A method of synchronizing and reconfiguring configurable elements in a programmable unit is provided. A unit has a two- or multi-dimensional, programmable cell architecture (e.g., DFP, DPGA, etc.), and any configurable element can have access to a configuration register and a status register of the other configurable elements via an interconnection architecture and can thus have an active influence on their function and operation. By making synchronization the responsibility of each element, more synchronization tasks can be performed at the same time because independent elements no longer interfere with each other in accessing a central synchronization instance.

Patent
   RE44365
Priority
Feb 08 1997
Filed
Oct 21 2010
Issued
Jul 09 2013
Expiry
Oct 08 2017
Assg.orig
Entity
unknown
0
786
EXPIRED
0. 2. A runtime configurable processor comprising:
a plurality of configurable elements arranged in an array of more than one dimension, at least some of the plurality of configurable elements including an arithmetic logic unit, a configuration with respect to at least one of a function and an interconnection of at least one of the at least some configurable elements being reconfigurable at runtime in response to configuration data;
at least one multiplexer adapted to determine the at least one of the function and the interconnection in response to a state machine, which is adapted to control the at least one multiplexer; and
at least one storage component adapted for storing said configuration data;
wherein the at least one storage component:
is provided in the array; and
is selectively connectable to at least one of the at least some configurable elements via the at least one multiplexer so as to allow for the runtime reconfiguration.
0. 8. A runtime configurable processor comprising:
a plurality of configurable elements arranged in an array of more than one dimension, at least some of the plurality of configurable elements including an arithmetic logic unit, a configuration of at least one of a function and an interconnection of at least one of the at least some configurable elements being redeterminable at runtime in response to configuration select information;
a multiplexer arrangement adapted for determining said at least one of the function and the interconnection in response to said configuration select information;
at least one storage component adapted to store configuration data and provided in the array, wherein:
the at least one storage component is selectively connectable to at least one of the at least some configurable elements via at least one multiplexer of said multiplexer arrangement so as to allow for the runtime configuration redetermination, configuration select information being pipelined through said array; and
the at least one multiplexer receives configuration select information from said pipeline; and
a state machine being provided to control the at least one multiplexer.
0. 17. A method for synchronizing data processing in a runtime configurable processor, the runtime reconfigurable processor comprising: a plurality of configurable elements arranged in an array of more than one dimension, at least some of the plurality of configurable elements including an arithmetic logic unit, a configuration of at least one of a function and an interconnection of at least one of the at least some configurable elements being redeterminable at runtime in response to configuration data; and at least one storage component for the configuration data, the at least one storage component being provided in the array, the method comprising the steps of:
processing data by the configurable elements;
propagating processed data through the array;
generating, by at least one of the configurble elements, at least one configuration select information signal in the array according to data being processed;
propagating the at least one configuration select information signal in a pipelined manner, the propagation of the configuration select information signal being synchronous to the propagation of the processed data; and
using the propagated configuration select information signal to one of trigger a certain action in data processing and put the at least one of the configurable elements in a certain state.
0. 1. A method for controlling data processing by an integrated circuit that includes a plurality of data processing elements that are arranged for at least one of arithmetically and logically processing data using a sequence of commands, the sequence including jumps, the method comprising:
for each of a plurality of the processing elements that each include at least one corresponding register:
predefining at least one corresponding configuration command; and
storing each of the at least one corresponding configuration command in one of the at least one register corresponding to the processing element;
processing data in at least one first processing element;
obtaining at least one of a comparison, a sign, a carry-over, and an error state during the processing of the data in the at least one first processing element;
in response to the at least one of the comparison, the sign, the carry-over, and the error state, generating for the at least one second processing element at least one first synchronization signal within a data stream during runtime;
processing data in at least one second processing element in a stream-like manner; and
in response to the at least one first synchronization signal, selecting at least one particular command from the stored configuration commands in order to control a jump in the sequence.
0. 3. The runtime configurable processor of claim 2, wherein the state machine is adapted to control the at least one multiplexer in response to received trigger signals.
0. 4. The runtime configurable processor of claim 3, wherein the received trigger signals are generated in the array.
0. 5. The runtime configurable processor of claim 3, wherein the received trigger signals are generated in the array by at least one of a counter and a comparator implemented in at least one of the configurable elements.
0. 6. The runtime configurable processor of claim 4, wherein the received trigger signals are generated in the array by a counter implemented in at least one of the configurable elements.
0. 7. The runtime configurable processor of claim 6, wherein the received trigger signals are multibit trigger signals generated by at least one of the configurable elements.
0. 9. The runtime configurable processor of claim 8, wherein the configuration select information is pipelined along with the data to be processed via a configurable interconnection system.
0. 10. The runtime configurable processor of claim 9, wherein the pipeline is adapted to transfer trigger signals as configuration select information via the configurable interconnection system.
0. 11. The runtime configurable processor of claim 9, wherein the pipeline is adapted to transfer one bit trigger signals as configuration select information via the configurable interconnection system.
0. 12. The runtime configurable processor of any of claims 8 to 11, wherein the state machine is adapted to control the at least one multiplexer in response to received trigger signals.
0. 13. The runtime configurable processor of claim 12, wherein the received trigger signals are generated in the array.
0. 14. The runtime configurable processor of claim 12, wherein the received trigger signals are generated in the array by at least one of a counter and a comparator.
0. 15. The runtime configurable processor of claim 12, wherein the received trigger signals are generated in the array by a counter.
0. 16. The runtime configurable processor of claim 15, wherein the received trigger signals are multibit trigger signals.
0. 18. The method of claim 17, wherein the propagated configuration select information signal is used to determine that at least one of: data is to be processed in continuous manner; data is to be processed in a single step manner; data is not to be processed; and a configuration is to be changed.
0. 19. The method of claim 17 or claim 18, wherein at least one configuration select information signal is pipelined downstream together with at least some of the data being processed.
0. 20. The method of claim 17 or claim 18, wherein the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data.
0. 21. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed; and
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data.
0. 22. The method of claim 17 or claim 18, wherein a configuration select information signal is generated in the array by a counter.
0. 23. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed; and
a configuration select information signal is generated in the array by a counter.
0. 24. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data; and
a configuration select information signal is generated in the array by a counter.
0. 25. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data; and
a configuration select information signal is generated in the array by a counter.
0. 26. The method of claim 17 or claim 18, wherein a configuration select information signal is generated in the array by a comparator.
0. 27. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed; and
a configuration select information signal is generated in the array by a comparator.
0. 28. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data; and
a configuration select information signal is generated in the array by a comparator.
0. 29. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data; and
a configuration select information signal is generated in the array by a comparator.
0. 30. The method of claim 17 or claim 18, wherein a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator.
0. 31. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed; and
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator.
0. 32. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data; and
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator.
0. 33. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data; and
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator.
0. 34. The method of claim 17 or claim 18, wherein:
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 35. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 36. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 37. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 38. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 39. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 40. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 41. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data is are selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 42. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 43. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 44. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 45. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 46. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 47. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 48. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 49. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals.
0. 50. The method of claim 17 or claim 18, wherein:
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 51. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 52. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 53. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 54. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 55. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 56. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 57. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 58. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 59. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 60. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 61. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 62. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 63. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 64. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 65. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received trigger signals which were generated in the array.
0. 66. The method of claim 17 or claim 18, wherein:
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 67. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 68. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 69. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 70. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 71. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 72. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 73. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 74. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 75. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 76. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 77. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 78. The method of claim 17 or claim 18, wherein:
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 79. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 80. The method of claim 17 or claim 18, wherein:
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.
0. 81. The method of claim 17 or claim 18, wherein:
at least one configuration select information signal is pipelined downstream together with at least some of the data being processed;
the propagated configuration select information signal is used to change a configuration during runtime of the processor and while at least another element of the configurable elements processes data;
a configuration select information signal is generated in the array by a counter and a configuration select information signal is generated in the array by a comparator;
the at least one storage component stores configuration data and is selectively connected to at least one of the at least some configurable elements via at least one multiplexer in a manner to allow for the runtime configuration redetermination; and
a state machine is provided to control the at least one multiplexer used to allow for the runtime configuration redetermination, the control being in response to received multibit trigger signals which were generated in the array.

This application is a divisional reissue of U.S. Reissue patent application Ser. No. 12/109,280, filed on Apr. 24, 2008, which is a reissue application of U.S. patent application Ser. No. 10/379,403, filed on Mar. 4, 2003, now U.S. Pat. No. 7,036,036, which is a continuation of U.S. patent application Ser. No. 09/369,653, filed Aug. 6, 1999, now U.S. Pat. No. 6,542,998, which is a continuation-in-part of PCT/DE98/00334, filed on Feb. 7, 1998 and is a continuation-in-part of U.S. patent application Ser. No. 08/946,812, filed on Oct. 8, 1997, now U.S. Pat. No. 6,081,903, and claims the benefit of the priority date dates of these cases under 35 U.S.C. §120, each of which is expressly incorporated herein by reference in its entirety. This application also claims the benefit, under 35 U.S.C. §119, of the priority date of German Application No. DE 19704728.9, filed on Feb. 8, 1997, under 35 U.S.C. §119, which is expressly incorporated herein by reference in its entirety. Further, more than one reissue application of U.S. Pat. No. 7,036,036 has been filed. Specifically, the reissue applications are application Ser. No. 12/109,280, application Ser. No. 12/909,061, application Ser. No. 12/909,150, and application Ser. No. 12/909,203, the latter three of which were all filed on Oct. 21, 2010 as divisional reissue applications of application Ser. No. 12/109,280.

Synchronization of configurable elements of today's modules, e.g., field programmable gate arrays (“FPGAs”), dynamically progammable gate arrays (“DPGAs”), etc., is usually accomplished using the clock of the module. This type of time-controlled synchronization poses many problems because it is often not known in advance how much time is needed for a task until a final result is available. Another problem with time-controlled synchronization is that the event on which the synchronization is based is not triggered by the element to be synchronized itself but rather by an independent element. In this case, two different elements are involved in the synchronization. This leads to a considerably higher administrative complexity.

European Patent No. 0 726 532 describes a method of controlling data flow in SIMD machines composed of several processors arranged as an array. An instruction is sent to all processors which dynamically, selects the target processor of a data transfer. The instruction is sent by a higher-level instance to all processors (broadcast instruction) and includes a destination field and a target field. The destination field controls a unit in the processor element to dynamically determine the neighboring processor element to which the result is to be sent. The operand register of another processor element in which another result is to be stored is dynamically selected with the target field.

The present invention relates to a method which permits self-synchronization of elements to be synchronized. Synchronization is neither implemented nor managed by a central entity. By shifting synchronization into each element, more synchronization tasks can also be performed simultaneously, because independent elements no longer interfere with one another when accessing the central synchronization entity.

In accordance with an example embodiment of the present invention, in a module, e.g., a data flow processor (“DFP”) or a DPGA, with a two- or multi-dimensionally arranged programmable cell structure, each configurable element can access the configuration and status register of other configurable elements over an interconnecting structure and thus can have an active influence on their function and operation. A matrix of such cells is referred to below as a processing array (PA). The configuration can thus be accomplished by a load logic from the PA in addition to the usual method.

FIG. 1 shows how a loop construct can be implemented by using triggers, in accordance with an example embodiment of the present invention.

FIG. 2 shows how a comparison construct can be implemented by using multiple triggers, according to an example embodiment of the present invention.

FIG. 3 shows how a comparison construct with multiple outputs can be implemented by using multiple triggers and interleaving them, according to an example embodiment of the present invention.

FIG. 4 shows the required expansions, according to an example embodiment of the present invention, in comparison with conventional FPGAs and DFPs.

FIGS. 5a-5d show an example of the selection of different functions of the configurable elements by, triggers, according to the present invention.

FIGS. 6 and 6a show an implementation of multiple configuration registers controlled by triggers for executing different functions, according to an example embodiment of the present invention.

FIGS. 7a and 7b shows an implementation of the method from FIG. 6 in microprocessors, according to an example embodiment of the present invention.

The present invention provides a module which is freely programmable during the running time and can also be reconfigured during the running time. Configurable elements on the chip have one or more configuration registers for different functions. Both read and write access to these configuration registers is permitted. In the method described here, it is assumed that a configuration can be set in an element to be configured for the following information.

A cell is configured by a command which determines the function of the cell to be executed. In addition, configuration data is entered to set the interconnection with other cells and the contents of the status register. After this operation, the cell is ready for operation.

To permit flexible and dynamic cooperation of many cells, each cell can have read or write access to all the configuration registers of another cell. Which of the many configuration registers is accessed by reading or writing is specified by the type of command with which the cell has been configured. Each command that can be executed by the cell exists in as many different types of addressing as there are different independent configuration registers in an element to be configured.

Example: A cell has the configuration register described above (interconnection, command and status) and is to execute the command ADD which performs an addition. It is then possible to select through the various types of ADD command where the result of this function is to be transferred.

Control and Synchronization Trigger: In addition to the result, each cell can generate a quantity of trigger signals. The trigger signals need not necessarily be transferred to the same target cell as the result of processing the configured command. One trigger signal or a combination of multiple trigger signals triggers a certain action in the target cell or puts the cell in a certain state. A description of the states is also to be found in the text below. The following are examples of trigger signals:

Due to the possibility of indicating in the processing cell into which register of the target cell the result is to be entered and which type of trigger signal is to be generated, a quantity of management data can be generated from a data stream. This management data is not a result of the actual task to be processed by the chip, but instead it serves only the functions of management, synchronization, optimization, etc. of the internal state.

Each cell can assume the following states which are represented by suitable coding in the status register, for example:

Due to these various states and the possibility of read and write access to the various registers of a cell, each cell can assume an active administrative role. In contrast with that, all existing modules of this type have a central management entity which must always know and handle the entire state of the module.

