A wafer transfer apparatus is provided. In a minimum transformed state where a robot arm is transformed such that a distance defined from a pivot axis to an arm portion, which is farthest in a radial direction relative to the pivot axis, is minimum, a minimum rotation radius r, is set to exceed ½ of a length B in the forward and backward directions of an interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion, and is further set to be equal to or less than a subtracted value obtained by subtracting a distance L0 in the forward and backward directions from the rear wall of the interface space forming portion to the pivot axis, from the length B in the forward and backward directions of the interface space (i.e., B/2<R≤B−L0).

Patent
   RE47145
Priority
Jul 20 2006
Filed
May 18 2017
Issued
Nov 27 2018
Expiry
Jul 18 2027

TERM.DISCL.
Assg.orig
Entity
Large
337
51
all paid
0. 26. A wafer transfer apparatus for transferring a wafer, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged at a predetermined interval in forward and backward directions, the front wall having a front opening formed therein, and the rear wall having a rear opening formed therein;
a wafer carrying robot located in the interface space and configured to carry the wafer between the front opening and the rear opening; and
a foup opener including an opener-side door, the foup opener being configured to open and close a wafer container which includes a foup-side door and is located adjacent to the interface space and the front opening of the interface space forming portion, the foup opener being configured to open and close the opener-side door and the foup-side door, and movement of the foup opener during such opening and closing defining a robot invasion restricted region extending in the forward and backward directions,
wherein the wafer carrying robot includes:
a base which is positioned relative to the interface space forming portion and at which a predetermined pivot axis is set,
a robot arm having a proximal end and a distal end, the robot arm including a plurality of link members connected with one another in succession in a direction from the proximal end to the distal end, the proximal end being connected with the base, the distal end being provided with a robot hand for holding the wafer, the robot arm being configured to be angularly displaced about the pivot axis, and
a drive unit configured to drive the robot arm,
wherein a first link distance l1 is defined as a distance from the pivot axis to an end of a first link member that extends from the proximal end, the end of the first link member being farthest in a radial direction toward a first joint axis of the first link member relative to the pivot axis, and the first link distance l1 is set to exceed ½ of a length between the front opening and the rear opening in the forward and backward directions, and
the first link distance l1 is set (i) to be equal to or less than a length between the opener-side door and the rear opening in the forward and backward directions, and (ii) so that the first link member cannot enter the robot invasion restricted region.
0. 25. A wafer transfer apparatus for transferring a wafer, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged at a predetermined interval in forward and backward directions, the front wall having a front opening formed therein, and the rear wall having a rear opening formed therein;
a wafer carrying robot located in the interface space and configured to carry the wafer between the front opening and the rear opening; and
a foup opener including an opener-side door, the foup opener being configured to open and close a wafer container which includes a foup-side door and is located adjacent to the interface space and the front opening of the interface space forming portion, the foup opener being configured to open and close the opener-side door and the foup-side door, and movement of the foup opener during such opening and closing defining a robot invasion restricted region extending in the forward and backward directions,
wherein the wafer carrying robot includes:
a base which is positioned relative to the interface space forming portion and at which a predetermined pivot axis is set,
a robot arm having a proximal end and a distal end, the robot arm including a plurality of link members connected with one another in succession in a direction from the proximal end to the distal end, the proximal end being connected with the base, the distal end being provided with a robot hand for holding the wafer, the robot arm being configured to be angularly displaced about the pivot axis, and
a drive unit configured to drive the robot arm,
wherein, in a minimum transformed state where the robot arm is transformed such that a distance defined from the pivot axis to an arm portion which is farthest in a radial direction relative to the pivot axis is minimum, a minimum rotation radius r, as the distance defined from the pivot axis to the arm portion which is the farthest in the radial direction relative to the pivot axis, is set to exceed ½ of a length between the front opening and the rear opening in the forward and backward directions, and
the minimum rotation radius r is set (i) to be equal to or less than a length between the opener-side door and the rear opening in the forward and backward directions, and (ii) so that the robot arm in the minimum transformed state cannot enter the robot invasion restricted region.
0. 16. A wafer transfer apparatus for transferring a wafer, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged at a predetermined interval in forward and backward directions, the front wall having a front opening formed therein, and the rear wall having a rear opening formed therein;
a foup opener configured to open and close a wafer container located adjacent to the interface space and the front opening of the interface space forming portion; and
a wafer carrying robot located in the interface space and configured to carry the wafer between the front opening and the rear opening,
wherein the wafer carrying robot includes:
a base which is fixed to the interface space forming portion and at which a predetermined pivot axis is set,
a robot arm having a proximal end and a distal end, the robot arm including a plurality of link members connected with one another in succession in a direction from the proximal end to the distal end, the proximal end being connected with the base, the distal end being provided with a robot hand for holding the wafer, the robot arm being configured to be angularly displaced about the pivot axis, and
a drive unit configured to drive the robot arm,
wherein a first link distance l1 is defined as a distance from the pivot axis to an end of a first link member that extends from the proximal end, the end of the first link member being farthest in a radial direction toward a first joint axis of the first link member relative to the pivot axis, and the first link distance l1 is set to exceed ½ of a length B in the forward and backward directions of the interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion (i.e., B/2<l1),
the first link distance l1 is set to be equal to or less than an allowable length (B−E) to be obtained by subtracting a length E of a robot invasion restricted region, which is set for the foup opener and is measured from the front wall in the forward and backward directions toward the rear wall, from the length B (i.e., L1≤B−E), and the first link distance l1 is set so that the first link member cannot enter the robot invasion restricted region, and
the robot invasion restricted region is defined by a distance which the foup opener moves in the forward and backward directions of the interface space, wherein the foup opener opens and closes an opener-side door and a foup-side door.
0. 15. A wafer transfer apparatus for transferring a wafer, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged at a predetermined interval in forward and backward directions, the front wall having a front opening formed therein, and the rear wall having a rear opening formed therein;
a foup opener configured to open and close a wafer container located adjacent to the interface space and the front opening of the interface space forming portion; and
a wafer carrying robot located in the interface space and configured to carry the wafer between the front opening and the rear opening,
wherein the wafer carrying robot includes:
a base which is fixed to the interface space forming portion and at which a predetermined pivot axis is set,
a robot arm having a proximal end and a distal end, the robot arm including a plurality of link members connected with one another in succession in a direction from the proximal end to the distal end, the proximal end being connected with the base, the distal end being provided with a robot hand for holding the wafer, the robot arm being configured to be angularly displaced about the pivot axis, and
a drive unit configured to drive the robot arm,
wherein, in a minimum transformed state where the robot arm is transformed such that a distance defined from the pivot axis to an arm portion which is farthest in a radial direction relative to the pivot axis is minimum, a minimum rotation radius r, as the distance defined from the pivot axis to the arm portion which is the farthest in the radial direction relative to the pivot axis, is set to exceed ½ of a length B in the forward and backward directions of the interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion (i.e., B/2<r),
the minimum rotation radius r is set to be equal to or less than an allowable length (B−E) to be obtained by subtracting a length E of a robot invasion restricted region, which is set for the foup opener and is measured from the front wall in the forward and backward directions toward the rear wall, from the length B (i.e., R≤B−E), and the minimum rotation radius r is set so that the robot arm in the minimum transformed state cannot enter the robot invasion restricted region, and
the robot invasion restricted region is defined by a distance which the foup opener moves in the forward and backward directions of the interface space, wherein the foup opener opens and closes an opener-side door and a foup-side door.
0. 1. A wafer transfer apparatus for transferring a wafer, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged at a predetermined interval in forward and backward directions, the front wall having a front opening formed therein, and the rear wall having a rear opening formed therein;
a foup opener configured to open and close the substrate container located adjacent to the interface space and the front opening of the interface space forming portion; and
a wafer carrying robot located in the interface space and configured to carry the wafer between the front opening and the rear opening,
wherein the wafer carrying robot includes:
a base which is fixed to the interface space forming portion and at which a predetermined pivot axis is set;
a robot arm having a proximal end and a distal end, the robot arm including a plurality of link members connected with one another in succession in a direction from the proximal end to the distal end, the proximal end being connected with the base, the distal end being provided with a robot hand for holding the wafer, the robot arm being configured to be angularly displaced about the pivot axis; and
a drive unit configured to drive each of the link members of the robot arm so that the link members are angularly displaced, individually, about each corresponding axis,
wherein, in a minimum transformed state where the robot arm is transformed such that a distance defined from the pivot axis to an arm portion which is farthest in a radial direction relative to the pivot axis is minimum, a minimum rotation radius r, as the distance defined from the pivot axis to the arm portion which is the farthest in the radial direction relative to the pivot axis, is set to exceed ½ of a length B in the forward and backward directions of the interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion, and is further set to be equal to or less than a subtracted value (B−L0) to be obtained by subtracting a distance L0 in the forward and backward directions from the rear wall of the interface space forming portion to the pivot axis, from the length B in the forward and backward directions of the interface space (i.e., B/2<R≤B−L0), and
the minimum rotation radius r is set to be equal to or less than an allowable length (B−L0−E) to be obtained by subtracting the distance L0 in the forward and backward directions from the rear wall of the interface space forming portion to the pivot axis and a length E of a robot invasion restricted region, which is set for the foup opener and is measured from the front wall in the forward and backward directions toward the rear wall, from the length B in the forward and backward directions of the interface space (i.e., R<B−L0−E).
0. 2. The wafer transfer apparatus according to claim 1, wherein the robot arm includes:
a first link member which is connected at its one end with the base, configured to be angularly displaced about the pivot axis, and at which a first joint axis is set in parallel to the pivot axis;
a second link member which is connected at its one end with an other end of the first link member, configured to be angularly displaced about the first joint axis, and at which a second pivot axis is set in parallel to the pivot axis; and
a third link member which is connected at its one end with an other end of the second link member, configured to be angularly displaced about the second joint axis, and includes the robot hand at an other end of the third link member for holding the wafer,
wherein a first link distance L1 defined as a distance from the pivot axis to an end of the first link member, which is farthest in a radial direction toward the first joint axis relative to the pivot axis, is set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E) (i.e., ((B−L0−E)/2<L1≤B−L0−E).
0. 3. The wafer transfer apparatus according to claim 2,
wherein a first axis-to-axis distance L11 from the pivot axis to the first joint axis and a second axis-to-axis distance L12 from the first joint axis to the second joint axis are set to be equal to each other, and
wherein a second link distance L2 defined as a distance from the second joint axis to an end of the second link member, which is farthest in a direction toward the first joint axis relative to the second joint axis, is set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E).
0. 4. The wafer transfer apparatus according to claim 3, wherein a third link distance L3 defined as a distance from the second joint axis to an end of the third link member or a portion of the wafer, which is farthest in a radial direction relative to the second joint axis, is set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E).
0. 5. The wafer transfer apparatus according to claim 4, wherein the first link distance L1, the second link distance L2 and the third link distance L3 are respectively set to be equal to the allowable length (B−L0−E).
0. 6. The wafer transfer apparatus according to claim 1,
wherein the front opening includes four openings which are formed in the interface space forming portion, the four openings being arranged in left and right directions orthogonal to both the forward and backward directions and a direction of the pivot axis, and
wherein the foup opener includes four openers which are provided in order to open and close the four openings, respectively.
0. 7. A substrate transfer apparatus for transferring a substrate, relative to a substrate processing apparatus for processing the substrate, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged in predetermined forward and backward directions at an interval, the front wall having a first transfer port formed therein, and the rear wall having a second transfer port formed therein;
an opening and closing unit configured to open and close the first transfer port of the interface space forming portion; and
a substrate carrying robot located in the interface space and configured to carry the substrate between the first transfer port and the second transfer port,
