automation US, LLC Loading and unloading station for semiconductor processing installations
JP10125763,
JP10256346,
JP11204617,
JP11214483,
JP11251392,
JP11251421,
JP1131729,
JP11345854,
JP11354602,
JP200012670,
JP2000150400,
KR1998080191,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 15 2010HITACHI KOKUSAI ELECTRIC INC.(assignment on the face of the patent)
Oct 04 2018Hitachi Kokusai Electric IncKOKUSAI ELECTRIC CORPORATIONASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0470820912 pdf
Date Maintenance Fee Events
Mar 22 2012ASPN: Payor Number Assigned.
Apr 22 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 13 20144 years fee payment window open
Jun 13 20156 months grace period start (w surcharge)
Dec 13 2015patent expiry (for year 4)
Dec 13 20172 years to revive unintentionally abandoned end. (for year 4)
Dec 13 20188 years fee payment window open
Jun 13 20196 months grace period start (w surcharge)
Dec 13 2019patent expiry (for year 8)
Dec 13 20212 years to revive unintentionally abandoned end. (for year 8)
Dec 13 202212 years fee payment window open
Jun 13 20236 months grace period start (w surcharge)
Dec 13 2023patent expiry (for year 12)
Dec 13 20252 years to revive unintentionally abandoned end. (for year 12)