To achieve greater flexibility, there is another class of commands which change types after the first execution. Based on the example of the ADD command, a command is then as follows:

This possibility can be expanded as desired, so that even commands of the type ADD-C-V-A-C- . . . -B are conceivable. Each command can assume all permutated combinations of the various types of addressing and triggers.

Reconfiguration Control by RECONFIG Trigger: In the previous method, each element to be configured received a RECONFIG trigger from an external entity to enter the “reconfigurable” state. This had the disadvantage that distribution of the RECONFIG trigger necessitated a considerable interconnection and configuration expense: Due to the structure of the interconnection, this disadvantage can be eliminated. All configurable elements which are related by the interconnecting information represent a directional graph. Such a graph may have multiple roots (sources) and multiple leaves (targets). The configurable elements are expanded so that they propagate an incoming RECONFIG trigger in the direction of either their outgoing registers, their ingoing registers or a combination thereof. Due to this propagation, all the configurable elements that are directly connected to the configurable element also receive the RECONFIG trigger.

A configuration (graph) can be brought completely into the “reconfigurable” state by sending a RECONFIG trigger to all the roots and propagating the RECONFIG trigger in the direction of the output registers. The quantity of roots in a graph to which a RECONFIG trigger must be sent is considerably smaller than the total quantity of nodes in the graph. This greatly minimizes the complexity. Of course, a RECONFIG trigger may also be sent to all leaves. In this case, the RECONFIG trigger is propagated in the direction of the input registers.

Due to the use of both options or a combination of both methods, a minimum quantity of configurable elements to which a RECONFIG trigger must be sent can be calculated.

The configurable elements can receive an addition record to their status register, indicating whether or not an incoming RECONFIG trigger is to be propagated. This information is needed when two or more different graphs are connected at one or more points (i.e., they have a transition) and it is not desirable for one of the other graphs to enter the “reconfigurable” state. One or more configurable elements thus behave like a lock.

In addition, the status register can be expanded so that an additional entry indicates the direction in which an incoming RECONFIG trigger is to be relayed.

The method described here can be applied to all types of triggers and/or data. In this way, it is possible to establish an automatic distribution hierarchy needing very few access opportunities from the outside to set it in operation.

Implementation of Multiple Functions Simultaneously in the Same Configurable Elements

Basic Function and Required Triggers: An especially complex variant of calling up various macros by a condition is presented below: In execution of a condition (IF COMP THEN A ELSE B; where COMP is a comparison, and A and B are operations to be executed), no GO and STOP triggers are generated. Instead, a trigger vector (TRIGV) is generated, indicating to which result the comparison COMP has led. The trigger vector can therefore assume the states “equal,” “greater” or “less.”

The vector is sent to a following cell which selects exactly a certain configuration register (corresponding to A or B) from a plurality of configuration registers on the basis of the state of the vector. What this achieves is that, depending on the result of the preceding comparison, another function is performed over the data. States such as “greater-equal,” “less-equal” and “equal-not equal” are triggered by writing the same configuration data to two configuration registers. For example, with “greater-equal” the configuration register “greater” and the configuration register “equal” are written with the same configuration word, while the configuration register “less” contains another configuration word.

In implementating trigger vectors TRIGV, no restriction to the states “greater,” “less” and “equal” is necessary. To analyze large “CASE . . . OF” constructs, any number n representing the state of the CASE may be relayed as trigger vectors TRIGV-m to the downstream cell(s). In other words, n indicates the comparison within the CASE which was correct in analysis of the applied data. For implementation of the function assigned to the comparison within the CASE, n is relayed to the executing cells to select the corresponding function. Although the cells need at least three configuration registers in the “greater/less/equal” case, the number of configuration registers must correspond exactly to at least the maximum value of n (max (n)) when using TRIGV-m.

Propagation of the Required Function by Triggers: TRIGV/TRIGV-m are sent to the first cell processing the data. In this cell, TRIGV/TRIGV-M are analyzed and the data is processed accordingly. TRIGV/TRIGV-m are relayed (propagated) together with the data to the downstream cells. They are propagated to all cells executing a certain function on the basis of the analysis (IF or CASE). Propagation is linked directly to propagation of data packages, i.e., propagation is synchronous with the data. TRIGV/TRIGV-m generated at time t are linked to data present at time t at first processing cells CELLS1 (see FIG. 5: 0502, 0505, 0507). TRIG/TRIG-V are propagated so that the vectors are applied to the second processing cells with the data at time t+1, and at time t+2 they are applied to the third processing cells, etc., until TRIG/TRIG-V and the data are present at time t+m to the (m−1)th cells and at the same time to the last cells which depend on the comparison IF/CASE triggered by TRIG/TRIG-V.

A link is by no means such that the TRIG/TRIG-V generated at time t are linked to data applied to CELLS1 at time told<t.

Reacting to the Presence or Absence of Triggers: In special cases, it is necessary to react to the absence of a trigger, i.e., a trigger state occurs, but no change in trigger vector is initiated. Appropriate and important information can also be transferred to the downstream cells in this case. For example, in a comparison of “greater,” “less,” “equal,” the trigger signal “equal” is not present and does not change when switching from the state “less” to the state “greater.” Nevertheless, the absence of “equal” does contain information, namely “not equal.”

To be able to react to both states “present” and “not present,” an entry in the configuration register of the cell is added, indicating which of the states is to be reacted to.

Furthermore, a signal TRIGRDY indicating the presence of a trigger is added to trigger vector TRIGV representing states “equal,” “greater” and “less.” This is necessary because the state “not present” on one of the vectors does not provide any more information regarding the presence of a trigger per se.

TRIGRDY can be used as a handshake protocol between the transmitting cell and the receiving cell by having the receiving cell generate a TRIGACK as soon as it has analyzed the trigger vectors. Only after arrival of TRIGACK does the transmitting cell cancel the trigger state.

On the basis of an entry into the configuration register, a determination is made as to whether to wait for receipt of a TRIGACK or whether the trigger channel is to proceed unsynchronized when a trigger vector is sent out.

Use in Microprocessors

In microprocessors of the most recent architecture, conditional jumps are no longer executed by the known method of branch prediction, i.e., prediction of a jump. Speculative prediction of jumps introduced to increase processor performance calculated jumps in advance on the basis of speculative algorithms and had to reload the entire processor pipeline if the calculations were faulty, which led to a considerable loss of power.

To eliminate these losses, the new predicate/NOP method was introduced. A status flag one bit wide is assigned to each command, indicating whether the command is to be executed—or not. There may be any desired quantity of status flags. Commands are assigned to status flags by a compiler during the translation of the code. The status flags are managed by comparison operations assigned to them at the time of execution and indicate the result of the respective comparison.

Depending on the state of a status flag assigned to a command, the command is then executed by the processor (if the status flag indicates “execute”) or the command is not executed and is replaced by an NOP (if the status flag indicates “not execute”). NOP stands for “No OPERATION,” which means that the processor does not execute any operation in this cycle. Therefore, the cycle is lost for meaningful operations.

Two options are proposed for optimizing the cycle loss:

Multiple Command Registers per Computer Unit: A modern microprocessor has several relatively independent processors.

According to the trigger principle presented here, the individual processors are each equipped with several command registers, with a command register of a processor of a microprocessor being synonymous with a configuration register according to conventional FPGA, DFP, etc. modules. The respective active command register is selected

a) on the basis of trigger vectors generated by other processors on the basis of comparisons,

b) on the basis of multibit status flags (hereinafter referred to as status vectors) allocated to compare commands according to today's related art method.

Revised VLIW Command Set: One special embodiment is possible through VLIW command sets. Thus, several possible commands depending on one comparison can be combined to give one command within one command word. A VLIW word of any width is subdivided into any desired quantity of commands (codes). Each individual one of these codes is referenced by a trigger vector or a status vector. This means that one of the existing codes is selected from the VLIW word and processed during the running time.

The table illustrates a possible VLIW word with four codes referenced by a 2-bit trigger vector or a 2-bit status flag:

VLIW Command Word:

Code 0 Code 1 Code 2 Code 3

Assignment:

Trigger Vector/Status Flag:

00 01 10 11

Expansion of Hardware in Comparison with Conventional FPGAs and DFPs.

Additional Registers: A status register and a configuration register are added to the configuration registers conventionally used in DFPs. Both registers are controlled by the PLU bus and have a connection to the state machine of the sequence control system of the respective cell.

Change in PLU Bus: The configurable registers M-/F-PLUREG in FPGAs and DFPs are managed exclusively over the PLU bus, which represents the connection to the load logic. To guarantee the function according to the present invention, an additional access option must be possible through the normal system bus between the cells. The same thing is true for the new status register and configuration register.

The only part of the system bus relevant for the registers is the part that is interconnected to the PAE over the BM UNIT, i.e., the interface between the system buses and the PAE. Therefore, the bus is relayed from the BM UNIT to the registers where upstream multiplexers or upstream gates are responsible for switching between the PLU bus and the system bus relevant for the PAE. The multiplexers or gates are switched so that they always switch the system bus relevant for the PAE through, except after resetting the module (RESET) or when the RECONFIG trigger is active.

Expansions of Configurable Elements (PAEs) with Respect to Conventional FPGAs and DFPs: Trigger Sources: A configurable element can receive triggers from several sources at the same time. Due to this possibility, flexible semantics of the triggers can be achieved with the help of masking registers.

Multiple Configuration Registers: Instead of one configuration register, a PAE has multiple (max(n)) configuration registers.

Configuration State Machine and Multiplexer: Downstream from the configuration registers is a multiplexer which selects one of the possible configurations.

The multiplexer is controlled by a separate state machine or a state machine integrated into the PAE state machine, controlling the multiplexer on the basis of incoming trigger vectors.

Trigger Analysis and Configuration: A configurable element may contain a masking register in which it is possible to set the trigger inputs to which a trigger signal must be applied, so that the conditions for an action of the configurable element are met. A configurable element reacts not only to a trigger, but also to a set combination of triggers. In addition, a configurable element can perform prioritization of simultaneously incoming triggers.

Incoming triggers are recognized on the basis of the TRIGRDY signal. The trigger vectors are analyzed here according to configuration data also present in the configuration registers.

Trigger Handshake: As soon as the trigger vectors have been analyzed, a TRIGACK is generated for confirmation of the trigger vector.

BM UNIT: The BM UNIT is expanded so that it relays triggers coming from the bus to the sync unit and SM unit according to the configuration in M-PLUREG. Triggers generated by the EALU (e.g., comparator values “greater,” “less,” “equal,” 0 detectors, plus and minus signs, carry-overs, error states (division by 0, etc.), etc.) are relayed from the BM UNIT to the bus according to the wiring information in M-PLUREG.

Expansions of System Bus: The system bus, i.e., the bus system between the cells (PAEs), is expanded so that information is transferred together with the data over the target register. This means that an address which selects the desired register on receipt of the data is also sent. Likewise, the system bus is expanded by the independent transfer of trigger vectors and trigger handshakes.

FIG. 1 shows how a loop construct can be implemented by using triggers. In this example, a macro 0103 is to be executed 70 times. One execution of the macro takes 26 clock cycles. This means that counter 0101 may be decremented by one increment only once in every 26 clock cycles. One problem with freely programmable modules is that it is not always possible to guarantee that processing of macro 0103 will actually be concluded after 26 clock cycles. For example, a delay may occur due to the fact that a macro which is to supply the input data for macro 0103 may suddenly require 10 more clock cycles. For this reason, the cell in macro 0103 sends a trigger signal to counter 0101, causing the result of the calculation to be sent to another macro. At the same time, processing of macro 0103 by the same cell is stopped. This cell “knows” exactly that the condition for termination of a calculation has been reached.

In this case the trigger signal sent is a STEP trigger, causing counter 0101 to execute its configured function once. The counter decrements its count by one and compares whether it has reached a value of 0. If this is not the case, a GO trigger is sent to macro 0103. This GO trigger signal causes macro 0103 to resume its function.

This process is repeated until counter 0101 has reached a value of 0. In this case, a trigger signal is sent to macro 0102, where it triggers a function.

A very fine synchronization can be achieved due to this interaction of triggers.

FIG. 2 shows how a comparison construct can be implemented by using multiple triggers. FIG. 2 corresponds to the basic idea of FIG. 1. However, in this case the function in element 0202 is not a counter but a comparator. Macro 0201 also sends a comparison value to comparator 0202 after each processing run. Depending on the output of the comparison, different triggers are again driven to prompt an action in macros 0203, for example. The construct implemented in FIG. 2 corresponds to that of an IF query in a programming language.

FIG. 3 shows how a comparison construct with multiple outputs can be implemented by using multiple triggers and interleaving them. Here, as in FIG. 2, several comparators 0301, 0302 are used here to implement construction of an IF-ELSE-ELSE construct (or multiple choice). Due to the use of a wide variety of types of triggers and connections of these triggers to macros 0303, 0304, very complex sequences can be implemented easily.

FIG. 4 shows an example of some of the differences between the present invention and, for example, conventional FPGAs and DFPs. Additional configuration register 0401 and additional status register 0402 are connected to the SM UNIT over bus 0407. Registers 0401, 0402, F-PLUREG and M-PLUREG are connected to a gate 0403 by an internal bus 0206. Depending on position, this gate connects internal bus 0406 to PLU bus 0405 to permit configuration by the PLU or to the BM UNIT by a bus 0408. Depending on the address on data bus 0404, the BM UNIT relays the data to the O-REG or to addressed register 0401, 0402, F-PLUREG or M-PLUREG.

BM UNIT 0411 sends trigger signals over 0415 to SYNC UNIT 0412. 0411 receives results from the EALU over 0414 (“equal,” “greater,” “less,” “result=0,” “result positive,” “result negative,” carry-over (positive and negative), etc.) to convert the results into trigger vectors. As an alternative, states generated by the SYNC UNIT or the STATE MACHINE can be relayed to the BM UNIT over 0415.