wherein the substrate carrying robot includes:
a base which is fixed to the interface space forming portion and at which a predetermined pivot axis is set;
a first link member which is connected at its one end with the base, configured to be angularly displaced about the pivot axis, and at which a first joint axis is set in parallel to the pivot axis;
a second link member which is connected at its one end with an other end of the first link member, configured to be angularly displaced about the first joint axis, and at which a second pivot axis is set in parallel to the pivot axis;
a third link member which is connected at its one end with an other end of the second link member, configured to be angularly displaced about the second joint axis, and includes a robot hand at an other end thereof for holding the substrate; and
a drive unit configured to drive each of the link members so that the link members are angularly displaced, individually, about each corresponding axis,
wherein the pivot axis is located nearer to the rear wall than to the front wall or nearer to the front wall than to the rear wall in the forward and backward directions, and
wherein a first link distance L1 defined as a distance from the pivot axis to an end of the first link member, which is farthest in a radial direction toward the first joint axis relative to the pivot axis, is set to exceed ½ of a length B in the forward and backward directions of the interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion, and is further set to be equal to or less than a subtracted value (B−L0) to be obtained by subtracting a distance L0 in the forward and backward directions from the rear wall of the interface space forming portion to the pivot axis, from the length B in the forward and backward directions of the interface space (i.e., B/2<L1≤B−L0), and
the first link distance L1 is set to be equal to or less than an allowable length (B−L0−E) to be obtained by subtracting the distance L0 in the forward and backward directions from the rear wall of the interface space forming portion to the pivot axis and a length E of a robot invasion restricted region, which is set for the foup opener and is measured from the front wall in the forward and backward directions toward the rear wall, from the length B in the forward and backward directions of the interface space (i.e., L1≤B−L0−E).
0. 8. A wafer transfer apparatus for transferring a wafer, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged at a predetermined interval in forward and backward directions, the front wall having a front opening formed therein, and the rear wall having a rear opening formed therein;
a foup opener configured to open and close the substrate container located adjacent to the interface space and the front opening of the interface space forming portion; and
a wafer carrying robot located in the interface space and configured to carry the wafer between the front opening and the rear opening,
wherein the wafer carrying robot includes:
a base which is fixed to the interface space forming portion and at which a predetermined pivot axis is set;
a robot arm having a proximal end and a distal end, the robot arm including a plurality of link members connected with one another in succession in a direction from the proximal end to the distal end, the proximal end being connected with the base, the distal end being provided with a robot hand for holding the wafer, the robot arm being configured to be angularly displaced about the pivot axis; and
a drive unit configured to drive each of the link members of the robot arm so that the link members are angularly displaced, individually, about each corresponding axis,
wherein, in a minimum transformed state where the robot arm is transformed such that a distance defined from the pivot axis to an arm portion which is farthest in a radial direction relative to the pivot axis is minimum, a minimum rotation radius r, as the distance defined from the pivot axis to the arm portion which is the farthest in the radial direction relative to the pivot axis, is set to exceed ½ of a length B in the forward and backward directions of the interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion, and is further set to be equal to or less than a subtracted value (B−L0) to be obtained by subtracting a distance L0 set to be greater by a predetermined gap length Q than a radius T2 of an outer circumference of the first link member about the pivot axis (L0=T2+Q), from the length B in the forward and backward directions of the interface space (i.e., B/2<R≤B−L0), and
the minimum rotation radius r is set to be equal to or less than an allowable length (B−L0−E) to be obtained by subtracting the distance L0 set to be greater by the predetermined gap length Q than the radius T2 of an outer circumference of the first link member about the pivot axis and a length E of a robot invasion restricted region, which is set for the foup opener and is measured from the front wall in the forward and backward directions toward the rear wall, from the length B in the forward and backward directions of the interface space (i.e., R<B−L0−E).
0. 9. The wafer transfer apparatus according to claim 8, wherein the robot arm includes:
a first link member which is connected at its one end with the base, configured to be angularly displaced about the pivot axis, and at which a first joint axis is set in parallel to the pivot axis;
a second link member which is connected at its one end with an other end of the first link member, configured to be angularly displaced about the first joint axis, and at which a second pivot axis is set in parallel to the pivot axis; and
a third link member which is connected at its one end with an other end of the second link member, configured to be angularly displaced about the second joint axis, and includes the robot hand at an other end of the third link member for holding the wafer,
wherein a first link distance L1 defined as a distance from the pivot axis to an end of the first link member, which is farthest in a radial direction toward the first joint axis relative to the pivot axis, is set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E) (i.e., ((B−L0−E)/2<L1≤B−L0−E).
0. 10. The wafer transfer apparatus according to claim 9,
wherein a first axis-to-axis distance L11 from the pivot axis to the first joint axis and a second axis-to-axis distance L12 from the first joint axis to the second joint axis are set to be equal to each other, and
wherein a second link distance L2 defined as a distance from the second joint axis to an end of the second link member, which is farthest in a direction toward the first joint axis relative to the second joint axis, is set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E).
0. 11. The wafer transfer apparatus according to claim 10, wherein a third link distance L3 defined as a distance from the second joint axis to an end of the third link member or a portion of the wafer, which is farthest in a radial direction relative to the second joint axis, is set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E).
0. 12. The wafer transfer apparatus according to claim 11, wherein the first link distance L1, the second link distance L2 and the third link distance L3 are respectively set to be equal to the allowable length (B−L0−E).
0. 13. The wafer transfer apparatus according to claim 8,
wherein the front opening includes four openings which are formed in the interface space forming portion, the four openings being arranged in left and right directions orthogonal to both the forward and backward directions and a direction of the pivot axis, and
wherein the foup opener includes four openers which are provided in order to open and close the four openings, respectively.
0. 14. A substrate transfer apparatus for transferring a substrate, relative to a substrate processing apparatus for processing the substrate, comprising:
an interface space forming portion defining an interface space, the interface space forming portion having a front wall and a rear wall which are arranged in predetermined forward and backward directions at an interval, the front wall having a first transfer port formed therein, and the rear wall having a second transfer port formed therein;
an opening and closing unit configured to open and close the first transfer port of the interface space forming portion; and
a substrate carrying robot located in the interface space and configured to carry the substrate between the first transfer port and the second transfer port,
wherein the substrate carrying robot includes:
a base which is fixed to the interface space forming portion and at which a predetermined pivot axis is set;
a first link member which is connected at its one end with the base, configured to be angularly displaced about the pivot axis, and at which a first joint axis is set in parallel to the pivot axis;
a second link member which is connected at its one end with an other end of the first link member, configured to be angularly displaced about the first joint axis, and at which a second pivot axis is set in parallel to the pivot axis;
a third link member which is connected at its one end with an other end of the second link member, configured to be angularly displaced about the second joint axis, and includes a robot hand at an other end thereof for holding the substrate; and
a drive unit configured to drive each of the link members so that the link members are angularly displaced, individually, about each corresponding axis,
wherein the pivot axis is located nearer to the rear wall than to the front wall or nearer to the front wall than to the rear wall in the forward and backward directions, and
wherein a first link distance L1 defined as a distance from the pivot axis to an end of the first link member, which is farthest in a radial direction toward the first joint axis relative to the pivot axis, is set to exceed ½ of a length B in the forward and backward directions of the interface space, the length B corresponding to a length between the front wall and the rear wall of the interface space forming portion, and is further set to be equal to or less than a subtracted value (B−L0) to be obtained by subtracting a distance L0 set to be greater by a predetermined gap length Q than a radius T2 of an outer circumference of the first link member about the pivot axis (L0=T2+Q), from the length B in the forward and backward directions of the interface space (i.e., B/2<L1≤B−L0), and
the first link distance L1 is set to be equal to or less than an allowable length (B−L0−E) to be obtained by subtracting the distance L0 set to be greater by the predetermined gap length Q than the radius T2 of an outer circumference of the first link member about the pivot axis and a length E of a robot invasion restricted region, which is set for the foup opener and is measured from the front wall in the forward and backward directions toward the rear wall, from the length B in the forward and backward directions of the interface space (i.e., L1≤B−L0−E).
0. 17. The wafer transfer apparatus according to claim 15, wherein
the minimum rotation radius r is further set to be equal to or less than a second allowable length (B−E−L0) to be obtained by subtracting (i) the length E of the robot invasion restricted region and (ii) a distance L0 set equal to Q+T2 where Q is a predetermined gap length and T2 is a distance from the pivot axis to an outer surface of a first link member of the plurality of link members that is adjacent one of the front and rear walls, from the length B (i.e., R≤B−E−L0).
0. 18. The wafer transfer apparatus according to claim 17, wherein
the predetermined gap length Q defines a space that is separate from a space defined by the length E of the robot invasion restricted region, and the predetermined gap length Q is the length of a gap provided to prevent interference that would be otherwise caused by the robot.
0. 19. The wafer transfer apparatus according to claim 18, wherein
the outer surface of the first link member adjacent the one of the front and rear walls is on an opposite side of the pivot axis with respect to a first joint axis, the first link member and a second link member of the plurality of link members being arranged to pivot relative to each other about the first joint axis.
0. 20. The wafer transfer apparatus according to claim 19, wherein
the predetermined gap length Q extends from the outer surface and in a direction toward the adjacent one of the front and rear walls.
0. 21. The wafer transfer apparatus according to claim 16, wherein
the first link distance l1 is further set to be equal to or less than a second allowable length (B−E−L0) to be obtained by subtracting (i) the length E of the robot invasion restricted region and (ii) a distance L0 set equal to Q+T2 where Q is a predetermined gap length and T2 is a distance from the pivot axis to an outer surface of the first link member that is adjacent one of the front and rear walls, from the length B (i.e., L1≤B−E−L0).
0. 22. The wafer transfer apparatus according to claim 21, wherein
the predetermined gap length Q defines a space that is separate from a space defined by the length E of the robot invasion restricted region, and the predetermined gap length Q is the length of a gap provided to prevent interference that would be otherwise caused by the robot.
0. 23. The wafer transfer apparatus according to claim 22, wherein
the outer surface of the first link member adjacent the one of the front and rear walls is on an opposite side of the pivot axis with respect to the first joint axis, the first link member and a second link member of the plurality of link members being arranged to pivot relative to each other about the first joint axis.
0. 24. The wafer transfer apparatus according to claim 23, wherein
the predetermined gap length Q extends from the outer surface and in a direction toward the adjacent one of the front and rear walls.
0. 27. The wafer transfer apparatus according to claim 15, wherein
the front opening includes a plurality of front openings,
the foup opener includes a plurality of foup openers configured to open and close a plurality of wafer containers, and
the length E of the robot invasion restricted region is set for the plurality of foup openers.
0. 28. The wafer transfer apparatus according to claim 27, wherein
the plurality of foup openers is four foup openers.
0. 29. The wafer transfer apparatus according to claim 25, wherein
the front opening includes a plurality of front openings,
the foup opener includes a plurality of foup openers configured to open and close a plurality of wafer containers,
a length of the robot invasion restricted region is “E,” and
the length E of the robot invasion restricted region is set for the plurality of foup openers.
0. 30. The wafer transfer apparatus according to claim 29, wherein
the plurality of foup openers is four foup openers.
0. 31. The wafer transfer apparatus according to claim 25, wherein
the length between the front opening and the rear opening is “B,” a length of the robot invasion restricted region is “E,” and the minimum rotation radius r is further set to be equal to or less than an allowable length (B−E−L0) to be obtained by subtracting (i) the length E of the robot invasion restricted region and (ii) a distance L0 set equal to Q+T2 where Q is a predetermined gap length and T2 is a distance from the pivot axis to an outer surface of a first link member of the plurality of link members that is adjacent one of the front and rear walls, from the length B (i.e., R≤B−E−L0).
0. 32. The wafer transfer apparatus according to claim 26, wherein
the length between the front opening and the rear opening is “B,” a length of the robot invasion restricted region is “E,” and the first link distance l1 is further set to be equal to or less than an allowable length (B−E−L0) to be obtained by subtracting (i) the length E of the robot invasion restricted region and (ii) a distance L0 set equal to Q+T2 where Q is a predetermined gap length and T2 is a distance from the pivot axis to an outer surface of the first link member that is adjacent one of the front and rear walls, from the length B (i.e., L1≤B−E−L0).