The trigger signals transmitted by the BM UNIT to bus 0404 can be used there as STEP/STOP/GO triggers, RECONFIG triggers or for selecting a configuration register, depending on the configuration of the configurable elements to be analyzed. Which function a generated trigger will execute in the configurable elements to be analyzed is determined by interconnection 0404 and the configuration of the respective configurable element. One and the same trigger may have different functions with different configurable elements. 0416 is the result output of R-REGsft to bus system 0404 and the following configurable elements.

FIG. 5 shows the time response between generated triggers and the configuration registers selected by the triggers as an example. 0501 generates by comparison a trigger vector TRIGV, which can assume values “equal,” “greater,” or “less.” Configurable elements 0502-0504 process data independently of comparison 0501. Processing depends on comparison values “equal,” “greater” and “less.” Processing is pipelined, i.e., a data word is modified first by 0502, then by 0503 and finally by 0504. 0505 also processes data as a function of 0501. However, this is limited to the dependence on the comparison values “less”; “greater” and “equal” cause the same function to be carried out. Thus, a distinction is made between the values “less” and “greater than or equal to.” 0506 is connected downstream in pipeline 0505. 0506 reacts differently to “equal,” “greater” and “less” (see 0503). 0507 also depends on 0501, but a distinction is made between the values “equal” and “not equal (less or greater).” This embodiment begins at time t (FIG. 5a) and ends at time t+3. If the data passes through one of pipelines 0502, 0503, 0504 or 0505, 0506, it is delayed by one clock cycle in each execution in one of macros 0502-0506. Longer and especially different delays may also occur. Since there is a handshake mechanism between the data and trigger signals for automatic synchronization (according to the related art or this application (TRIGACK/TRIGRDY)), this case need not be discussed separately.

Due to the delays, data and trigger signals of the earlier time t−2 are available at time t between the second and third pipeline steps, for example.

FIGS. 5a through 5d show the sequence of three clock cycles t through t+2.

The trigger vectors (i.e., the results of the comparison) generated by 0501 look as follows over t:

Time t Result of comparison
t − 2 less
t − 1 greater
t equal
t + 1 greater
t + 2 equal

FIG. 6 shows the integration of several configuration registers into one configurable element. In this embodiment there are three configuration registers 0409 according to FIG. 4. These are configured over bus 0406. A control unit 0601 (which may also be designed as a state machine) receives signals TRIGV and TRIGRDY over bus system 0411. Depending on TRIGV, the control unit switches one of the configuration registers over multiplexer 0602 to bus system 0401 leading to the control mechanisms of the configurable element. For synchronization of the trigger signals with the internal sequences of the configurable element, 0601 has a synchronization output leading to synchronization unit 0412 or to state machine 0413. For synchronization of the trigger sources, 0601 generates handshake signal TRIGACK after processing the incoming trigger. In this embodiment, each configuration register 0409 is assigned to one TRIGV of the type “equal,” “greater,” “less.” If other operations are executed with each type of trigger, then each configuration register is occupied differently. For example, if a distinction is made only between “equal” and “not equal” then the configuration registers are occupied equally for the types “less” and “greater,” namely with the configuration for “not equal.” The configuration register for “equal” is occupied differently. This means that the comparison can be made more specific on the basis of the occupancy of the configuration registers, each configurable element being able to design this specification differently.

TRIGV is relayed together with the result over register 0603 to the downstream configurable elements to permit pipelining according to FIGS. 5a-d. The register and the handshake signals are controlled by 0412 or 0413. Trigger information together with the result from R-REGsft or with a time offset, i.e., before the result, can be sent over interface 0416 to downstream configurable elements.

A time-offset transfer offers the advantage that no additional time is necessary for setting the configuration registers in the downstream configurable elements, because the setting is made before receiving the data (simultaneously with the release of the result). FIG. 6a shows a corresponding timing (based on sequences conventional for DFP). Trigger vectors 0615 are generated at rising edge 0613 of module clock 0614. Triggers are analyzed in the configurable elements at trailing edge 0612. Data is phase shifted, i.e., released at 0612 and entered at 0613. The trigger vectors are transferred over the bus and data is calculated during 0610. Data is transferred over the bus and triggers are calculated during 0611, or configuration registers of the configurable elements are selected according to data stored at 0613 and the configuration is set accordingly.

FIG. 7a shows the management of jumps according to the predicate/NOP method of the related art. In execution of a comparison, an entry is made in predicate register 0704. This entry is queried during the execution of commands, determining whether a command is being executed (the command is inside the code sequence addressed by the conditional jump) or is replaced by an NOP (the command is in a different code sequence from that addressed by the conditional jump). The command is in command register 0701. The predicate register contains a plurality of entries allocated to a plurality of operations and/or a plurality of processors. This allocation is issued at the compile time of the program of the compiler. Allocation information 0707 is allocated to the command entered into the command register, so that a unique entry is referenced by the respective command.

0703 selects whether the command from 0701 or an NOP is to be executed. In execution of an NOP, one clock cycle is lost. 0703 has a symbolic character, because executing unit 0702 could also in principle be controlled directly by 0704.

In FIG. 7b there are n command registers (0701: Func 1 . . . Func n). In executing a comparison/conditional jump, the command register to be addressed, i.e., the result of the comparison, is deposited as an entry 0708 in predicate register 0706, where 0706 has a plurality of such entries. Respective entry 0708 in 0706 is so wide that all possible command registers of an executing unit 0702 can be addressed by it, which means that the width of an entry is log2(n) with n command registers. The predicate register contains a plurality of entries allocated to a plurality of operations and/or a plurality of processors. This allocation is issued by the compiler at the compile time of the program. Allocation information 0707 is allocated to the quantity of commands entered into the command registers, so that an unambiguous entry is referenced by the respective commands.

The multiplexer selects which command register supplies the code for the instantaneous execution.

Due to this technology, a valid command is executed instead of an NOP even in the worst case with conditional jumps, so no clock cycle is wasted.

The following provides an explanation of various names, functions and terms described above.

Name Convention

Assembly group UNIT
Type of operation MODE
Multiplexer MUX
Negated signal not
Register for PLU visible PLUREG
Register internal REG
Shift register sft

Function Convention

NOT Function!

I Q
0 1
1 0

AND Function &

A B Q
0 0 0
0 1 0
1 0 0
1 1 1

OR Function #

A B Q
0 0 0
0 1 1
1 0 1
1 1 1

GATE Function G

EN B Q
0 0
0 1
1 0 0
1 1 1

BM UNIT: Unit for switching data to the bus systems outside the PAE. Switching is done over multiplexers for the data inputs and gates for the data outputs. OACK lines are implemented as open collector drivers. The BM UNIT is controlled by the M-PLUREG.

Data receiver: The unit(s) that process(es) the results of the PAE further.

Data transmitter: The unit(s) that make(s) available the data for the PAE as operands.

Data word: A data word consists of a bit series of any desired length. This bit series represents a processing unit for a system. Commands for processors or similar modules as well as pure data can be coded in a data word.

DFP: Data flow processor according to German Patent/Unexamined Patent No. 44 16 881.

DPGA: Dynamically configurable FPGAs. Related art.

EALU: Expanded arithmetic logic unit. ALU which has been expanded by special functions which are needed or appropriate for operation of a data processing system according to German Patent No. 441 16 881 A1. These are counters in particular.

Elements: Collective term for all types of self-contained units which can be used as part of an electronic module.

Elements thus include:

Event: An event can be analyzed by a hardware element of any type suitable for use and can prompt a conditional action as a reaction to this analysis. Events thus include, for example:

FPGA: Programmable logic module. Related art.

F-PLUREG: Register in which the function of the PAE is set. Likewise, the one shot and sleep mode are also set. The register is written by the PLU.

H level: Logic 1 level, depending on the technology used.

Configurable element: A configurable element is a unit of a logic module which can be set for a special function by a configuration word. Configurable elements are thus all types of RAM cells, multiplexers, arithmetic logic units, registers and all types of internal and external network writing, etc.

Configurable cell: See logic cells.

Configure: Setting the function and interconnecting a logic unit, an (FPGA) cell or a PAE (see: Reconfigure).

Configuration data: Any quantity of configuration words.

Configuration memory: The configuration memory contains one or more configuration words.

Configuration word: A configuration word consists of a bit series of any desired length. This bit series represents a valid setting for the element to be configured, so that a functional unit is obtained.

Load logic: Unit for configuring and reconfiguring the PAE. Embodied by a microcontroller specifically adapted to its function.

Logic cells: Configurable cells used in DFPs, FPGAs, DPGAs, fulfilling simple logic or arithmetic functions according to their configuration.

L level: Logic 0 level, depending on the technology used.

M-PLUREG: Register in which the interconnection of the PAE is set. The register is written by the PLU.

O-REG: Operand register for storing the operands of the EALU. Permits independence of the PAE of the data transmitters in time and function. This simplifies the transfer of data because it can take place in an asynchronous or package-oriented manner. At the same time, the possibility of reconfiguring the data transmitters independently of the PAE or reconfiguring the PAE independently of the data transmitters is created.

PLU: Unit for configuring and reconfiguring the PAE. Embodied by a microcontroller specifically adapted to its function.

Propagate: Controlled relaying of a received signal.

RECONFIG: Reconfigurable state of a PAE.

RECONFIG trigger. Setting a PAE in the reconfigurable state.

SM UNIT: State machine UNIT. State machine controlling the EALU.

Switching table: A switching table is a ring memory which is addressed by a control. The entries in a switching table may accommodate any desired configuration words. The control can execute commands. The switching table reacts to trigger signals and reconfigures configurable elements on the basis of an entry in a ring memory.

Synchronization signals: Status signals generated by a configurable element or a processor and relayed to other configurable elements or processors to control and synchronize the data processing. It is also possible to return a synchronization signal with a time lag (stored) to one and the same configurable element or processor.

TRIGACK/TRIGRDY: Handshake of the triggers.

Trigger: Synonymous with synchronization signals.

Reconfigure: Configuring any desired quantity of PAEs again while any desired remaining quantity of PAEs continue their own function (see: Configure).

Processing cycle: A processing cycle describes the period of time needed by a unit to go from one defined and/or valid state into the next defined and/or valid state.

VLIW: Very large instruction word. Coding of microprocessors, prior art method.

Cells: Synonymous with configurable elements.

Vorbach, Martin, Münch, Robert M.