For example, in the case where C=0, θ=0, and W=505 mm, each axis-to-axis distance L11, L12 is equal to or greater than 437.3 mm. Now, assume that the length E of the robot invasion restricted region in the forward and backward directions X, which is set for each FOUP opener 26 and is measured from the front wall 110 on the rear wall side, is 100 mm. In addition, assume that the distance L0 in the forward and backward directions from the rear wall 111 to the pivot axis A0 is 65 mm, and that a distance L10 (R−L11) to be obtained by subtracting the first axis-to-axis distance L11 from the minimum rotation radius R of the robot is 50 mm. The resultant length B in the forward and backward directions of the interface space is equal to or greater than 652.3 mm (i.e., B≥L11+E+L0+L10). In other words, if the length B in the forward and backward directions of the interface space is 652.3 mm, the wafer 24 contained in each of the first and fourth FOUPs 25a, 25d supported by each corresponding FOUP opener 26a, 26d can be taken out, by setting each axis-to-axis distance L11, L12 at 437.3 mm. Of course, the wafer 24 contained in each of the second and third FOUPs 25b, 25c, which are located nearer to the pivot axis A0 than the first and fourth FOUPs 25a, 25d, can also be taken out.

In this embodiment, the length B in the forward and backward directions of the interface space is 694 mm. The minimum rotation radius R of the robot is set at 485 mm, and the first axis-to-axis distance L11 and the second axis-to-axis distance L12 are each set at 425 mm. In the state wherein the wafer 24 is held by the robot hand 40, the distance H from the second joint axis A2 to the wafer central position A3 is set at 320 mm. In addition, the third link distance L3 is set at 470 mm.

For example, if θ=5°, H=330 mm, and the other conditions are the same as described above, each axis-to-axis L11, L12 to be obtained is equal to or greater than 420.4 mm, and the length B in the forward and backward directions of the interface space is to be equal to or greater than 635.4 mm. Alternatively, if C=10 mm, θ=5°, H=330 mm, and the other conditions are the same as described above, each axis-to-axis L11, L12 to be obtained is equal to or greater than 417.5 mm and the length B in the forward and backward directions of the interface space is to be equal to or greater than 632.5 mm.

By inclining the longitudinal direction of the third link member 41c relative to the forward and backward directions X in the state wherein the robot hand 40 reaches the wafer 24, the wafer contained in each FOUP 25a to 25d can be taken out without unduely extending the first link member 41a and the second link member 41b.

In the embodiment described above, due to the pivot axis A0 arranged near the rear wall 111 and due to the minimum rotation radius R of the robot arm 41, which is set to exceed ½ of the subtracted value (B−L0) and to be equal to or less than the subtracted value (B−L0), a gap can be securely provided between the robot arm 41, which is in the minimum transformed state, and the front wall 101, as such preventing interference of the robot arm 41 with the front wall 101. Accordingly, the robot hand 40 can be located, on both sides in the left and right directions Y, with respect to a reference line P0 extending in the forward and backward directions X and including the pivot axis A0.

In addition, since the robot arm 41 can be operated in an operational range excluding such a range that would potentially interfere with the rear wall 111, the interference of the robot with the rear wall 111 can also be prevented. Accordingly, while the length B in the forward and backward directions of the read space is relatively small, each wafer 24 contained in a plurality of, for example, four, FOUPs, i.e., the first to fourth FOUP 25a to 25d, supported by the four FOUP openers 26a to 26d, can be taken out, by using the robot arm 41 having the link structure comprising the three link members 41a to 41c.

In this embodiment, by setting the minimum rotation radius R of the robot to be equal to or less than the allowable length (B−L0−E), even though the robot arm 41 taking its minimum transferred state approaches nearest relative to the front wall 101, entering of a part of the robot arm 41 into the robot invasion restricted region E of each FOUP opener 26a to 26d can be prevented. Thus, interference between the robot arm 41 with each FOUP opener 26a to 26d can be prevented, regardless of a movable range or state of each FOUP opener 26a to 26d.

The first to third link distances L1 to L3 are set to exceed ½ of the allowable length (B−L0−E) and to be equal to or less than the allowable length (B−L0−E). As a result, the length of each link member 41a to 41c can be significantly enlarged. Therefore, even in the case where the length B in the forward and backward directions of the interface space is relatively small, the robot hand 40 can be extended to a position which is significantly spaced away from the pivot axis A0 on both sides in the left and right directions Y. Thus, even in the case where the number of the FOUP openers 26 is quite increased, the wafer 24 can be carried with the simple link structure as described above. In this embodiment, the first to third link distances L1 to L3 are each set to be the same as the allowable length (B−L0−E). Consequently, interference of the robot arm 41 with the front wall 110 as well as with each FOUP opener 26 can be prevented, and the length of each link member 41a to 41c can be increased to the maximum.

With the increase of the link length of each link member 41a to 41c of the robot arm 41, the movable range of the robot arm 41 can be enlarged with respect to the left and right directions Y. Accordingly, as compared with the second related art, the running means which is adapted to drive the robot 27 to run in the left and right directions Y can be excluded, thus eliminating the direct acting mechanism. As such, occurrence of dust to be associated with the direct acting mechanism can be prevented, and hence degradation of cleanliness in the interface space 29 due to such dust can be avoided. Additionally, the elimination of the running means can ensure downsizing and weight reduction of the robot 27.

In addition, with the increase of the link length of each link member 41a to 41c of the robot arm 41, the robot hand can reach a predetermined position in a wider range. Furthermore, increase of the number of the link members can be controlled, as such simplifying the structure of the robot 27. In addition, redundancy of the robot 27 can be reduced, thus simplifying teaching works concerning control and transformed states for the robot arm 41. Therefore, possibility of collision of the robot arm 41 with the interface space forming portion 28 as well as with each FOUP opener 26 can be reduced.

As described above, in this embodiment, scattering of dust can be suppressed due to exclusion of the running means, as well as, the interference of the robot with the interior of the wafer transfer apparatus 23 can be prevented, as such providing the wafer transfer apparatus 23 comprising the wafer transfer robot 23 which has a significantly simplified structure and can be readily controlled. In addition, the number of the FOUP openers 26 can be increased without enlarging the length B in the forward and backward directions of the interface space 29. With the increase of the number of the FOUP openers 26, carrying, attaching and detaching operations of each FOUP 25 relative to the wafer transfer apparatus 23 and a transfer operation of each wafer contained in each FOUP 25 held by the wafer transfer apparatus 23 can be performed in parallel, thereby to enhance the working efficiency.

Because the length B in the forward and backward directions of the interface space 29 can be reduced, a space for installment of the wafer transfer apparatus 23 can be downsized. Therefore, restrictions regarding the installment space can be lightened, thus in turn facilitating installment of the wafer processing equipment 20. With reduction of the length B in the forward and backward directions of the interface space 29, as compared with a case in which the length B in the forward and backward directions of the interface space 29 is longer, the cleanliness in the interface space 29 can be enhanced as well as the yield can be improved, by using the interface space controller 100 provided with the same function.

In this embodiment, the length B in the forward and backward directions of the interface space can be reduced by designing the robot hand 40 such that the longitudinal direction of the third link member 41c can be inclined relative to the forward and backward directions X in the state wherein the robot hand 40 reaches the corresponding wafer 24. Thus, even in the case where the first and second axis-to-axis distances L11, L12 are set to be shorter in order to prevent interference of the robot hand 40 with the interface space forming portion 28 and/or each FOUP opener 26, holding of the wafer 24, which is held by the FOUP 25 supported by each corresponding FOUP opener, can be performed with ease.

Since the length of each link member 41a to 41c can be increased, as compared with a case in which the length of each link member 41a to 41c is shorter, a transfer speed of the robot hand can be enhanced, even with the angular speed upon angular displacement about the corresponding pivot axes A0 to A2 being the same. By driving both of the first link member 41a and second link member 41b, force of inertia can be reduced. Due to this function, the transfer speed of the robot hand 40 can also be enhanced. With such enhancement of the transfer speed of the robot hand 40, the time required for carrying each wafer 24 can be reduced, thereby to enhance the working efficiency.

FIG. 4 is a diagram showing a carrying operation, which is simplified, for carrying the wafer 24 contained in the first FOUP 25a to the aligner 56. The carrying operation proceeds in the order of from FIG. 4(1) to FIG. 4(7). The carrying operation shown in FIG. 4 is stored in the controller 44, with respect to the transfer route and passing through points of the robot hand 40. The controller 44 serves to control the horizontal drive means 42a and the vertical drive means 42b by executing a predetermined operational program, such that the robot hand 40 passes through a plurality of points along the transfer route. Consequently, the wafer transfer robot 27 can carry each wafer 24 contained in the first FOUP 25a to the aligner 56.

First, the robot arm 41 is moved vertically up to the wafer 24 to be held, and then transformed such that the first link member 41a and the second link member 41b are extended in a straight line, as shown in FIG. 4(1), so as to hold the wafer 24 contained in the first FOUP 25a by using the hand 40. Next, as shown in FIG. 4(2), the first link member 41a and the second link member 41b are angularly displaced about the corresponding angular displacement axes A0, A1, respectively, so as to move the third link member 41c in the backward direction X2 into the interface space 29 together with the wafer 24.

Subsequently, the first link member 41a and the second link member 41b are further angularly displaced about the corresponding angular displacement axes A0, A1, respectively, so as to move the third link member 41c in parallel to the left and right directions Y, toward the aligner 56 located in a position far away from the first FOUP opener 26a in the left and right directions Y. At this time, because the first axis-to-axis distance L11 and the second axis-to-axis distance L12 are set to be equal, as shown in FIGS. 4(3) and 4(4), the second link member 41b is angularly displaced about the first joint axis A1, in an amount of angular displacement per unit time, which is twice the amount of angular displacement per unit time, relative to the angular displacement of the first link member 41a about the pivot axis A0. In this manner, the third link member 41c can be moved in parallel to the left and right directions Y, without angularly displacing the third link member 41c about the second joint axis A2, and without altering the attitude of the third link member 41c.

In the case of locating the third link member 41c on the aligner 56 with its attitude altered, as shown in FIGS. 4(5) to 4(7), the wafer 24 can be located in a holding position set in the aligner 56, by angularly displacing the first to third link members 41a to 41c about the corresponding angular displacement axes A0 to A2, respectively. In order to enable the aligner 56 to hold the wafer 24, after the robot arm 41 has held the wafer 24 and by the time it carries the wafer 24 to the aligner 56 so as to make the aligner 56 hold the wafer 24, the position in the upward and downward directions of the robot arm 41 is adjusted by the vertical drive means 42b. In this manner, the wafer transfer robot 27 can carry the wafer 24, which has been contained in the first FOUP 25a, to the aligner 56.

FIG. 5 is a diagram showing a carrying operation, which is simplified, for carrying the wafer 24 supported by the aligner 56 into the processing space 30. The carrying operation proceeds in the order of from FIG. 5(1) to FIG. 5(7). Similar to the case shown in FIG. 4, the wafer transfer robot 27 can carry the wafer 24 held by the aligner 56 into the processing space 30, by controlling the horizontal drive means 42a and the vertical drive means 42b in accordance with the predetermined program.

In the case of carrying the wafer 24 into the processing space 30, the hand 40 should be directed in the backward direction X2. Accordingly, as shown in FIG. 5(1), from a state wherein the second joint axis A2 has been moved in the backward direction X2 in the interface space 29 while the third link member 41c holding the wafer 24, the third link member 41c is angularly displaced about the second joint axis A2 as well as the second joint axis A2 is moved in the forward direction X1 in the interface space 29. In the example shown in FIG. 5, after the third link member 41c has been angularly displaced by about 120 degrees, the second joint axis A2 is moved in the forward direction X1 in the interface space 29, and the third link member 41c is then further angularly displaced.

Thus, the orientation of the third link member 41a can be altered by 180 degrees in the interface space 29 without any interference of the third link member 41a with the front wall 110, rear wall 111 and each FOUP opener 26. Accordingly, as shown in FIGS. 5(2) to 5(6), after the orientation of the third link member 41c has been altered, as shown in FIG. 5(7), the wafer 24 can be carried into the processing space 30. In order to enable the robot arm 41 to be moved into the processing space 30 after it has held the wafer 24 and by the time it is moved toward the processing space 30, the position in the upward and downward directions of the robot arm 41 is controlled by the vertical drive means 42b. In this way, the wafer transfer robot 27 can carry the wafer 24, which has been held by the aligner 56, into the processing space 30.

FIG. 6 is a diagram showing a carrying operation, which is simplified, for carrying the wafer 24 located in the processing space 30 to the first FOUP 25a. Similar to the case shown in FIG. 4, the controller controls the horizontal drive means 42a and the vertical drive means 42b in accordance with the predetermined program so that the wafer transfer robot 27 can carry the wafer 24 contained in the processing space 30 to the first FOUP 25a.

First, the robot arm 41 is moved upward and downward to a position of the wafer 24 to be held as well as the robot arm 41 is transformed, as shown in FIG. 6(1), so as to hold the wafer 24 in the processing space 30. Subsequently, as shown in FIG. 6(2), the first link member 41a and the second link member 41b are angularly displaced about the corresponding angular displacement axes A0, A1, respectively, and the third link member 41c is moved in the forward direction X1, so as to move the third link member 41c and the wafer 24 into the interior of the interface space 29. Thereafter, as shown in FIGS. 6(3) and 6(4), while the position of the second joint axis A2 is adjusted in order to prevent interference due to the third link member 41c, the third link member 41c is rotated about the second joint axis A2 to alter its attitude, thus changing the orientation of the third link member 41c. Next, as shown in FIGS. 6(4) and 6(5), the first link member 41a and the second link member 41b are angularly displaced about the corresponding angular displacement axes A0, A1, respectively, so as to move the third link member 41c in parallel to the left and right directions Y. Thereafter, as shown in FIG. 6(6), a portion on the robot hand side of the third link member 41c is positioned to face the front opening as well as maintained in an attitude which is substantially parallel to the forward and backward directions X. In this state, the position of the hand 40 in the upward and backward directions is adjusted to enable the wafer to be contained in the FOUP. As such, the wafer is contained in the space in the FOUP 25 as shown in FIG. 6(7).