Patent Priority Assignee Title
Patent Priority Assignee Title
2067477,
3242998,
3564506,
3681578,
3753008,
3754211,
3757608,
3855577,
3956589, Nov 26 1971 Paradyne Corporation Data telecommunication system
4151611, Mar 26 1976 Tokyo Shibaura Electric Co., Ltd. Power supply control system for memory systems
4233667, Oct 23 1978 International Business Machines Corporation Demand powered programmable logic array
4414547, Aug 05 1981 General Instrument Corporation; GENERAL SEMICONDUCTOR, INC Storage logic array having two conductor data column
4498134, Jan 26 1982 Hughes Electronics Corporation Segregator functional plane for use in a modular array processor
4498172, Jul 26 1982 Intersil Corporation System for polynomial division self-testing of digital networks
4566102, Apr 18 1983 International Business Machines Corporation Parallel-shift error reconfiguration
4571736, Oct 31 1983 UNIVERSITY OF SOUTHWESTERN LOUISIANA, A UNIVERSITY OF LA Digital communication system employing differential coding and sample robbing
4590583, Jul 16 1982 AT&T Bell Laboratories Coin telephone measurement circuitry
4591979, Aug 25 1982 NEC Corporation Data-flow-type digital processing apparatus
4594682, Dec 22 1982 IBM Corporation Vector processing
4623997, Dec 13 1984 United Technologies Corporation Coherent interface with wraparound receive and transmit memories
4646300, Nov 14 1983 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Communications method
4663706, Oct 28 1982 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Multiprocessor multisystem communications network
4667190, Jul 30 1982 THESEUS RESEARCH, INC Two axis fast access memory
4682284, Dec 06 1984 American Telephone & Telegraph Co., AT&T Bell Lab. Queue administration method and apparatus
4686386, Mar 21 1984 Oki Electric Industry Co., Ltd. Power-down circuits for dynamic MOS integrated circuits
4706216, Feb 27 1985 XILINX, Inc.; XILINX, INC , A CA CORP Configurable logic element
4720778, Feb 05 1985 Agilent Technologies Inc Software debugging analyzer
4720780, Sep 17 1985 The Johns Hopkins University; JOHNS HOPKINS UNIVERSITY THE, BALTIMORE, MARYLAND, A CORP OF MARYLAND Memory-linked wavefront array processor
4739474, Mar 10 1983 Geo Semiconductor Inc Geometric-arithmetic parallel processor
4748580, Aug 30 1985 ADVANCED MICRO DEVICES, INC , A CORP OF DE Multi-precision fixed/floating-point processor
4760525, Jun 10 1986 United States of America as represented by the Secretary of the Air Force Complex arithmetic vector processor for performing control function, scalar operation, and set-up of vector signal processing instruction
4761755, Jul 11 1984 CVSI, INC Data processing system and method having an improved arithmetic unit
4791603, Jul 18 1986 Honeywell INC Dynamically reconfigurable array logic
4811214, Nov 14 1986 Princeton University; PRINCETON UNIVERSITY, NON-PROFIT ORGANIZATION Multinode reconfigurable pipeline computer
4852043, May 21 1986 Hewlett-Packard Company Daisy-chain bus system with truncation circuitry for failsoft bypass of defective sub-bus subsystem
4852048, Dec 12 1985 ITT Corporation; ITT CORPORATION, 320 PARK AVENUE, NEW YORK, N Y , 10022, A CORP OF DELAWARE Single instruction multiple data (SIMD) cellular array processing apparatus employing a common bus where a first number of bits manifest a first bus portion and a second number of bits manifest a second bus portion
4860201, Sep 02 1986 FIFTH GENERATION COMPUTER CORP Binary tree parallel processor
4870302, Mar 12 1984 XILINX, Inc. Configurable electrical circuit having configurable logic elements and configurable interconnects
4873666, Oct 15 1987 Nortel Networks Limited Message FIFO buffer controller
4882687, Mar 31 1986 HO UNDERWATER ACQUISITION LLC Pixel processor
4884231, Sep 26 1986 Performance Semiconductor Corporation Microprocessor system with extended arithmetic logic unit
4891810, Oct 31 1986 Thomson-CSF Reconfigurable computing device
4901268, Aug 19 1988 Lockheed Martin Corporation Multiple function data processor
4910665, Sep 02 1986 Intel Corporation Distributed processing system including reconfigurable elements
4918440, Nov 07 1986 Atmel Corporation Programmable logic cell and array
4939641, Jun 30 1988 LG Electronics Inc Multi-processor system with cache memories
4959781, May 16 1988 KUBOTA U S A INC System for assigning interrupts to least busy processor that already loaded same class of interrupt routines
4967340, Jun 12 1985 E-Systems, Inc. Adaptive processing system having an array of individually configurable processing components
4972314, May 20 1985 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Data flow signal processor method and apparatus
4992933, Oct 27 1986 International Business Machines Corporation SIMD array processor with global instruction control and reprogrammable instruction decoders
5010401, Aug 11 1988 Mitsubishi Denki Kabushiki Kaisha Picture coding and decoding apparatus using vector quantization
5014193, Oct 14 1988 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Dynamically configurable portable computer system
5015884, Mar 29 1985 Lattice Semiconductor Corporation Multiple array high performance programmable logic device family
5021947, Mar 31 1986 Hughes Aircraft Company Data-flow multiprocessor architecture with three dimensional multistage interconnection network for efficient signal and data processing
5023775, Feb 14 1985 Intel Corporation Software programmable logic array utilizing "and" and "or" gates
5031179, Nov 10 1987 Canon Kabushiki Kaisha Data communication apparatus
5034914, May 15 1986 COMPUTER UPGRADE CORPORATION Optical disk data storage method and apparatus with buffered interface
5036473, Oct 05 1988 QUICKTURN DESIGN SYSTEMS, INC , DELAWARE CORPORATION Method of using electronically reconfigurable logic circuits
5036493, Mar 15 1990 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P System and method for reducing power usage by multiple memory modules
5041924, Nov 30 1988 Maxtor Corporation Removable and transportable hard disk subsystem
5043978, Sep 22 1988 Siemens Aktiengesellschaft Circuit arrangement for telecommunications exchanges
5047924, Dec 02 1988 Mitsubishi Denki Kabushiki Kaisha Microcomputer
5055997, Jan 13 1988 U.S. Philips Corporation System with plurality of processing elememts each generates respective instruction based upon portions of individual word received from a crossbar switch
5065308, Jan 29 1985 LUJACK SYSTEMS LLC Processing cell for fault tolerant arrays
5070475, Nov 14 1985 DATA GENERAL CORPORATION, A CORP OF DE Floating point unit interface
5072178, Jun 09 1989 Hitachi, Ltd. Method and apparatus for testing logic circuitry by applying a logical test pattern
5076482, Oct 05 1990 The Fletcher Terry Company Pneumatic point driver
5081375, Jan 17 1989 National Semiconductor Corp. Method for operating a multiple page programmable logic device
5081575, Nov 06 1987 WOLFE, HOWARD MR ; IMPERIALE, PETER G MR ; LONERGAN, WILLIAM MR ; NORTHERN TRUST COMPANY AS TRUSTEE FOR THE BENEFIT OF ALLIED CORPORATION MASTER PENSION TRUST; NORTHERN TRUST COMPANY, AS TRUSTEE FOR THE BENEFIT OF ALLIED CORPORATION; HARVEY, CURRAN V , MR ; DONDERO, STEPHEN, MR ; LONG, ROBERT MR ; BRILL, ROBERT MR Highly parallel computer architecture employing crossbar switch with selectable pipeline delay
5099447, Jan 22 1990 Alliant Computer Systems Corporation Blocked matrix multiplication for computers with hierarchical memory
5103311, Jan 11 1988 IPG Electronics 503 Limited Data processing module and video processing system incorporating same
5109503, May 22 1989 GE Fanuc Automation North America, Inc. Apparatus with reconfigurable counter includes memory for storing plurality of counter configuration files which respectively define plurality of predetermined counters
5113498, Nov 10 1987 Echelon Corporation Input/output section for an intelligent cell which provides sensing, bidirectional communications and control
5115510, Oct 20 1987 Sharp Kabushiki Kaisha Multistage data flow processor with instruction packet, fetch, storage transmission and address generation controlled by destination information
5119290, Oct 02 1987 Sun Microsystems, Inc. Alias address support
5123109, May 31 1983 RTPC CORPORATION; TM PATENTS, L P Parallel processor including a processor array with plural data transfer arrangements including (1) a global router and (2) a proximate-neighbor transfer system
5125801, Feb 02 1990 ISCO, INC Pumping system
5128559, Aug 30 1990 SGS-Thomson Microelectronics, Inc. Logic block for programmable logic devices
5142469, Mar 29 1990 GE Fanuc Automation North America, Inc. Method for converting a programmable logic controller hardware configuration and corresponding control program for use on a first programmable logic controller to use on a second programmable logic controller
5144166, Nov 02 1990 Atmel Corporation Programmable logic cell and array
5193202, May 29 1990 WAVETRACER, INC , A CORP OF MA Processor array with relocated operand physical address generator capable of data transfer to distant physical processor for each virtual processor while simulating dimensionally larger array processor
5203005, May 02 1989 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Cell structure for linear array wafer scale integration architecture with capability to open boundary I/O bus without neighbor acknowledgement
5204935, Aug 19 1988 Fuji Xerox Co., Ltd. Programmable fuzzy logic circuits
5208491, Jan 07 1992 BOARD OF REGENTS OF THE UNIVERSITY OF WASHINGTON, THE Field programmable gate array
5212716, Feb 05 1991 International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A CORP OF NY Data edge phase sorting circuits
5212777, Nov 17 1989 TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE Multi-processor reconfigurable in single instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) modes and method of operation
5218302, Feb 06 1991 Snap-On Tools Company Interface for coupling an analyzer to a distributorless ignition system
5226122, Aug 21 1987 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Programmable logic system for filtering commands to a microprocessor
5233539, Aug 15 1989 Lattice Semiconductor Corporation Programmable gate array with improved interconnect structure, input/output structure and configurable logic block
5237686, May 10 1989 Mitsubishi Denki Kabushiki Kaisha Multiprocessor type time varying image encoding system and image processor with memory bus control table for arbitration priority
5243238, Mar 17 1989 Xilinx, Inc Configurable cellular array
5245616, Feb 24 1989 FISHER-ROSEMOUNT SYSTEMS, INC , A DELAWARE CORPORATION Technique for acknowledging packets
5247689, Feb 25 1985 Round Rock Research, LLC Parallel digital processor including lateral transfer buses with interrupt switches to form bus interconnection segments
5274593, Sep 28 1990 Intergraph Hardware Technologies Company High speed redundant rows and columns for semiconductor memories
5276836, Jan 10 1991 HITACHI, LTD , 6, KANDA SURUGADAI 4-CHOME, CHIYODA-KU, TOKYO, JAPAN; ARIX COMPUTER CORPORATION, 821 FOX LANE SAN JOSE, CALIFORNIA 95131 Data processing device with common memory connecting mechanism
5287472, May 02 1989 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Memory system using linear array wafer scale integration architecture
5287511, Jul 11 1988 Logic Devices Incorporated Architectures and methods for dividing processing tasks into tasks for a programmable real time signal processor and tasks for a decision making microprocessor interfacing therewith
5287532, Nov 14 1989 CAMBRIDGE PARALLEL PROCESSING LIMITED Processor elements having multi-byte structure shift register for shifting data either byte wise or bit wise with single-bit output formed at bit positions thereof spaced by one byte
5294119, Sep 27 1991 ADIDAS-SALOMON USA, INC ; TAYLOR MADE GOLF COMPANY, INC Vibration-damping device for a golf club
5301284, Jan 16 1991 Walker-Estes Corporation Mixed-resolution, N-dimensional object space method and apparatus
5301344, Jan 29 1991 Analogic Corporation Multibus sequential processor to perform in parallel a plurality of reconfigurable logic operations on a plurality of data sets
5303172, Feb 16 1988 SAMSUNG ELECTRONICS CO , LTD Pipelined combination and vector signal processor
5311079, Dec 17 1992 International Business Machines Corporation Low power, high performance PLA
5327125, Jul 13 1992 Sharp Kabushiki Kaisha Apparatus for and method of converting a sampling frequency according to a data driven type processing
5336950, Aug 29 1991 Atmel Corporation Configuration features in a configurable logic array
5343406, Jul 28 1989 XILINX, Inc.; XILINX, INC , A CORP OF CA Distributed memory architecture for a configurable logic array and method for using distributed memory
5347639, Jul 15 1991 International Business Machines Corporation Self-parallelizing computer system and method
5349193, May 20 1993 PRINCETON GAMMA-TECH INSTRUMENTS, INC Highly sensitive nuclear spectrometer apparatus and method
5353432, Sep 09 1988 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Interactive method for configuration of computer system and circuit boards with user specification of system resources and computer resolution of resource conflicts
5355508, May 07 1990 Mitsubishi Denki Kabushiki Kaisha Parallel data processing system combining a SIMD unit with a MIMD unit and sharing a common bus, memory, and system controller
5361373, Dec 11 1992 SeaSound, LLC; WAGNER & BROWN, LTD Integrated circuit computing device comprising a dynamically configurable gate array having a microprocessor and reconfigurable instruction execution means and method therefor
5365125, Jul 23 1992 XILINX, Inc.; Xilinx, Inc Logic cell for field programmable gate array having optional internal feedback and optional cascade
5379444, Jul 28 1989 Hughes Aircraft Company Array of one-bit processors each having only one bit of memory
5386154, Jul 23 1992 XILINX, INC , A DE CORP Compact logic cell for field programmable gate array chip
5386518, Feb 12 1993 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Reconfigurable computer interface and method
5392437, Nov 06 1992 Intel Corporation Method and apparatus for independently stopping and restarting functional units
5408643, Feb 01 1991 Renesas Electronics Corporation Watchdog timer with a non-masked interrupt masked only when a watchdog timer has been cleared
5410723, Nov 21 1989 Deutsche ITT Industries GmbH Wavefront array processor for blocking the issuance of first handshake signal (req) by the presence of second handshake signal (ack) which indicates the readyness of the receiving cell
5412795, Feb 25 1992 Micral, Inc.; MICRAL, INC State machine having a variable timing mechanism for varying the duration of logical output states of the state machine based on variation in the clock frequency
5418952, Nov 23 1988 PARALLEL SIMULATION TECHNOLOGY, LLC Parallel processor cell computer system
5418953, Apr 12 1993 LOCKHEED MARTIN ROLM MIL-SPEC CORP Method for automated deployment of a software program onto a multi-processor architecture
5421019, Oct 07 1988 ROADMAP GEO LP III, AS ADMINISTRATIVE AGENT Parallel data processor
5422823, Aug 15 1989 Lattice Semiconductor Corporation Programmable gate array device having cascaded means for function definition