FIG. 7 is a diagram showing a state in which the wafer 24 is located in its receiving and transferring positions of the embodiment according to the present invention. FIGS. 7(1) to 7(4) depict states wherein the wafers 24 contained in the first to fourth FOUPs 25a to 25d are held, respectively. FIG. 7(5) shows a state in which the wafer 24 is located at the aligner 56. FIGS. 7(6) and 7(7) show states wherein the wafer 24 is located in positions set in the processing space 30, respectively. As illustrated, this embodiment can be configured to include the robot arm having the three-link type structure so as to enable receiving and transferring of the wafers 24 in the FOUPs 25 supported by the four FOUP openers 26a to 26d, respectively.

While, this embodiment comprises the single third link member 41c provided in the robot hand 40, it is not limited to this aspect. Namely, in the present invention, it is also contemplated that a plurality of, for example, two, third link members 41c may be provided.

For example, in the case where a plurality of third link members 41c are provided, these third link members 41c are provided to be arranged in the upward and downward directions Z, respectively. Each third link member 41c is connected, at its one end 45c in the longitudinal direction, with the other end 46b in the longitudinal direction of the second link member 41b. Each third link member 41c is configured such that it can be angularly displaced, individually, about the second joint axis A2 relative to the second link member 41b. In addition, each third link member 41c is provided with the robot hand 40 formed at the other end thereof in the longitudinal direction. Due to arrangement of each third link member 41c in a region different in the upward and downward directions, even though they are angularly displaced, individually, about the second joint axis A2, mutual interference between the third link members 41c can be prevented. In addition, due to such provision of the plurality of third link members 41c, the number of sheets of the wafers that can be carried at a time can be increased, as such enhancing the working efficiency. It should be appreciated that the number of the third link members is not limited to one or two but three or more third link members 41c may be provided. It is preferred that each third link member 41c is formed to have the same shape.

FIG. 8 is a plan view showing the wafer transfer apparatus 23 including three FOUP openers 26. FIG. 9 is a plan view showing the wafer transfer apparatus 23 including two FOUP openers 26. In FIGS. 8 and 9, one example of additional working forms of a robot 27 is depicted by chain double-dashed lines. The wafer transfer robot 27 shown in FIGS. 8 and 9 is configured similarly to the wafer transfer robot 27 used in the wafer transfer apparatus 23 including the four FOUP openers 26. Accordingly, the wafer transfer robot 27 can carry each wafer without causing any interference with the front wall 110 and the rear wall 111, also in the case of including the two or three FOUP openers 26. As such, there is no need for changing the configuration of the robot depending on the number of the FOUP openers 26, thereby to enhance applicability for general purposes.

FIG. 10 is a plan view showing a wafer transfer apparatus 23A which is a second embodiment of the present invention, and is somewhat simplified. The wafer transfer apparatus 23A of the second embodiment includes portions similar to those in the wafer transfer apparatus 23 of the first embodiment described above. Thus, such like parts are not described here, and designated by like reference numerals. Specifically, the wafer transfer apparatus 23A of the second embodiment is different from the first embodiment in the length of the wafer transfer robot 27, but is the same as the first embodiment in regard to the other configuration.

The first embodiment is configured such that the robot hand 40 reaches the wafer 24 contained in the first FOUP 25a with the first link member 41a and the second link 41b extended together in a straight line. However, the present invention is not limited to this aspect. Namely, in the second embodiment, the robot hand 40 reaches the wafer 24 contained in the first FOUP 25a with the longitudinal direction of the link member 41a and the longitudinal direction of the second link member 41b defining a predetermined angle α.

In the second embodiment, angular positions of the first link member 41a and the second link member 41b are respectively set such that the robot hand 40 reaches the wafer 24, with the longitudinal direction of the third link member 41c being coincident with the forward and backward directions X. Namely, in the second embodiment, the hand 40 reaches the wafer 24, with the longitudinal direction of the third link member 41c being coincident with the forward and backward directions X, and the third link member 41c is then moved in parallel to the backward direction X2, so as to carry the wafer 24 into the interface space 29. Thus, even in the case where a gap between the wafer held by the hand 40 and the front opening 101a as well as the opening 60a of the FOUP main body 60 is relatively small, collision of the wafer 24 with each opening 101a, 60a can be prevented.

Also in the second embodiment, by locating the pivot axis A0 near the rear wall 111 and by setting the minimum rotation radius R of the robot arm 41 to exceed ½ of the subtracted value (B−L0) described above and to be equal to or less than the subtracted value (B−L0), the same effect as in the first embodiment can be obtained.

FIG. 11 is a plan view showing a wafer transfer apparatus 23B which is a third embodiment of the present invention, and is somewhat simplified. In FIG. 11, one example of additional working forms of a robot 27 is depicted by chain double-dashed lines. The wafer transfer apparatus 23B of the third embodiment includes portions similar to those in the wafer transfer apparatus 23 of the first embodiment described above. Thus such like parts are not described here, and designated by like reference numerals. Specifically, the wafer transfer apparatus 23B of the third embodiment is different from the first embodiment in the length of the wafer transfer robot 27, but is the same as the first embodiment in regard to the other configuration.

In the first embodiment, the first axis-to-axis distance L11 and the second axis-to-axis distance L12 are of the same length. However, this invention is not limited to this aspect. In the third embodiment, there is some difference in the length between the first axis-to-axis distance L11 and the second axis-to-axis distance L12, and the first axis-to-axis distance L11 is provided to be slightly longer than the second axis-to-axis distance L12. In this case, as shown in FIG. 11, when angularly displacing the second link member 41b about the first joint axis A1, in an amount of angular displacement per unit time, which is twice the amount of angular displacement per unit time, relative to the angular displacement of the first link member 41a about the pivot axis A0 while the angular displacement of the third link member 41c about the second joint axis A2 is stopped, the attitude of the third link member 41c is changed slightly.

When the robot hand 40 is advanced from one end to the other end in the left and right directions Y relative to the pivot axis A0, transfer tracks 130, 131 of the central position A3 of the wafer 24 held by the hand 40 and the second joint axis A2 depict circular arcs both being convex in the forward direction X, respectively. In FIG. 11, in order to facilitate understanding, the transfer tracks 130, 131 of the central position A3 and the second joint axis A2 are respectively depicted by dashed lines, while corresponding imaginary lines 132, 133 extending in parallel with the left and right directions Y are respectively expressed by chain lines.

In this case, when the difference in the length between the first axis-to-axis distance L11 and the second axis-to-axis distance L12 is quite small, the third link member 41c can be moved in substantially parallel to the left and right directions Y. In such a manner, the first axis-to-axis distance L11 and the second axis-to-axis distance L12 may be provided with slight alteration. For example, an acceptable difference in the length between the first axis-to-axis distance L1 and the second axis-to-axis distance L12 may be set within (B−L0−E−L1) mm.

Also in the third embodiment described above, by locating the pivot axis A0 near the rear wall 111 and by setting the minimum rotation radius R of the robot arm 41 to exceed ½ of the subtracted value (B−L0) described above and to be equal to or less than the subtracted value (B−L0), the same effect as in the first embodiment can be obtained. The length of each link member 41a to 41c of the robot arm 41 and each axis-to-axis distance L11, L12 of the first to third embodiments are described by way of example, and hence may be altered. For example, the first link distance L1, second link distance L2 and third link distance L3 may not necessarily be the same.

FIG. 12 is a plan view showing a part of semiconductor processing equipment 20C which is a fourth embodiment of the present invention. The semiconductor processing equipment 20C of the fourth embodiment includes portions similar to those in the wafer transfer apparatus 23 of the first embodiment described above. Thus such like parts are not described here, and designated by like reference numerals. In the semiconductor processing equipment 20c of the fourth embodiment, the wafer transfer robot 27 of the wafer transfer apparatus 23 also serves as a carrier provided in the wafer processing apparatus 22. In regard to the other configuration, the semiconductor processing equipment 20c is the same as the first embodiment. As such, descriptions on that point are omitted here.

In the first embodiment, the carrier included in the wafer processing apparatus 22 receives the wafer 24 to be carried into the processing space 30 from the interface space 29 by the wafer transfer apparatus 23, and then carries the received wafer 24 into the wafer processing position. On the other hand, in the fourth embodiment, since the wafer transfer robot 27 of the wafer transfer apparatus 23 can extend its operational region as shown in FIG. 12, it can transfer the wafer not only in the wafer transfer apparatus 23, but can also be advanced into the processing space 30 of the wafer processing apparatus 22 so as to directly transfer the wafer 24 to the wafer processing position. Accordingly, there is no need for a carrier in the wafer processing apparatus 22, thus reducing the number of elements in the wafer processing equipment, thereby reducing the production cost.

In the fourth embodiment, it is preferred that the rear opening 121 is provided in the vicinity of the pivot axis A0 with respect to the left and right directions Y. It is also preferred that the rear opening 121 is formed to have a space extending longer than a distance between a first crossing point P1 that is one of two crossing points, at which an imaginary circle defined to make a circuit around the pivot axis A0, with its radius being the minimum rotation radius R of the robot 27, crosses the rear-face-side wall 111 and a second point P2, at which a line passing through the pivot axis A0 and extending in the forward and backward directions X crosses the rear-face-side wall 111, as such the space is shaped to include both of the first crossing point P1 and the second crossing point P2. Consequently, in the case of angularly displacing the first link member 41a about the pivot axis A0, interference of the first link member 41a with the rear-face-side wall 111 can be prevented. Thus, the first joint axis A1 set in the first link member 41a can be located also in the processing space 30. Accordingly, the wafer 24 can be transferred to a position away from the rear wall 111 in the backward direction X2 in the processing space 30.