5425036, Sep 18 1992 Cadence Design Systems, INC Method and apparatus for debugging reconfigurable emulation systems
5426378, Apr 20 1994 XILINX, Inc.; Xilinx, Inc Programmable logic device which stores more than one configuration and means for switching configurations
5428526, Feb 03 1993 ALLEN-BRADLEY COMPANY, INC Programmable controller with time periodic communication
5430687, Apr 01 1994 XILINX, Inc.; Xilinx, Inc Programmable logic device including a parallel input device for loading memory cells
5435000, May 19 1993 Bull HN Information Systems Inc. Central processing unit using dual basic processing units and combined result bus
5440245, May 11 1990 Actel Corporation Logic module with configurable combinational and sequential blocks
5440538, Sep 23 1993 Massachusetts Institute of Technology Communication system with redundant links and data bit time multiplexing
5442790, May 24 1991 The Trustees of Princeton University Optimizing compiler for computers
5444394, Jul 08 1993 ALTERA CORPORATION, A DELAWARE CORPORATION PLD with selective inputs from local and global conductors
5448186, Mar 18 1993 Fuji Xerox Co., Ltd. Field-programmable gate array
5450022, Oct 07 1994 Xilinx Inc.; Xilinx, Inc Structure and method for configuration of a field programmable gate array
5455525, Dec 06 1993 Xilinx, Inc Hierarchically-structured programmable logic array and system for interconnecting logic elements in the logic array
5457644, Aug 20 1993 Actel Corporation Field programmable digital signal processing array integrated circuit
5465375, Jan 14 1992 France Telecom Multiprocessor system with cascaded modules combining processors through a programmable logic cell array
5469003, Nov 05 1992 Xilinx, Inc Hierarchically connectable configurable cellular array
5473266, Apr 19 1993 ALTERA CORPORATION, A DELAWARE CORPORATION Programmable logic device having fast programmable logic array blocks and a central global interconnect array
5473267, Feb 16 1993 SGS-Thomson Microelectronics Limited Programmable logic device with memory that can store routing data of logic data
5475583, Feb 22 1991 Prasendt Investments, LLC Programmable control system including a logic module and a method for programming
5475803, Jul 10 1992 LSI Logic Corporation Method for 2-D affine transformation of images
5475856, Nov 27 1991 International Business Machines Corporation Dynamic multi-mode parallel processing array
5477525, Sep 03 1992 Sony Corporation Data destruction preventing method, recording apparatus provided with data destruction preventing capability, and disc recorded with guard band
5483620, May 18 1990 International Business Machines Corp. Learning machine synapse processor system apparatus
5485103, Sep 03 1991 ALTERA CORPORATION A CORPORATION OF DELAWARE Programmable logic array with local and global conductors
5485104, Mar 29 1985 Lattice Semiconductor Corporation Logic allocator for a programmable logic device
5489857, Aug 03 1992 Lattice Semiconductor Corporation Flexible synchronous/asynchronous cell structure for a high density programmable logic device
5491353, Mar 17 1989 XILINX, Inc. Configurable cellular array
5493239, Jan 31 1995 Motorola, Inc. Circuit and method of configuring a field programmable gate array
5493663, Apr 22 1992 International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NEW YORK Method and apparatus for predetermining pages for swapping from physical memory in accordance with the number of accesses
5497498, Nov 05 1992 Giga Operations Corporation Video processing module using a second programmable logic device which reconfigures a first programmable logic device for data transformation
5502838, Apr 28 1994 PDACO LTD Temperature management for integrated circuits
5504439, Apr 01 1994 XILINX, Inc. I/O interface cell for use with optional pad
5506998, Mar 20 1991 Fujitsu Limited Parallel data processing system using a plurality of processing elements to process data and a plurality of trays connected to some of the processing elements to store and transfer data
5510730,
5511173, Nov 08 1989 Ricoh Co., Ltd. Programmable logic array and data processing unit using the same
5513366, Sep 28 1994 International Business Machines Corporation Method and system for dynamically reconfiguring a register file in a vector processor
5521837, Jun 04 1992 XILINX, Inc. Timing driven method for laying out a user's circuit onto a programmable integrated circuit device
5522083, Nov 17 1989 Texas Instruments Incorporated Reconfigurable multi-processor operating in SIMD mode with one processor fetching instructions for use by remaining processors
5525971, Sep 23 1993 ARM Limited Integrated circuit
5530873, Oct 02 1992 HUDSON SOFT CO LTD Method and apparatus for processing interruption
5530946, Oct 28 1994 Dell USA, L.P.; DELL USA, L P Processor failure detection and recovery circuit in a dual processor computer system and method of operation thereof
5532693, Jun 13 1994 COMTECH TELECOMMUNICATIONS CORP Adaptive data compression system with systolic string matching logic
5532957, Jan 31 1995 Texas Instruments Incorporated Field reconfigurable logic/memory array
5535406, Dec 29 1993 Virtual processor module including a reconfigurable programmable matrix
5537057, Feb 14 1995 ALTERA CORPORATION A CORPORATION OF DELAWARE Programmable logic array device with grouped logic regions and three types of conductors
5537580, Dec 21 1994 NXP B V Integrated circuit fabrication using state machine extraction from behavioral hardware description language
5537601, Jul 21 1993 Hitachi, Ltd. Programmable digital signal processor for performing a plurality of signal processings
5541530, May 17 1995 ALTERA CORPORATION A CORPORATION OF DELAWARE Programmable logic array integrated circuits with blocks of logic regions grouped into super-blocks
5544336, Mar 19 1991 Fujitsu Limited Parallel data processing system which efficiently performs matrix and neurocomputer operations, in a negligible data transmission time
5548773, Mar 30 1993 The United States of America as represented by the Administrator of the Digital parallel processor array for optimum path planning
5550782, May 08 1992 ALTERA CORPORATION, A DELAWARE CORPORATION Programmable logic array integrated circuits
5555434, Aug 02 1990 Carlstedt Elektronik AB Computing device employing a reduction processor and implementing a declarative language
5559450, Jul 27 1995 Lattice Semiconductor Corporation Field programmable gate array with multi-port RAM
5561738, Mar 25 1994 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Data processor for executing a fuzzy logic operation and method therefor
5568624, Jun 29 1990 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Byte-compare operation for high-performance processor
5570040, Mar 22 1995 ALTERA CORPORATION, A DELAWARE CORPORATION Programmable logic array integrated circuit incorporating a first-in first-out memory
5572710, Sep 11 1992 Kabushiki Kaisha Toshiba High speed logic simulation system using time division emulation suitable for large scale logic circuits
5574927, Mar 25 1994 TECH SEARCH LLC RISC architecture computer configured for emulation of the instruction set of a target computer
5574930, Aug 12 1994 University of Hawaii Computer system and method using functional memory
5581731, Aug 30 1991 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Method and apparatus for managing video data for faster access by selectively caching video data
5581734, Aug 02 1993 International Business Machines Corporation Multiprocessor system with shared cache and data input/output circuitry for transferring data amount greater than system bus capacity
5583450, Aug 18 1995 XILINX, Inc.; Xilinx, Inc Sequencer for a time multiplexed programmable logic device
5584013, Dec 09 1994 International Business Machines Corporation Hierarchical cache arrangement wherein the replacement of an LRU entry in a second level cache is prevented when the cache entry is the only inclusive entry in the first level cache
5586044, Aug 15 1989 Lattice Semiconductor Corporation Array of configurable logic blocks including cascadable lookup tables
5587921, Aug 15 1989 Lattice Semiconductor Corporation Array of configurable logic blocks each including a look up table having inputs coupled to a first multiplexer and having outputs coupled to a second multiplexer
5588152, May 22 1992 International Business Machines Corporation Advanced parallel processor including advanced support hardware
5590345, Nov 13 1990 IBM Corporation Advanced parallel array processor(APAP)
5590348, Jul 28 1992 International Business Machines Corporation Status predictor for combined shifter-rotate/merge unit
5596742, Apr 02 1993 Massachusetts Institute of Technology Virtual interconnections for reconfigurable logic systems
5600265, Sep 19 1986 Actel Corporation Programmable interconnect architecture
5600597, May 02 1995 XILINX, Inc. Register protection structure for FPGA
5600845, Jul 27 1994 WAGNER & BROWN, LTD ; SeaSound, LLC Integrated circuit computing device comprising a dynamically configurable gate array having a microprocessor and reconfigurable instruction execution means and method therefor
5602999, Dec 28 1970 Memory system having a plurality of memories, a plurality of detector circuits, and a delay circuit
5603005, Dec 27 1994 Unisys Corporation Cache coherency scheme for XBAR storage structure with delayed invalidates until associated write request is executed
5606698, Apr 26 1993 Cadence Design Systems, INC Method for deriving optimal code schedule sequences from synchronous dataflow graphs
5608342, Oct 23 1995 XILINX, Inc.; Xilinx, Inc Hierarchical programming of electrically configurable integrated circuits
5611049, Jun 03 1992 RPX Corporation System for accessing distributed data cache channel at each network node to pass requests and data
5617547, Mar 29 1991 International Business Machines Corporation Switch network extension of bus architecture
5617577, Nov 27 1991 International Business Machines Corporation Advanced parallel array processor I/O connection
5619720, Oct 04 1994 Analog Devices, Inc. Digital signal processor having link ports for point-to-point communication
5625806, Dec 12 1994 Advanced Micro Devices, Inc. Self configuring speed path in a microprocessor with multiple clock option
5625836, Nov 13 1990 International Business Machines Corporation SIMD/MIMD processing memory element (PME)
5627992, Jan 20 1988 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Organization of an integrated cache unit for flexible usage in supporting microprocessor operations
5634131, Nov 06 1992 Intel Corporation Method and apparatus for independently stopping and restarting functional units
5635851, Feb 02 1996 XILINX, Inc.; Xilinx, Inc Read and writable data bus particularly for programmable logic devices
5642058, Oct 16 1995 Xilinx , Inc.; Xilinx, Inc Periphery input/output interconnect structure
5646544, Jun 05 1995 International Business Machines Corporation System and method for dynamically reconfiguring a programmable gate array
5646545, Aug 18 1995 XILINX, Inc.; Xilinx, Inc Time multiplexed programmable logic device
5649176, Aug 10 1995 Mentor Graphics Corporation Transition analysis and circuit resynthesis method and device for digital circuit modeling
5649179, May 19 1995 Motorola, Inc. Dynamic instruction allocation for a SIMD processor
5652529, Jun 02 1995 Atmel Corporation Programmable array clock/reset resource
5652894, Sep 29 1995 Intel Corporation Method and apparatus for providing power saving modes to a pipelined processor
5655069, Jul 29 1994 Fujitsu Limited Apparatus having a plurality of programmable logic processing units for self-repair
5655124, Mar 31 1992 SAMSUNG ELECTRONICS CO , LTD Selective power-down for high performance CPU/system
5656950, Oct 26 1995 XILINX, Inc.; Xilinx, Inc Interconnect lines including tri-directional buffer circuits
5657330, Nov 15 1994 Mitsubishi Denki Kabushiki Kaisha; Mitsubishi Electric Semiconductor Software Co., Ltd. Single-chip microprocessor with built-in self-testing function
5659785, Feb 10 1995 IBM Corporation Array processor communication architecture with broadcast processor instructions
5659797, Jun 24 1991 U S PHILIPS CORPORATION Sparc RISC based computer system including a single chip processor with memory management and DMA units coupled to a DRAM interface
5675262, Oct 26 1995 Xilinx, Inc Fast carry-out scheme in a field programmable gate array
5675743, Feb 22 1995 CAL MEDIA, L L C Multi-media server
5675757, Jul 22 1988 Direct match data flow memory for data driven computing
5675777, Jan 29 1990 SERENITY SYSTEMS, LLC Architecture for minimal instruction set computing system
5677909, May 11 1994 INNSMOUTH LLC Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
5680583, Feb 16 1994 Cadence Design Systems, INC Method and apparatus for a trace buffer in an emulation system
5682491, Dec 29 1994 IBM Corporation Selective processing and routing of results among processors controlled by decoding instructions using mask value derived from instruction tag and processor identifier
5682544, May 12 1992 International Business Machines Corporation Massively parallel diagonal-fold tree array processor
5687325, Apr 19 1996 Intellectual Ventures II LLC Application specific field programmable gate array
5694602, Oct 01 1996 The United States of America as represented by the Secretary of the Air Weighted system and method for spatial allocation of a parallel load
5696791, Jan 17 1995 VTECH INDUSTRIES, INC Apparatus and method for decoding a sequence of digitally encoded data
5696976, Dec 21 1990 Intel Corporation Protocol for interrupt bus arbitration in a multi-processor system
5701091, May 02 1995 XILINX, Inc. Routing resources for hierarchical FPGA
5705938, May 02 1995 XILINX, Inc. Programmable switch for FPGA input/output signals
5706482, May 31 1995 HTC Corporation Memory access controller
5713037, Nov 27 1991 International Business Machines Corporation Slide bus communication functions for SIMD/MIMD array processor
5717890, Apr 30 1991 Kabushiki Kaisha Toshiba Method for processing data by utilizing hierarchical cache memories and processing system with the hierarchiacal cache memories
5717943, May 31 1991 International Business Machines Corporation Advanced parallel array processor (APAP)
5727229, Feb 05 1996 Freescale Semiconductor, Inc Method and apparatus for moving data in a parallel processor
5732209, Nov 29 1995 SAMSUNG ELECTRONICS CO , LTD Self-testing multi-processor die with internal compare points
5734869, Sep 06 1995 High speed logic circuit simulator
5734921, Nov 13 1990 International Business Machines Corporation Advanced parallel array processor computer package
5737516, Aug 30 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Data processing system for performing a debug function and method therefor
5737565, Aug 24 1995 International Business Machines Corporation System and method for diallocating stream from a stream buffer
5742180, Feb 10 1995 Massachusetts Institute of Technology Dynamically programmable gate array with multiple contexts
5745734, Sep 29 1995 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Method and system for programming a gate array using a compressed configuration bit stream
5748872, Mar 22 1994 NORMAN, RICHARD S ; 4198638 CANADA INC Direct replacement cell fault tolerant architecture
5748979, Apr 05 1995 Xilinx, Inc Reprogrammable instruction set accelerator using a plurality of programmable execution units and an instruction page table
5752035, Apr 05 1995 XILINX, Inc.; XILINIX, INC Method for compiling and executing programs for reprogrammable instruction set accelerator
5754459, Feb 08 1996 Xilinx, Inc Multiplier circuit design for a programmable logic device
5754820, Jul 09 1991 Kabushiki Kaisha Toshiba Microprocessor system with cache memory for eliminating unnecessary invalidation of cache data
5754827, Oct 13 1995 Mentor Graphics Corporation; MENTOR GRAPHICS HOLDING LTD Method and apparatus for performing fully visible tracing of an emulation
5754871, Nov 13 1990 International Business Machines Corporation Parallel processing system having asynchronous SIMD processing
5754876, Dec 28 1994 Hitachi, Ltd. Data processor system for preloading/poststoring data arrays processed by plural processors in a sharing manner
5760602, Jan 17 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Time multiplexing a plurality of configuration settings of a programmable switch element in a FPGA
5761484, Apr 01 1994 Massachusetts Institute of Technology Virtual interconnections for reconfigurable logic systems
5768629, Jun 24 1993 TALON RESEARCH, LLC Token-based adaptive video processing arrangement
5773994, Dec 15 1995 QuickLogic Corporation Method and apparatus for implementing an internal tri-state bus within a programmable logic circuit
5778237, Jan 10 1995 ADVANCED PROCESSOR TECHNOLOGIES, LLC Data processor and single-chip microcomputer with changing clock frequency and operating voltage
5778439, Aug 18 1995 XILINX, Inc.; Xilinx, Inc Programmable logic device with hierarchical confiquration and state storage
5781756, Apr 01 1994 XILINX, Inc.; Xilinx, Inc Programmable logic device with partially configurable memory cells and a method for configuration
5784313, Aug 18 1995 XILINX, Inc.; Xilinx, Inc Programmable logic device including configuration data or user data memory slices
5784630, Sep 07 1990 Hitachi, Ltd. Method and apparatus for processing data in multiple modes in accordance with parallelism of program by using cache memory
5784636, May 28 1996 National Semiconductor Corporation Reconfigurable computer architecture for use in signal processing applications
5794059, Nov 13 1990 International Business Machines Corporation N-dimensional modified hypercube
5794062, Apr 17 1995 Ricoh Corporation System and method for dynamically reconfigurable computing using a processing unit having changeable internal hardware organization
5801547, Mar 01 1996 XILINX, Inc. Embedded memory for field programmable gate array
5801715, Dec 06 1991 NORMAN, RICHARD S ; 4198638 CANADA INC Massively-parallel processor array with outputs from individual processors directly to an external device without involving other processors or a common physical carrier
5801958, Jun 14 1993 LSI Logic Corporation Method and system for creating and validating low level description of electronic design from higher level, behavior-oriented description, including interactive system for hierarchical display of control and dataflow information
5802290, Jul 29 1992 TAROFISS DATA LIMITED LIABILITY COMPANY Computer network of distributed virtual computers which are EAC reconfigurable in response to instruction to be executed
5804986, Dec 29 1995 RPX Corporation Memory in a programmable logic device
5815004, Oct 16 1995 XILINX, Inc.; Xilinx, Inc Multi-buffered configurable logic block output lines in a field programmable gate array
5815715, Jun 05 1995 Freescale Semiconductor, Inc Method for designing a product having hardware and software components and product therefor
5815726, Nov 04 1994 ALTERA CORPORATION, A CORP OF DELAWARE Coarse-grained look-up table architecture
5821774, May 26 1995 XILINX, Inc.; Xilinx, Inc Structure and method for arithmetic function implementation in an EPLD having high speed product term allocation structure
5828229, Sep 03 1991 ALTERA CORPORATION A CORPORATION OF DELAWARE Programmable logic array integrated circuits
5828858, Sep 16 1996 Virginia Tech Intellectual Properties, Inc.; Virginia Tech Intellectual Properties, Inc Worm-hole run-time reconfigurable processor field programmable gate array (FPGA)
5831448, Nov 05 1992 XILINX, Inc. Function unit for fine-gained FPGA
5832288, Oct 18 1996 Samsung Electronics Co., Ltd. Element-select mechanism for a vector processor
5838165, Aug 21 1996 NEORAM LLC High performance self modifying on-the-fly alterable logic FPGA, architecture and method
5838988, Jun 25 1997 Oracle America, Inc Computer product for precise architectural update in an out-of-order processor
5841973, Mar 13 1996 Hewlett Packard Enterprise Development LP Messaging in distributed memory multiprocessing system having shell circuitry for atomic control of message storage queue's tail pointer structure in local memory
5844422, Nov 13 1996 XILINX, Inc. State saving and restoration in reprogrammable FPGAs
5844888, Nov 10 1987 Echelon Corporation Network and intelligent cell for providing sensing, bidirectional communications and control
5848238, Jan 12 1996 Hitachi, Ltd. Information processing system and logic LSI, detecting a fault in the system or the LSI, by using internal data processed in each of them
5854918, Jan 24 1996 Ricoh Company Ltd Apparatus and method for self-timed algorithmic execution
5857097, Mar 10 1997 Hewlett Packard Enterprise Development LP Method for identifying reasons for dynamic stall cycles during the execution of a program
5857109, Nov 05 1992 Altera Corporation Programmable logic device for real time video processing
5859544, Sep 05 1996 ALTERA CORPORATION, A CORPORATION OF DELAWARE Dynamic configurable elements for programmable logic devices
5860119, Nov 25 1996 VLSI Technology, Inc. Data-packet fifo buffer system with end-of-packet flags
5862403, Feb 17 1995 Kabushiki Kaisha Toshiba Continuous data server apparatus and data transfer scheme enabling multiple simultaneous data accesses
5865239, Feb 05 1997 Micropump, Inc. Method for making herringbone gears
5867691, Mar 13 1992 Kabushiki Kaisha Toshiba Synchronizing system between function blocks arranged in hierarchical structures and large scale integrated circuit using the same
5867723, Aug 05 1992 COX COMMUNICATIONS, INC Advanced massively parallel computer with a secondary storage device coupled through a secondary storage interface
5870620, Jun 01 1995 Sharp Kabushiki Kaisha Data driven type information processor with reduced instruction execution requirements
5884075, Mar 10 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Conflict resolution using self-contained virtual devices
5887162, Apr 15 1994 Round Rock Research, LLC Memory device having circuitry for initializing and reprogramming a control operation feature
5887165, Jun 20 1997 HANGER SOLUTIONS, LLC Dynamically reconfigurable hardware system for real-time control of processes
5889533, Feb 17 1996 Samsung Electronics Co., Ltd. First-in-first-out device for graphic drawing engine
5889982, Jul 01 1995 Intel Corporation Method and apparatus for generating event handler vectors based on both operating mode and event type
5892370, Jun 21 1996 QuickLogic Corporation Clock network for field programmable gate array
5892961, Feb 17 1995 XILINX, Inc. Field programmable gate array having programming instructions in the configuration bitstream
5892962, Nov 12 1996 Lattice Semiconductor Corporation FPGA-based processor
5894565, May 20 1996 Atmel Corporation Field programmable gate array with distributed RAM and increased cell utilization
5895487, Nov 13 1996 International Business Machines Corporation Integrated processing and L2 DRAM cache
5898602, Jan 25 1996 XILINX, Inc.; Xilinx, Inc Carry chain circuit with flexible carry function for implementing arithmetic and logical functions
5901279, Oct 18 1996 Hughes Electronics Corporation Connection of spares between multiple programmable devices
5913925, Dec 16 1996 International Business Machines Corporation Method and system for constructing a program including out-of-order threads and processor and method for executing threads out-of-order
5915099, Sep 13 1996 Renesas Electronics Corporation Bus interface unit in a microprocessor for facilitating internal and external memory accesses
5915123, Oct 31 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method and apparatus for controlling configuration memory contexts of processing elements in a network of multiple context processing elements
5924119, Nov 30 1990 Xerox Corporation Consistent packet switched memory bus for shared memory multiprocessors
5926638, Jan 17 1996 NEC Electronics Corporation Program debugging system for debugging a program having graphical user interface
5927423, Mar 05 1997 Massachusetts Institute of Technology Reconfigurable footprint mechanism for omnidirectional vehicles
5933023, Sep 03 1996 XILINX, Inc. FPGA architecture having RAM blocks with programmable word length and width and dedicated address and data lines
5933642, Apr 17 1995 Ricoh Corporation Compiling system and method for reconfigurable computing
5936424, Feb 02 1996 XILINX, Inc. High speed bus with tree structure for selecting bus driver
5943242, Nov 17 1995 Pact XPP Technologies AG Dynamically reconfigurable data processing system
5956518, Apr 11 1996 Massachusetts Institute of Technology Intermediate-grain reconfigurable processing device
5960193, Nov 30 1993 Texas Instruments Incorporated Apparatus and system for sum of plural absolute differences
5960200, May 03 1996 i-CUBE System to transition an enterprise to a distributed infrastructure
5966143, Oct 14 1997 Freescale Semiconductor, Inc Data allocation into multiple memories for concurrent access
5966534, Jun 27 1997 Intel Corporation Method for compiling high level programming languages into an integrated processor with reconfigurable logic
5970254, Jun 27 1997 Intel Corporation Integrated processor and programmable data path chip for reconfigurable computing
5978260, Aug 18 1995 XILINX, Inc. Method of time multiplexing a programmable logic device
5978583, Aug 07 1995 International Business Machines Corp. Method for resource control in parallel environments using program organization and run-time support
5996048, Jun 20 1997 Oracle America, Inc Inclusion vector architecture for a level two cache
5996083, Aug 11 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Microprocessor having software controllable power consumption
5999990, May 18 1998 GENERAL DYNAMICS ADVANCED INFORMATION SYSTEMS, INC; GENERAL DYNAMICS MISSION SYSTEMS, INC Communicator having reconfigurable resources
6003143, Jun 30 1994 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Tool and method for diagnosing and correcting errors in a computer program
6011407, Jun 13 1997 XILINX, Inc.; Xilinx, Inc Field programmable gate array with dedicated computer bus interface and method for configuring both
6014509, May 20 1996 Atmel Corporation Field programmable gate array having access to orthogonal and diagonal adjacent neighboring cells
6020758, Mar 11 1996 Altera Corporation Partially reconfigurable programmable logic device
6020760, Jul 16 1997 Cadence Design Systems, INC I/O buffer circuit with pin multiplexing
6021490, Dec 20 1996 Scientia Sol Mentis AG Run-time reconfiguration method for programmable units
6023564, Jul 19 1996 XILINX, Inc.; Xilinx, Inc Data processing system using a flash reconfigurable logic device as a dynamic execution unit for a sequence of instructions
6023742, Jul 18 1996 University of Washington Reconfigurable computing architecture for providing pipelined data paths
6026478, Aug 01 1997 Round Rock Research, LLC Split embedded DRAM processor
6026481, Apr 28 1995 XILINX, Inc. Microprocessor with distributed registers accessible by programmable logic device
6034538, Jan 21 1998 Lattice Semiconductor Corporation Virtual logic system for reconfigurable hardware
6035371, May 28 1997 Hewlett Packard Enterprise Development LP Method and apparatus for addressing a static random access memory device based on signals for addressing a dynamic memory access device
6038650, Feb 04 1997 Scientia Sol Mentis AG Method for the automatic address generation of modules within clusters comprised of a plurality of these modules
6038656, Sep 12 1997 California Institute of Technology Pipelined completion for asynchronous communication
6044030, Dec 21 1998 ADELANTE TECHNOLOGIES B V FIFO unit with single pointer
6045585, Apr 18 1997 International Business Machines Corporation Method and system for determining inter-compilation unit alias information
6047115, May 29 1997 XILINX, Inc.; Xilinx, Inc Method for configuring FPGA memory planes for virtual hardware computation
6049222, Dec 30 1997 Xilinx, Inc Configuring an FPGA using embedded memory
6049866, Sep 06 1996 LG ELECTRONICS, INC Method and system for an efficient user mode cache manipulation using a simulated instruction
6052524, May 14 1998 Software Development Systems, Inc. System and method for simulation of integrated hardware and software components
6052773, Feb 10 1995 Massachusetts Institute of Technology DPGA-coupled microprocessors
6054873, Dec 05 1996 International Business Machines Corporation Interconnect structure between heterogeneous core regions in a programmable array
6055619, Feb 07 1997 CRYSTAL SEMICONDUCTOR CORP Circuits, system, and methods for processing multiple data streams
6058266, Jun 24 1997 International Business Machines Corporation Method of, system for, and computer program product for performing weighted loop fusion by an optimizing compiler
6058469, Apr 17 1995 Ricoh Co. Ltd. System and method for dynamically reconfigurable computing using a processing unit having changeable internal hardware organization
6064819, Dec 08 1993 IMEC Control flow and memory management optimization
6072348, Jul 09 1997 XILINX, Inc. Programmable power reduction in a clock-distribution circuit
6075935, Dec 01 1997 HANGER SOLUTIONS, LLC Method of generating application specific integrated circuits using a programmable hardware architecture
6076157, Oct 23 1997 GOOGLE LLC Method and apparatus to force a thread switch in a multithreaded processor
6077315, Apr 17 1995 Ricoh Company Ltd.; Ricoh Company Ltd Compiling system and method for partially reconfigurable computing
6078736, Aug 28 1997 XILINX, Inc.; Xilinx, Inc Method of designing FPGAs for dynamically reconfigurable computing
6081903, Feb 08 1997 Scientia Sol Mentis AG Method of the self-synchronization of configurable elements of a programmable unit
6084429, Apr 24 1998 XILINX, Inc.; Xilinx, Inc PLD having a window pane architecture with segmented and staggered interconnect wiring between logic block arrays
6085317, Apr 04 1997 Altera Corporation Reconfigurable computer architecture using programmable logic devices
6086628, Feb 24 1997 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Power-related hardware-software co-synthesis of heterogeneous distributed embedded systems
6088795, Oct 08 1997 Scientia Sol Mentis AG Process for automatic dynamic reloading of data flow processors (DFPs) and units with two or three-dimensional programmable cell architectures (FPGAs, DPGAs and the like)
6092174, Jun 01 1998 BENHOV GMBH, LLC Dynamically reconfigurable distributed integrated circuit processor and method