Each of the embodiments 1 to 4 described above is illustrated by way of example, and of course may be modified within the scope of this invention. For example, while in these embodiments, the wafer transfer apparatus 23 used in the wafer processing equipment 20 has been described, a processing transfer apparatus for use in semiconductor processing equipment for processing substrates other than semiconductor wafers may also be included in the scope of the present invention. In this case, the substrate transfer apparatus can be generally applied to those configured to transfer each substrate from a substrate container to a substrate processing apparatus through an interface space in which an atmospheric gas is properly controlled, as well as carry the substrate from the substrate processing apparatus to the substrate container through the interface space. For example, as the substrate, semiconductor substrates and glass substrates may be mentioned. While the wafer has been described on the assumption that has a 300 mm size, the robot arm may be modified to have other link sizes in order to be applied to wafers of other sizes.

In each of the embodiments described above, while the wafer transfer apparatus 23 includes the aligner 56, it may includes another processing device than the aligner 56. This processing device is adapted to hold each wafer in the interface space 29 and perform predetermined processes and operations. For example, as the processing device, a buffer member adapted to hold each wafer 24 in the interface space 29 or an inspection device adapted to hold the wafer in the interface space 29 and inspect it about quality and presence of defects. It should be noted that the wafer transfer apparatus 23 not including the processing device, such as the aligner 56, may also be included in the scope of the present invention.

In the case where it is necessary to transfer each wafer 24 over a wider region in the left and right directions in order to carry the wafer to the processing device even though only three or less FOUP openers are used, the application of this invention enables advantageous wafer transfer, even with the length B in the left and right directions of the interface space being significantly small. In this case, each position arranged in the left and right directions relative to the pivot axis A0 is determined appropriately, depending on positions of respective objects to be moved in the left and right directions. In place of using the FOUP openers, substrate container setting tables may be provided for setting substrate containers.

In this embodiment, while the first link member 41a has been described to be able to angularly displace by 90° in one and the other directions about the pivot axis A0 relative to the reference line P0 passing through the pivot axis A0 and extending in the forward and backward directions X, the operation of the first link member 41a is not limited to this mode. Additionally, in this embodiment, while the expressions of the forward and backward directions X, left and right directions Y and upward and downward directions Z have been used, for example, first directions, second directions and third directions or the like, which are orthogonal to one another, may be employed as alternatives.

Although the invention has been described in its preferred embodiments with a certain degree of particularity, obviously many changes and variations are possible therein. It is therefore to be understood that the present invention may be practiced otherwise than as specifically described herein without departing from the scope and spirit thereof.