6096091, Feb 24 1998 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Dynamically reconfigurable logic networks interconnected by fall-through FIFOs for flexible pipeline processing in a system-on-a-chip
6105105, Jul 19 1996 XILINX, Inc. Data processing system using configuration select logic, an instruction store, and sequencing logic during instruction execution
6105106, Dec 31 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Computer system, memory device and shift register including a balanced switching circuit with series connected transfer gates which are selectively clocked for fast switching times
6108760, Oct 31 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and apparatus for position independent reconfiguration in a network of multiple context processing elements
6118724, Apr 30 1997 Canon Kabushiki Kaisha Memory controller architecture
6119181, Dec 20 1996 Scientia Sol Mentis AG I/O and memory bus system for DFPs and units with two- or multi-dimensional programmable cell architectures
6122719, Oct 31 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and apparatus for retiming in a network of multiple context processing elements
6125072, Jul 21 1998 Seagate Technology LLC Method and apparatus for contiguously addressing a memory system having vertically expanded multiple memory arrays
6125408, Mar 10 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Resource type prioritization in generating a device configuration
6127908, Nov 17 1997 Massachusetts Institute of Technology Microelectro-mechanical system actuator device and reconfigurable circuits utilizing same
6128720, Dec 29 1994 International Business Machines Corporation Distributed processing array with component processors performing customized interpretation of instructions
6134166, Mar 22 1995 Altera Corporation Programmable logic array integrated circuit incorporating a first-in first-out memory
6137307, Aug 04 1998 XILINX, Inc.; Xilinx, Inc Structure and method for loading wide frames of data from a narrow input bus
6145072, Aug 12 1993 Hughes Electronics Corporation Independently non-homogeneously dynamically reconfigurable two dimensional interprocessor communication topology for SIMD multi-processors and apparatus for implementing same
6150837, Feb 28 1997 MICROSEMI SOC CORP Enhanced field programmable gate array
6150839, Dec 12 1997 XILINX, Inc. Rapidly reconfigurable FPGA having a multiple region architecture with reconfiguration caches useable as data RAM
6154048, Aug 04 1998 XILINX, Inc. Structure and method for loading narrow frames of data from a wide input bus
6154049, Mar 27 1998 XILINX, Inc. Multiplier fabric for use in field programmable gate arrays
6154826, Nov 16 1994 VIRGINIA PATENT FOUNDATION, UNIVERSITY OF Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order
6157214, Jul 06 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Wiring of cells in logic arrays
6170051, Aug 01 1997 Round Rock Research, LLC Apparatus and method for program level parallelism in a VLIW processor
6172520, Dec 30 1997 XILINX, Inc. FPGA system with user-programmable configuration ports and method for reconfiguring the FPGA
6173419, May 14 1998 Silicon Storage Technology, Inc Field programmable gate array (FPGA) emulator for debugging software
6173434, Jan 22 1997 HANGER SOLUTIONS, LLC Dynamically-configurable digital processor using method for relocating logic array modules
6178494, Sep 23 1996 CALLAHAN CELLULAR L L C Modular, hybrid processor and method for producing a modular, hybrid processor
6185256, Nov 19 1997 Fujitsu Limited Signal transmission system using PRD method, receiver circuit for use in the signal transmission system, and semiconductor memory device to which the signal transmission system is applied
6185731, Apr 14 1995 ADVANCED PROCESSOR TECHNOLOGIES LLC Real time debugger for a microcomputer
6188240, Jun 04 1998 HIRANUMA, TAKEO Programmable function block
6188650, Oct 21 1997 Sony Corporation Recording and reproducing system having resume function
6191614, Apr 05 1999 XILINX, Inc.; Xilinx, Inc FPGA configuration circuit including bus-based CRC register
6198304, Feb 23 1998 Xilinx, Inc Programmable logic device
6201406, Aug 04 1998 XILINX, Inc. FPGA configurable by two types of bitstreams
6202163, Mar 14 1997 RPX Corporation Data processing circuit with gating of clocking signals to various elements of the circuit
6202182, Jun 30 1998 Lattice Semiconductor Corporation Method and apparatus for testing field programmable gate arrays
6204687, Apr 05 1999 XILINX, Inc.; Xilinx, Inc Method and structure for configuring FPGAS
6211697, May 25 1999 MICROSEMI SOC CORP Integrated circuit that includes a field-programmable gate array and a hard gate array having the same underlying structure
6212544, Oct 23 1997 GOOGLE LLC Altering thread priorities in a multithreaded processor
6212650, Nov 24 1997 XILINX, Inc.; Xilinx, Inc Interactive dubug tool for programmable circuits
6215326, Nov 18 1998 Altera Corporation Programmable logic device architecture with super-regions having logic regions and a memory region
6216223, Jan 12 1998 Altera Corporation Methods and apparatus to dynamically reconfigure the instruction pipeline of an indirect very long instruction word scalable processor
6219833, Dec 17 1997 HTC Corporation Method of using primary and secondary processors
6230307, Jan 26 1998 Xilinx, Inc System and method for programming the hardware of field programmable gate arrays (FPGAs) and related reconfiguration resources as if they were software by creating hardware objects
6240502, Jun 25 1997 Oracle America, Inc Apparatus for dynamically reconfiguring a processor
6243808, Mar 08 1999 Intel Corporation Digital data bit order conversion using universal switch matrix comprising rows of bit swapping selector groups
6247147, Oct 27 1997 Altera Corporation Enhanced embedded logic analyzer
6249756, Dec 07 1998 Hewlett Packard Enterprise Development LP Hybrid flow control
6252792, Jan 29 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Field programmable processor arrays
6256724, Feb 04 1998 Texas Instruments Incorporated Digital signal processor with efficiently connectable hardware co-processor
6260114, Dec 30 1997 MCMZ Technology Innovations, LLC Computer cache memory windowing
6260179, Oct 23 1997 Columbus Steel Castings Company Cell arrangement evaluating method, storage medium storing cell arrangement evaluating program, cell arranging apparatus and method, and storage medium storing cell arranging program
6262908, Jan 29 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Field programmable processor devices
6263430, Aug 18 1995 XILINX, Inc. Method of time multiplexing a programmable logic device
6266760, Apr 11 1996 Massachusetts Institute of Technology Intermediate-grain reconfigurable processing device
6279077, May 22 1996 Texas Instruments Incorporated Bus interface buffer control in a microprocessor
6282627, Jun 29 1998 Intel Corporation Integrated processor and programmable data path chip for reconfigurable computing
6282701, Jul 31 1997 IDENTIFY SOFTWARE LTD System and method for monitoring and analyzing the execution of computer programs
6285624, Jul 08 2000 Multilevel memory access method
6286134, Apr 23 1999 Oracle America, Inc Instruction selection in a multi-platform environment
6288566, Sep 23 1999 Intel Corporation Configuration state memory for functional blocks on a reconfigurable chip
6289369, Aug 25 1998 International Business Machines Corporation Affinity, locality, and load balancing in scheduling user program-level threads for execution by a computer system
6289440, Jul 29 1992 TAROFISS DATA LIMITED LIABILITY COMPANY Virtual computer of plural FPG's successively reconfigured in response to a succession of inputs
6298043, Mar 28 1998 Microsoft Technology Licensing, LLC Communication system architecture and a connection verification mechanism therefor
6298396, Jun 01 1998 Advanced Micro Devices, INC System for loading a current buffer desciptor register with a value different from current value to cause a previously read buffer descriptor to be read again
6298472, May 07 1999 Intel Corporation Behavioral silicon construct architecture and mapping
6301706, Dec 31 1997 Elbrus International Limited Compiler method and apparatus for elimination of redundant speculative computations from innermost loops
6311200, Sep 23 1999 Intel Corporation Reconfigurable program sum of products generator
6311265, Mar 25 1996 International Business Machines Corporation Apparatuses and methods for programming parallel computers
6321298,
6321366,
6321373,
6338106, Dec 20 1996 Scientia Sol Mentis AG I/O and memory bus system for DFPS and units with two or multi-dimensional programmable cell architectures
6339424, Nov 18 1997 Fuji Xerox Co., LTD Drawing processor
6339840, Jun 02 1997 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC Apparatus and method for parallelizing legacy computer code
6341318, Aug 10 1999 Intel Corporation DMA data streaming
6347346, Jun 30 1999 Intel Corporation Local memory unit system with global access for use on reconfigurable chips
6349346, Sep 23 1999 Intel Corporation Control fabric unit including associated configuration memory and PSOP state machine adapted to provide configuration address to reconfigurable functional unit
6353841, Dec 17 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Reconfigurable processor devices
6362650, May 18 2000 XILINX, Inc.; Xilinx, Inc Method and apparatus for incorporating a multiplier into an FPGA
6370596, Aug 03 1999 Intel Corporation Logic flag registers for monitoring processing system events
6373779, May 19 2000 XILINX, Inc. Block RAM having multiple configurable write modes for use in a field programmable gate array
6374286, Apr 06 1998 Rockwell Collins, Inc Real time processor capable of concurrently running multiple independent JAVA machines
6378068, May 17 1991 NEC Corporation Suspend/resume capability for a protected mode microprocesser
6381624, Apr 29 1999 SAMSUNG ELECTRONICS CO , LTD Faster multiply/accumulator
6389379, May 02 1997 Cadence Design Systems, INC Converification system and method
6389579, Jan 26 1998 Intel Corporation Reconfigurable logic for table lookup
6392912, Jan 10 2001 Intel Corporation Loading data plane on reconfigurable chip
6400601, Jun 30 1999 Renesas Electronics Corporation Nonvolatile semiconductor memory device
6404224, Dec 19 1995 Fujitsu Limited Chain-connected shift register and programmable logic circuit whose logic function is changeable in real time
6405185, Apr 06 1992 International Business Machines Corporation Massively parallel array processor
6405299, Feb 11 1997 Scientia Sol Mentis AG Internal bus system for DFPS and units with two- or multi-dimensional programmable cell architectures, for managing large volumes of data with a high interconnection complexity
6421808, Apr 24 1998 Cadence Design Systems, INC Hardware design language for the design of integrated circuits
6421809, Jul 24 1998 INTERUNIVERSITAIRE MICRO-ELEKTRONICA CENTRUM IMEC VZW Method for determining a storage bandwidth optimized memory organization of an essentially digital device
6421817, May 29 1997 XILINX, Inc.; Xilinx, Inc System and method of computation in a programmable logic device using virtual instructions
6425054, Aug 19 1996 Samsung Electronics Co., Ltd. Multiprocessor operation in a multimedia signal processor
6425068, Dec 09 1996 Scientia Sol Mentis AG UNIT FOR PROCESSING NUMERIC AND LOGIC OPERATIONS FOR USE IN CENTRAL PROCESSING UNITS (CPUS), MULTIPROCESSOR SYSTEMS, DATA-FLOW PROCESSORS (DSPS), SYSTOLIC PROCESSORS AND FIELD PROGRAMMABLE GATE ARRAYS (EPGAS)
6426649, Dec 29 2000 QuickLogic Corporation Architecture for field programmable gate array
6427156, Jan 21 1997 XILINX, Inc.; Xilinx, Inc Configurable logic block with AND gate for efficient multiplication in FPGAS
6430309, Sep 15 1995 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Specimen preview and inspection system
6434642, Oct 07 1999 XILINX, Inc.; Xilinx, Inc FIFO memory system and method with improved determination of full and empty conditions and amount of data stored
6434672, Feb 29 2000 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Methods and apparatus for improving system performance with a shared cache memory
6434695, Dec 23 1998 Apple Inc Computer operating system using compressed ROM image in RAM
6434699, Feb 27 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Encryption processor with shared memory interconnect
6437441, Jul 10 1997 KAWASAKI MICROELECTRONICS, INC Wiring structure of a semiconductor integrated circuit and a method of forming the wiring structure
6438747, Aug 20 1999 SAMSUNG ELECTRONICS CO , LTD Programmatic iteration scheduling for parallel processors
6449283, May 15 1998 Intellectual Ventures Holding 19, LLC Methods and apparatus for providing a fast ring reservation arbitration
6456628, Apr 17 1998 GENERAL ELECTRIC TECHNOLOGY DEVELOPMENT, INC GETD DSP intercommunication network
6457116, Oct 31 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Method and apparatus for controlling contexts of multiple context processing elements in a network of multiple context processing elements
6476634, Feb 01 2002 XILINX, Inc. ALU implementation in single PLD logic cell
6477643, Dec 27 1996 Scientia Sol Mentis AG Process for automatic dynamic reloading of data flow processors (dfps) and units with two-or-three-dimensional programmable cell architectures (fpgas, dpgas, and the like)
6480937, Feb 25 1998 Scientia Sol Mentis AG Method for hierarchical caching of configuration data having dataflow processors and modules having two-or multidimensional programmable cell structure (FPGAs, DPGAs, etc.)--
6480954, Aug 18 1995 Xilinx Inc. Method of time multiplexing a programmable logic device
6483343, Dec 29 2000 QuickLogic Corporation Configurable computational unit embedded in a programmable device
6487709, Feb 09 2000 XILINX, Inc.; Xilinx, Inc Run-time routing for programmable logic devices
6490695, Jan 22 1999 Oracle America, Inc Platform independent memory image analysis architecture for debugging a computer program
6496740, Apr 21 1999 Texas Instruments Incorporated Transfer controller with hub and ports architecture
6496902, Dec 31 1998 CRAY, INC Vector and scalar data cache for a vector multiprocessor
6496971, Feb 07 2000 XILINX, Inc.; Xilinx, Inc Supporting multiple FPGA configuration modes using dedicated on-chip processor
6504398, May 25 1999 Actel Corporation Integrated circuit that includes a field-programmable gate array and a hard gate array having the same underlying structure
6507898, Apr 30 1997 Canon Kabushiki Kaisha Reconfigurable data cache controller
6507947, Aug 20 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Programmatic synthesis of processor element arrays
6512804, Apr 07 1999 MACOM CONNECTIVITY SOLUTIONS, LLC Apparatus and method for multiple serial data synchronization using channel-lock FIFO buffers optimized for jitter
6513077, Dec 20 1996 Scientia Sol Mentis AG I/O and memory bus system for DFPs and units with two- or multi-dimensional programmable cell architectures
6516382, Dec 31 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device balanced switching circuit and method of controlling an array of transfer gates for fast switching times