Hashimoto, Yasuhiko

Patent Priority Assignee Title
10685834, Jul 05 2017 ASM IP Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
10714335, Apr 25 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Method of depositing thin film and method of manufacturing semiconductor device
10714350, Nov 01 2016 ASM IP Holdings, B.V.; ASM IP HOLDING B V Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10714385, Jul 19 2016 ASM IP Holding B.V. Selective deposition of tungsten
10720331, Nov 01 2016 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
10731249, Feb 15 2018 ASM IP HOLDING B V Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
10734223, Oct 10 2017 ASM IP Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
10734497, Jul 18 2017 ASM IP HOLDING B V Methods for forming a semiconductor device structure and related semiconductor device structures
10741385, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
10755922, Jul 03 2018 ASM IP HOLDING B V Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
10767789, Jul 16 2018 ASM IP Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
10770336, Aug 08 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate lift mechanism and reactor including same
10784102, Dec 22 2016 ASM IP Holding B.V. Method of forming a structure on a substrate
10787741, Aug 21 2014 ASM IP Holding B.V. Method and system for in situ formation of gas-phase compounds
10797133, Jun 21 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
10804098, Aug 14 2009 ASM IP HOLDING B V Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
10811256, Oct 16 2018 ASM IP Holding B.V. Method for etching a carbon-containing feature
10818758, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
10829852, Aug 16 2018 ASM IP Holding B.V. Gas distribution device for a wafer processing apparatus
10832903, Oct 28 2011 ASM IP Holding B.V. Process feed management for semiconductor substrate processing
10844484, Sep 22 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
10844486, Apr 06 2009 ASM IP HOLDING B V Semiconductor processing reactor and components thereof
10847365, Oct 11 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming conformal silicon carbide film by cyclic CVD
10847366, Nov 16 2018 ASM IP Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
10847371, Mar 27 2018 ASM IP Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
10851456, Apr 21 2016 ASM IP Holding B.V. Deposition of metal borides
10858737, Jul 28 2014 ASM IP Holding B.V.; ASM IP HOLDING B V Showerhead assembly and components thereof
10865475, Apr 21 2016 ASM IP HOLDING B V Deposition of metal borides and silicides
10867786, Mar 30 2018 ASM IP Holding B.V. Substrate processing method
10867788, Dec 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method of forming a structure on a substrate
10872771, Jan 16 2018 ASM IP Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
10883175, Aug 09 2018 ASM IP HOLDING B V Vertical furnace for processing substrates and a liner for use therein
10886123, Jun 02 2017 ASM IP Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
10892156, May 08 2017 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
10896820, Feb 14 2018 ASM IP HOLDING B V Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
10910262, Nov 16 2017 ASM IP HOLDING B V Method of selectively depositing a capping layer structure on a semiconductor device structure
10914004, Jun 29 2018 ASM IP Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
10923344, Oct 30 2017 ASM IP HOLDING B V Methods for forming a semiconductor structure and related semiconductor structures
10928731, Sep 21 2017 ASM IP Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
10934619, Nov 15 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Gas supply unit and substrate processing apparatus including the gas supply unit
10941490, Oct 07 2014 ASM IP Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
10943771, Oct 26 2016 ASM IP Holding B.V. Methods for thermally calibrating reaction chambers
10950432, Apr 25 2017 ASM IP Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
10975470, Feb 23 2018 ASM IP Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
11001925, Dec 19 2016 ASM IP Holding B.V. Substrate processing apparatus
11004977, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
11015245, Mar 19 2014 ASM IP Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
11018002, Jul 19 2017 ASM IP Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
11018047, Jan 25 2018 ASM IP Holding B.V. Hybrid lift pin
11022879, Nov 24 2017 ASM IP Holding B.V. Method of forming an enhanced unexposed photoresist layer
11024523, Sep 11 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus and method
11031242, Nov 07 2018 ASM IP Holding B.V. Methods for depositing a boron doped silicon germanium film
11049751, Sep 14 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
11053591, Aug 06 2018 ASM IP Holding B.V. Multi-port gas injection system and reactor system including same
11056344, Aug 30 2017 ASM IP HOLDING B V Layer forming method
11056567, May 11 2018 ASM IP Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
11069510, Aug 30 2017 ASM IP Holding B.V. Substrate processing apparatus
11081345, Feb 06 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Method of post-deposition treatment for silicon oxide film
11087997, Oct 31 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus for processing substrates
11088002, Mar 29 2018 ASM IP HOLDING B V Substrate rack and a substrate processing system and method
11094546, Oct 05 2017 ASM IP Holding B.V. Method for selectively depositing a metallic film on a substrate
11094582, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
11101370, May 02 2016 ASM IP Holding B.V. Method of forming a germanium oxynitride film
11107676, Jul 28 2016 ASM IP Holding B.V. Method and apparatus for filling a gap
11114283, Mar 16 2018 ASM IP Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
11114294, Mar 08 2019 ASM IP Holding B.V. Structure including SiOC layer and method of forming same
11127589, Feb 01 2019 ASM IP Holding B.V. Method of topology-selective film formation of silicon oxide
11127617, Nov 27 2017 ASM IP HOLDING B V Storage device for storing wafer cassettes for use with a batch furnace
11139191, Aug 09 2017 ASM IP HOLDING B V Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
11139308, Dec 29 2015 ASM IP Holding B.V.; ASM IP HOLDING B V Atomic layer deposition of III-V compounds to form V-NAND devices
11158513, Dec 13 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
11164955, Jul 18 2017 ASM IP Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
11168395, Jun 29 2018 ASM IP Holding B.V. Temperature-controlled flange and reactor system including same
11171025, Jan 22 2019 ASM IP Holding B.V. Substrate processing device
11205585, Jul 28 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus and method of operating the same
11217444, Nov 30 2018 ASM IP HOLDING B V Method for forming an ultraviolet radiation responsive metal oxide-containing film
11222772, Dec 14 2016 ASM IP Holding B.V. Substrate processing apparatus
11227782, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11227789, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
11230766, Mar 29 2018 ASM IP HOLDING B V Substrate processing apparatus and method
11232963, Oct 03 2018 ASM IP Holding B.V. Substrate processing apparatus and method
11233133, Oct 21 2015 ASM IP Holding B.V. NbMC layers
11242598, Jun 26 2015 ASM IP Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
11244825, Nov 16 2018 ASM IP Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
11251035, Dec 22 2016 ASM IP Holding B.V. Method of forming a structure on a substrate
11251040, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method including treatment step and apparatus for same
11251068, Oct 19 2018 ASM IP Holding B.V. Substrate processing apparatus and substrate processing method
11270899, Jun 04 2018 ASM IP Holding B.V. Wafer handling chamber with moisture reduction
11274369, Sep 11 2018 ASM IP Holding B.V. Thin film deposition method
11282698, Jul 19 2019 ASM IP Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
11286558, Aug 23 2019 ASM IP Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
11286562, Jun 08 2018 ASM IP Holding B.V. Gas-phase chemical reactor and method of using same
11289326, May 07 2019 ASM IP Holding B.V. Method for reforming amorphous carbon polymer film
11295980, Aug 30 2017 ASM IP HOLDING B V Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
11296189, Jun 21 2018 ASM IP Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
11306395, Jun 28 2017 ASM IP HOLDING B V Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
11315794, Oct 21 2019 ASM IP Holding B.V. Apparatus and methods for selectively etching films
11339476, Oct 08 2019 ASM IP Holding B.V. Substrate processing device having connection plates, substrate processing method
11342216, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
11345999, Jun 06 2019 ASM IP Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
11355338, May 10 2019 ASM IP Holding B.V. Method of depositing material onto a surface and structure formed according to the method
11361990, May 28 2018 ASM IP Holding B.V. Substrate processing method and device manufactured by using the same
11374112, Jul 19 2017 ASM IP Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
11378337, Mar 28 2019 ASM IP Holding B.V. Door opener and substrate processing apparatus provided therewith
11387106, Feb 14 2018 ASM IP Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
11387120, Sep 28 2017 ASM IP Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
11390945, Jul 03 2019 ASM IP Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
11390946, Jan 17 2019 ASM IP Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
11390950, Jan 10 2017 ASM IP HOLDING B V Reactor system and method to reduce residue buildup during a film deposition process
11393690, Jan 19 2018 ASM IP HOLDING B V Deposition method
11396702, Nov 15 2016 ASM IP Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
11398382, Mar 27 2018 ASM IP Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
11401605, Nov 26 2019 ASM IP Holding B.V. Substrate processing apparatus
11410851, Feb 15 2017 ASM IP Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
11411088, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
11414760, Oct 08 2018 ASM IP Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
11417545, Aug 08 2017 ASM IP Holding B.V. Radiation shield
11424119, Mar 08 2019 ASM IP HOLDING B V Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
11430640, Jul 30 2019 ASM IP Holding B.V. Substrate processing apparatus
11430674, Aug 22 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
11437241, Apr 08 2020 ASM IP Holding B.V. Apparatus and methods for selectively etching silicon oxide films
11443926, Jul 30 2019 ASM IP Holding B.V. Substrate processing apparatus
11447861, Dec 15 2016 ASM IP HOLDING B V Sequential infiltration synthesis apparatus and a method of forming a patterned structure
11447864, Apr 19 2019 ASM IP Holding B.V. Layer forming method and apparatus
11453943, May 25 2016 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
11453946, Jun 06 2019 ASM IP Holding B.V. Gas-phase reactor system including a gas detector
11469098, May 08 2018 ASM IP Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
11473195, Mar 01 2018 ASM IP Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
11476109, Jun 11 2019 ASM IP Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
11482412, Jan 19 2018 ASM IP HOLDING B V Method for depositing a gap-fill layer by plasma-assisted deposition
11482418, Feb 20 2018 ASM IP Holding B.V. Substrate processing method and apparatus
11482533, Feb 20 2019 ASM IP Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
11488819, Dec 04 2018 ASM IP Holding B.V. Method of cleaning substrate processing apparatus
11488854, Mar 11 2020 ASM IP Holding B.V. Substrate handling device with adjustable joints
11492703, Jun 27 2018 ASM IP HOLDING B V Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11495459, Sep 04 2019 ASM IP Holding B.V. Methods for selective deposition using a sacrificial capping layer
11499222, Jun 27 2018 ASM IP HOLDING B V Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11499226, Nov 02 2018 ASM IP Holding B.V. Substrate supporting unit and a substrate processing device including the same
11501956, Oct 12 2012 ASM IP Holding B.V. Semiconductor reaction chamber showerhead
11501968, Nov 15 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Method for providing a semiconductor device with silicon filled gaps
11501973, Jan 16 2018 ASM IP Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
11515187, May 01 2020 ASM IP Holding B.V.; ASM IP HOLDING B V Fast FOUP swapping with a FOUP handler
11515188, May 16 2019 ASM IP Holding B.V. Wafer boat handling device, vertical batch furnace and method
11521851, Feb 03 2020 ASM IP HOLDING B V Method of forming structures including a vanadium or indium layer
11527400, Aug 23 2019 ASM IP Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
11527403, Dec 19 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
11530483, Jun 21 2018 ASM IP Holding B.V. Substrate processing system
11530876, Apr 24 2020 ASM IP Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
11532757, Oct 27 2016 ASM IP Holding B.V. Deposition of charge trapping layers
11551912, Jan 20 2020 ASM IP Holding B.V. Method of forming thin film and method of modifying surface of thin film
11551925, Apr 01 2019 ASM IP Holding B.V. Method for manufacturing a semiconductor device
11557474, Jul 29 2019 ASM IP Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
11562901, Sep 25 2019 ASM IP Holding B.V. Substrate processing method
11572620, Nov 06 2018 ASM IP Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
11581186, Dec 15 2016 ASM IP HOLDING B V Sequential infiltration synthesis apparatus
11581220, Aug 30 2017 ASM IP Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
11587814, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11587815, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11587821, Aug 08 2017 ASM IP Holding B.V. Substrate lift mechanism and reactor including same
11594450, Aug 22 2019 ASM IP HOLDING B V Method for forming a structure with a hole