6518787, Sep 21 2000 Xilinx, Inc Input/output architecture for efficient configuration of programmable input/output cells
6519674, Feb 18 2000 Intel Corporation Configuration bits layout
6523107, Dec 17 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Method and apparatus for providing instruction streams to a processing device
6525678, Oct 06 2000 Altera Corporation Configuring a programmable logic device
6526520, Feb 08 1997 Scientia Sol Mentis AG Method of self-synchronization of configurable elements of a programmable unit
6538468, Jul 31 2000 MONTEREY RESEARCH, LLC Method and apparatus for multiple boot-up functionalities for a programmable logic device (PLD)
6538470, Sep 18 2000 Altera Corporation Devices and methods with programmable logic and digital signal processing regions
6539415, Sep 24 1997 Sony Corporation; Sony Pictures Entertainment, Inc Method and apparatus for the allocation of audio/video tasks in a network system
6539438, Jan 15 1999 Quickflex Inc. Reconfigurable computing system and method and apparatus employing same
6539477, Mar 03 2000 Intel Corporation System and method for control synthesis using a reachable states look-up table
6542394, Jan 29 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Field programmable processor arrays
6542844, Aug 02 2000 International Business Machines Corporation Method and apparatus for tracing hardware states using dynamically reconfigurable test circuits
6542998, Feb 08 1997 Scientia Sol Mentis AG Method of self-synchronization of configurable elements of a programmable module
6553395, Dec 17 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Reconfigurable processor devices
6553479, Oct 31 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Local control of multiple context processing elements with major contexts and minor contexts
6567834, Dec 17 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Implementation of multipliers in programmable arrays
6571381, Feb 25 1998 Scientia Sol Mentis AG Method for deadlock-free configuration of dataflow processors and modules with a two- or multidimensional programmable cell structure (FPGAs, DPGAs, etc.)
6587939, Jan 13 1999 Kabushiki Kaisha Toshiba Information processing apparatus provided with an optimized executable instruction extracting unit for extending compressed instructions
6598128, Oct 01 1999 Renesas Electronics Corporation Microprocessor having improved memory management unit and cache memory
6606704, Aug 31 1999 Intel Corporation Parallel multithreaded processor with plural microengines executing multiple threads each microengine having loadable microcode
6624819, May 01 2000 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for providing a flexible and efficient processor for use in a graphics processing system
6625631, Sep 28 2001 Intel Corporation Component reduction in montgomery multiplier processing element
6631487, Sep 27 1999 Lattice Semiconductor Corporation On-line testing of field programmable gate array resources
6633181, Dec 30 1999 Xilinx, Inc Multi-scale programmable array
6657457, Mar 15 2000 Intel Corporation Data transfer on reconfigurable chip
6658564, Nov 20 1998 Altera Corporation Reconfigurable programmable logic device computer system
6665758, Oct 04 1999 NCR Voyix Corporation Software sanity monitor
6668237, Jan 17 2002 XILINX, Inc. Run-time reconfigurable testing of programmable logic devices
6681388, Oct 02 1998 MINISTER OF ECONOMY, TRADE AND INDUSTRY Method and compiler for rearranging array data into sub-arrays of consecutively-addressed elements for distribution processing
6687788, Feb 25 2000 Scientia Sol Mentis AG Method of hierarchical caching of configuration data having dataflow processors and modules having two-or multidimensional programmable cell structure (FPGAs, DPGAs , etc.)
6694434, Dec 23 1998 Entrust Corporation Method and apparatus for controlling program execution and program distribution
6697979, Dec 22 1997 Pact XPP Technologies AG Method of repairing integrated circuits
6704816,
6708223, Dec 11 1998 Microsoft Technology Licensing, LLC Accelerating a distributed component architecture over a network using a modified RPC communication
6708325, Jun 27 1997 Intel Corporation Method for compiling high level programming languages into embedded microprocessor with multiple reconfigurable logic
6717436, Sep 29 1999 Infineon Technologies AG Reconfigurable gate array
6721830, Dec 20 1996 Scientia Sol Mentis AG I/O and memory bus system for DFPs and units with two- or multi-dimensional programmable cell architectures
6725334, Jun 09 2000 SK HYNIX INC Method and system for exclusive two-level caching in a chip-multiprocessor
6728871, Oct 08 1997 Scientia Sol Mentis AG Runtime configurable arithmetic and logic cell
6745317, Jul 30 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Three level direct communication connections between neighboring multiple context processing elements
6748440, May 12 1999 Microsoft Technology Licensing, LLC Flow of streaming data through multiple processing modules
6751722, Oct 31 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Local control of multiple context processing elements with configuration contexts
6754805, Aug 07 2000 DIVAN INDUSTRIES, LLC Method and apparatus for configurable multi-cell digital signal processing employing global parallel configuration
6757847, Dec 29 1998 GOOGLE LLC Synchronization for system analysis
6757892, Jun 24 1999 SRI International Method for determining an optimal partitioning of data among several memories
6782445, Jun 15 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Memory and instructions in computer architecture containing processor and coprocessor
6785826, Jul 17 1996 International Business Machines Corporation Self power audit and control circuitry for microprocessor functional units
6802026, May 15 2001 XILINX, Inc. Parameterizable and reconfigurable debugger core generators
6803787, Sep 25 2002 Lattice Semiconductor Corp. State machine in a programmable logic device
6820188, Dec 17 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Method and apparatus for varying instruction streams provided to a processing device using masks
6829697, Sep 06 2000 International Business Machines Corporation Multiple logical interfaces to a shared coprocessor resource
6836842, Apr 24 2001 XILINX, Inc.; Xilinx, Inc Method of partial reconfiguration of a PLD in which only updated portions of configuration data are selected for reconfiguring the PLD
6847370, Feb 20 2001 XUESHAN TECHNOLOGIES INC Planar byte memory organization with linear access
6859869, Nov 17 1995 Pact XPP Technologies AG Data processing system
6868476, Aug 27 2001 Intel Corporation Software controlled content addressable memory in a general purpose execution datapath
6871341, Mar 24 2000 Intel Corporation Adaptive scheduling of function cells in dynamic reconfigurable logic
6874108, Aug 27 2001 Bell Semiconductor, LLC Fault tolerant operation of reconfigurable devices utilizing an adjustable system clock
6886092, Nov 19 2001 XILINX, Inc. Custom code processing in PGA by providing instructions from fixed logic processor portion to programmable dedicated processor portion
6901502, Dec 06 2000 Matsushita Electric Industrial Co., Ltd. Integrated circuit with CPU and FPGA for reserved instructions execution with configuration diagnosis
6928523, Jul 25 2000 Renesas Technology Corp Synchronous signal producing circuit for controlling a data ready signal indicative of end of access to a shared memory and thereby controlling synchronization between processor and coprocessor
6957306, Sep 09 2002 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD System and method for controlling prefetching
6961924, May 21 2002 International Business Machines Corporation Displaying variable usage while debugging
6975138, Sep 04 1996 MICROSEMI SOC CORP Method and apparatus for universal program controlled bus architecture
6977649, Nov 23 1998 RPX Corporation 3D graphics rendering with selective read suspend
7000161, Oct 15 2001 Altera Corporation Reconfigurable programmable logic system with configuration recovery mode
7007096, May 12 1999 Microsoft Technology Licensing, LLC Efficient splitting and mixing of streaming-data frames for processing through multiple processing modules
7010667, Feb 11 1998 Pact XPP Technologies AG Internal bus system for DFPS and units with two- or multi-dimensional programmable cell architectures, for managing large volumes of data with a high interconnection complexity
7010687, Mar 14 2000 Sony Corporation Transmission apparatus, reception apparatus, transmission method, reception method and recording medium
7028107, Dec 27 1996 Scientia Sol Mentis AG Process for automatic dynamic reloading of data flow processors (DFPS) and units with two- or three- dimensional programmable cell architectures (FPGAS, DPGAS, and the like)
7036114, Aug 17 2001 Oracle America, Inc Method and apparatus for cycle-based computation
7038952, May 04 2004 XILINX, Inc. Block RAM with embedded FIFO buffer
7043416, Jul 27 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD System and method for state restoration in a diagnostic module for a high-speed microprocessor
7144152, Aug 23 2002 Sony Corporation of America Apparatus for thermal management of multiple core microprocessors
7155708, Oct 31 2002 FG SRC LLC Debugging and performance profiling using control-dataflow graph representations with reconfigurable hardware emulation
7164422, Jul 28 2000 Ab Initio Software LLC; Architecture LLC; Ab Initio Technology LLC Parameterized graphs with conditional components
7210129, Aug 16 2001 Scientia Sol Mentis AG Method for translating programs for reconfigurable architectures
7216204, Aug 27 2001 Intel Corporation Mechanism for providing early coherency detection to enable high performance memory updates in a latency sensitive multithreaded environment
7237087, Dec 09 1996 Scientia Sol Mentis AG Reconfigurable multidimensional array processor allowing runtime reconfiguration of selected individual array cells
7249351, Aug 30 2000 Qualcomm Incorporated System and method for preparing software for execution in a dynamically configurable hardware environment
7254649, Jan 28 2000 Infineon Technologies AG Wireless spread spectrum communication platform using dynamically reconfigurable logic
7340596, Jun 12 2000 Altera Corporation Embedded processor with watchdog timer for programmable logic
7346644, Sep 18 2000 Altera Corporation Devices and methods with programmable logic and digital signal processing regions
7350178, Jun 12 2000 Altera Corporation Embedded processor with watchdog timer for programmable logic
7382156, Sep 04 1996 MICROSEMI SOC CORP Method and apparatus for universal program controlled bus architecture
7455450, Oct 07 2005 Advanced Micro Devices, Inc. Method and apparatus for temperature sensing in integrated circuits
7595659, Oct 09 2000 Scientia Sol Mentis AG Logic cell array and bus system
7650448, Dec 20 1996 Scientia Sol Mentis AG I/O and memory bus system for DFPS and units with two- or multi-dimensional programmable cell architectures
7657877, Jun 20 2001 Scientia Sol Mentis AG Method for processing data
7759968, Sep 27 2006 XILINX, Inc. Method of and system for verifying configuration data
7873811, Mar 10 2003 The United States of America as represented by the United States Department of Energy Polymorphous computing fabric
20010001860,
20010003834,
20010010074,
20010018733,
20020004916,
20020010853,
20020013861,
20020032305,
20020038414,
20020045952,
20020051482,
20020073282,
20020083308,
20020099759,
20020103839,
20020124238,
20020138716,
20020143505,
20020144229,
20020147932,
20020152060,
20020156962,
20020162097,
20020165886,
20030001615,
20030014743,
20030046607,
20030052711,
20030055861,
20030056062,
20030056085,
20030056091,
20030056202,
20030061542,
20030062922,
20030070059,
20030086300,
20030093662,
20030097513,
20030123579,
20030135686,
20030154349,
20030192032,
20030226056,
20040015899,
20040025005,
20040039880,
20040078548,
20040088689,
20040088691,
20040168099,
20040199688,
20050066213,
20050091468,
20050144210,
20050144212,
20050144215,
20060036988,
20060095716,
20060230094,
20060230096,
20070050603,
20070083730,
20070143577,
20080313383,
20090085603,
20090193384,
20100306602,
DE10028397,
DE10036627,
DE10129237,
DE10204044,
DE19651075,
DE19654593,
DE19654595,
DE19654846,
DE19704044,
DE19704728,
DE19704742,
DE19807872,
DE19822776,
DE19861088,
DE19926538,
DE3855673,
DE4221278,
DE4416881,
DE44168810,
EP208457,
EP221350,
EP221360,
EP398552,
EP428327,
EP463721,
EP477809,
EP485690,
EP497029,
EP539595,
EP628917,
EP638867,
EP678985,
EP686915,
EP696001,
EP707269,
EP726532,
EP735685,
EP746106,
EP748051,
EP835685,
EP926594,
EP1061439,
EP1102674,
EP1115204,
EP1146432,
EP1669885,
EP726532,
EP748051,
FR2752466,
GB2304438,
JP1044571,
JP11046187,
JP11184718,
JP11307725,
JP1229378,
JP2000076066,
JP2000181566,
JP2000201066,
JP2000311156,
JP2001167066,
JP2001236221,
JP2001500682,
JP2001510650,
JP20020033457,
JP2130023,
JP2226423,
JP3961028,
JP5265705,
JP5276007,
JP5509184,
JP58058672,
JP6266605,
JP7086921,
JP7154242,
JP7182160,
JP7182167,
JP8044581,
JP8069447,
JP8101761,
JP8102492,
JP8106443,
JP8148989,
JP8221164,
JP8250685,
JP9027745,
JP9237284,
JP9294069,
RE34363, Mar 12 1984 XILINX, Inc. Configurable electrical circuit having configurable logic elements and configurable interconnects
RE34444, Jul 03 1991 XILINX, Inc. Programmable logic device
RE36839, Feb 14 1995 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Method and apparatus for reducing power consumption in digital electronic circuits
RE37195, May 02 1995 XILINX, Inc. Programmable switch for FPGA input/output signals
WO707269,
WO9004835,
WO9311503,
WO9500161,
WO17771,
WO38087,
WO45282,
WO49496,
WO77652,
WO155917,
WO2071196,
WO2071248,
WO2071249,
WO2103532,
WO213000,
WO221010,
WO229600,
WO250665,
WO3017095,
WO3023616,
WO3025781,
WO3032975,
WO3036507,
WO3091875,
WO2004053718,
WO2004114128,
WO2005045692,
WO2007030395,
WO9004835,
WO9011648,
WO9201987,
WO9311503,
WO9406077,
WO9408399,
WO9526001,
WO9810517,
WO9826356,
WO9828697,
WO9829952,
WO9831102,
WO9835294,
WO9835299,
WO9900731,
WO9900739,
WO9912111,
WO9932975,
WO9940522,
WO9944120,
WO9944147,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 17 2014RICHTER, THOMASPact XPP Technologies AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0322250089 pdf
Jan 17 2014KRASS, MARENPact XPP Technologies AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0322250089 pdf
Mar 15 2018Pact XPP Technologies AGScientia Sol Mentis AGASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0455320745 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jul 09 20164 years fee payment window open
Jan 09 20176 months grace period start (w surcharge)
Jul 09 2017patent expiry (for year 4)
Jul 09 20192 years to revive unintentionally abandoned end. (for year 4)
Jul 09 20208 years fee payment window open
Jan 09 20216 months grace period start (w surcharge)
Jul 09 2021patent expiry (for year 8)
Jul 09 20232 years to revive unintentionally abandoned end. (for year 8)
Jul 09 202412 years fee payment window open
Jan 09 20256 months grace period start (w surcharge)
Jul 09 2025patent expiry (for year 12)
Jul 09 20272 years to revive unintentionally abandoned end. (for year 12)