11594600, Nov 05 2019 ASM IP Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
11605528, Jul 09 2019 ASM IP Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
11610774, Oct 02 2019 ASM IP Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
11610775, Jul 28 2016 ASM IP HOLDING B V Method and apparatus for filling a gap
11615970, Jul 17 2019 ASM IP HOLDING B V Radical assist ignition plasma system and method
11615980, Feb 20 2019 ASM IP Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
11626308, May 13 2020 ASM IP Holding B.V. Laser alignment fixture for a reactor system
11626316, Nov 20 2019 ASM IP Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
11629406, Mar 09 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
11629407, Feb 22 2019 ASM IP Holding B.V. Substrate processing apparatus and method for processing substrates
11637011, Oct 16 2019 ASM IP Holding B.V. Method of topology-selective film formation of silicon oxide
11637014, Oct 17 2019 ASM IP Holding B.V. Methods for selective deposition of doped semiconductor material
11639548, Aug 21 2019 ASM IP Holding B.V. Film-forming material mixed-gas forming device and film forming device
11639811, Nov 27 2017 ASM IP HOLDING B V Apparatus including a clean mini environment
11643724, Jul 18 2019 ASM IP Holding B.V. Method of forming structures using a neutral beam
11644758, Jul 17 2020 ASM IP Holding B.V. Structures and methods for use in photolithography
11646184, Nov 29 2019 ASM IP Holding B.V. Substrate processing apparatus
11646197, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
11646204, Jun 24 2020 ASM IP Holding B.V.; ASM IP HOLDING B V Method for forming a layer provided with silicon
11646205, Oct 29 2019 ASM IP Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
11649546, Jul 08 2016 ASM IP Holding B.V. Organic reactants for atomic layer deposition
11658029, Dec 14 2018 ASM IP HOLDING B V Method of forming a device structure using selective deposition of gallium nitride and system for same
11658030, Mar 29 2017 ASM IP Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
11658035, Jun 30 2020 ASM IP HOLDING B V Substrate processing method
11664199, Oct 19 2018 ASM IP Holding B.V. Substrate processing apparatus and substrate processing method
11664245, Jul 16 2019 ASM IP Holding B.V. Substrate processing device
11664267, Jul 10 2019 ASM IP Holding B.V. Substrate support assembly and substrate processing device including the same
11674220, Jul 20 2020 ASM IP Holding B.V. Method for depositing molybdenum layers using an underlayer
11676812, Feb 19 2016 ASM IP Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
11680839, Aug 05 2019 ASM IP Holding B.V. Liquid level sensor for a chemical source vessel
11682572, Nov 27 2017 ASM IP Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
11685991, Feb 14 2018 ASM IP HOLDING B V ; Universiteit Gent Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
11688603, Jul 17 2019 ASM IP Holding B.V. Methods of forming silicon germanium structures
11694892, Jul 28 2016 ASM IP Holding B.V. Method and apparatus for filling a gap
11695054, Jul 18 2017 ASM IP Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
11705333, May 21 2020 ASM IP Holding B.V. Structures including multiple carbon layers and methods of forming and using same
11718913, Jun 04 2018 ASM IP Holding B.V.; ASM IP HOLDING B V Gas distribution system and reactor system including same
11725277, Jul 20 2011 ASM IP HOLDING B V Pressure transmitter for a semiconductor processing environment
11725280, Aug 26 2020 ASM IP Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
11735414, Feb 06 2018 ASM IP Holding B.V. Method of post-deposition treatment for silicon oxide film
11735422, Oct 10 2019 ASM IP HOLDING B V Method of forming a photoresist underlayer and structure including same
11735445, Oct 31 2018 ASM IP Holding B.V. Substrate processing apparatus for processing substrates
11742189, Mar 12 2015 ASM IP Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
11742198, Mar 08 2019 ASM IP Holding B.V. Structure including SiOCN layer and method of forming same
11746414, Jul 03 2019 ASM IP Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
11749562, Jul 08 2016 ASM IP Holding B.V. Selective deposition method to form air gaps
11767589, May 29 2020 ASM IP Holding B.V. Substrate processing device
11769670, Dec 13 2018 ASM IP Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
11769682, Aug 09 2017 ASM IP Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
11776846, Feb 07 2020 ASM IP Holding B.V. Methods for depositing gap filling fluids and related systems and devices
11781221, May 07 2019 ASM IP Holding B.V. Chemical source vessel with dip tube
11781243, Feb 17 2020 ASM IP Holding B.V. Method for depositing low temperature phosphorous-doped silicon
11795545, Oct 07 2014 ASM IP Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
11798830, May 01 2020 ASM IP Holding B.V. Fast FOUP swapping with a FOUP handler
11798834, Feb 20 2019 ASM IP Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
11798999, Nov 16 2018 ASM IP Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
11802338, Jul 26 2017 ASM IP Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
11804364, May 19 2020 ASM IP Holding B.V. Substrate processing apparatus
11804388, Sep 11 2018 ASM IP Holding B.V. Substrate processing apparatus and method
11810788, Nov 01 2016 ASM IP Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
11814715, Jun 27 2018 ASM IP Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11814747, Apr 24 2019 ASM IP Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
11821078, Apr 15 2020 ASM IP HOLDING B V Method for forming precoat film and method for forming silicon-containing film
11823866, Apr 02 2020 ASM IP Holding B.V. Thin film forming method
11823876, Sep 05 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Substrate processing apparatus
11827978, Aug 23 2019 ASM IP Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
11827981, Oct 14 2020 ASM IP HOLDING B V Method of depositing material on stepped structure
11828707, Feb 04 2020 ASM IP Holding B.V. Method and apparatus for transmittance measurements of large articles
11830730, Aug 29 2017 ASM IP HOLDING B V Layer forming method and apparatus
11830738, Apr 03 2020 ASM IP Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
11837483, Jun 04 2018 ASM IP Holding B.V. Wafer handling chamber with moisture reduction
11837494, Mar 11 2020 ASM IP Holding B.V. Substrate handling device with adjustable joints
11840761, Dec 04 2019 ASM IP Holding B.V. Substrate processing apparatus
11848200, May 08 2017 ASM IP Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
11851755, Dec 15 2016 ASM IP Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
11866823, Nov 02 2018 ASM IP Holding B.V. Substrate supporting unit and a substrate processing device including the same
11873557, Oct 22 2020 ASM IP HOLDING B V Method of depositing vanadium metal
11876008, Jul 31 2019 ASM IP Holding B.V. Vertical batch furnace assembly
11876356, Mar 11 2020 ASM IP Holding B.V. Lockout tagout assembly and system and method of using same
11885013, Dec 17 2019 ASM IP Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
11885020, Dec 22 2020 ASM IP Holding B.V. Transition metal deposition method
11885023, Oct 01 2018 ASM IP Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
11887857, Apr 24 2020 ASM IP Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
11891696, Nov 30 2020 ASM IP Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
11898242, Aug 23 2019 ASM IP Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
11898243, Apr 24 2020 ASM IP Holding B.V. Method of forming vanadium nitride-containing layer
11901175, Mar 08 2019 ASM IP Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
11901179, Oct 28 2020 ASM IP HOLDING B V Method and device for depositing silicon onto substrates
11908684, Jun 11 2019 ASM IP Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
11908733, May 28 2018 ASM IP Holding B.V. Substrate processing method and device manufactured by using the same
11915929, Nov 26 2019 ASM IP Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
11923181, Nov 29 2019 ASM IP Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
11923190, Jul 03 2018 ASM IP Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
11929251, Dec 02 2019 ASM IP Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
11939673, Feb 23 2018 ASM IP Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
11946137, Dec 16 2020 ASM IP HOLDING B V Runout and wobble measurement fixtures
11952658, Jun 27 2018 ASM IP Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
11956977, Dec 29 2015 ASM IP Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
11959168, Apr 29 2020 ASM IP HOLDING B V ; ASM IP Holding B.V. Solid source precursor vessel
11959171, Jan 17 2019 ASM IP Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
11961741, Mar 12 2020 ASM IP Holding B.V. Method for fabricating layer structure having target topological profile
11967488, Feb 01 2013 ASM IP Holding B.V. Method for treatment of deposition reactor
11970766, Dec 15 2016 ASM IP Holding B.V. Sequential infiltration synthesis apparatus
11972944, Jan 19 2018 ASM IP Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
11976359, Jan 06 2020 ASM IP Holding B.V. Gas supply assembly, components thereof, and reactor system including same
11976361, Jun 28 2017 ASM IP Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
11986868, Feb 28 2020 ASM IP Holding B.V. System dedicated for parts cleaning
11987881, May 22 2020 ASM IP Holding B.V. Apparatus for depositing thin films using hydrogen peroxide
11993843, Aug 31 2017 ASM IP Holding B.V. Substrate processing apparatus
11993847, Jan 08 2020 ASM IP HOLDING B V Injector
11996289, Apr 16 2020 ASM IP HOLDING B V Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods
11996292, Oct 25 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
11996304, Jul 16 2019 ASM IP Holding B.V. Substrate processing device
11996309, May 16 2019 ASM IP HOLDING B V ; ASM IP Holding B.V. Wafer boat handling device, vertical batch furnace and method
12055863, Jul 17 2020 ASM IP Holding B.V. Structures and methods for use in photolithography
12057314, May 15 2020 ASM IP Holding B.V. Methods for silicon germanium uniformity control using multiple precursors
12074022, Aug 27 2020 ASM IP Holding B.V. Method and system for forming patterned structures using multiple patterning process
12087586, Apr 15 2020 ASM IP HOLDING B V Method of forming chromium nitride layer and structure including the chromium nitride layer
12106944, Jun 02 2020 ASM IP Holding B.V. Rotating substrate support
12106965, Feb 15 2017 ASM IP Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
12107000, Jul 10 2019 ASM IP Holding B.V. Substrate support assembly and substrate processing device including the same
12107005, Oct 06 2020 ASM IP Holding B.V. Deposition method and an apparatus for depositing a silicon-containing material
12112940, Jul 19 2019 ASM IP Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
12119220, Dec 19 2019 ASM IP Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
12119228, Jan 19 2018 ASM IP Holding B.V. Deposition method
12125700, Jan 16 2020 ASM IP Holding B.V. Method of forming high aspect ratio features
12129545, Dec 22 2020 ASM IP Holding B.V. Precursor capsule, a vessel and a method
12129548, Jul 18 2019 ASM IP Holding B.V. Method of forming structures using a neutral beam
12130084, Apr 24 2020 ASM IP Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
12131885, Dec 22 2020 ASM IP Holding B.V. Plasma treatment device having matching box
12148609, Sep 16 2020 ASM IP HOLDING B V Silicon oxide deposition method
12154824, Aug 14 2020 ASM IP Holding B.V. Substrate processing method
D913980, Feb 01 2018 ASM IP Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
D922229, Jun 05 2019 ASM IP Holding B.V. Device for controlling a temperature of a gas supply unit
D930782, Aug 22 2019 ASM IP Holding B.V. Gas distributor
D931978, Jun 27 2019 ASM IP Holding B.V. Showerhead vacuum transport
D935572, May 24 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Gas channel plate
D940837, Aug 22 2019 ASM IP Holding B.V. Electrode
D944946, Jun 14 2019 ASM IP Holding B.V. Shower plate
D947913, May 17 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Susceptor shaft
D948463, Oct 24 2018 ASM IP Holding B.V. Susceptor for semiconductor substrate supporting apparatus
D949319, Aug 22 2019 ASM IP Holding B.V. Exhaust duct
D965044, Aug 19 2019 ASM IP Holding B.V.; ASM IP HOLDING B V Susceptor shaft
D965524, Aug 19 2019 ASM IP Holding B.V. Susceptor support
D975665, May 17 2019 ASM IP Holding B.V. Susceptor shaft
D979506, Aug 22 2019 ASM IP Holding B.V. Insulator
D980813, May 11 2021 ASM IP HOLDING B V Gas flow control plate for substrate processing apparatus
D980814, May 11 2021 ASM IP HOLDING B V Gas distributor for substrate processing apparatus
D981973, May 11 2021 ASM IP HOLDING B V Reactor wall for substrate processing apparatus
ER1077,
ER1413,
ER1726,
ER195,
ER2810,
ER315,
ER3883,
ER3967,
ER4264,
ER4403,
ER4489,
ER4496,
ER4646,
ER4732,
ER6015,
ER6261,
ER6328,
ER6881,
ER7009,
ER7365,
ER7895,
ER8714,
ER8750,
ER9386,
ER9931,
RE48031, Jul 20 2006 Kawasaki Jukogyo Kabushiki Kaisha Wafer transfer apparatus and substrate transfer apparatus
RE48792, Jul 20 2006 Kawasaki Jukogyo Kabushiki Kaisha Wafer transfer apparatus and substrate transfer apparatus
RE49671, Jul 20 2006 Kawasaki Jukogyo Kabushiki Kaisha Wafer transfer apparatus and substrate transfer apparatus
Patent Priority Assignee Title
6669434, Nov 17 2000 Tazmo Co., Ltd. Double arm substrate transport unit
7059817, Nov 29 2001 Axcelis Technologies, Inc Wafer handling apparatus and method
20020192057,
20030179120,
20030202865,
20040013497,
20040191028,
20050011294,
20050063800,
20050095089,
20050096794,
20050158153,
20050220576,
20060015279,
20060045668,
20060104750,
20060182532,
GB2193482,
JP11157609,
JP1133949,
JP1174328,
JP2000133690,
JP2000141272,
JP2002280437,
JP2002299413,
JP2002522238,
JP2003025262,
JP2003045933,
JP2003170384,
JP2003179120,
JP2003188231,
JP2004106078,
JP2004148447,
JP2004160613,
JP2004502558,
JP2005039047,
JP2006073834,
JP2006245508,
JP63272474,
JP6342142,
JP7122618,
JP8111449,
KR1020050008523,
RE46465, Jul 20 2006 Kawasaki Jukogyo Kabushiki Kaisha Wafer transfer apparatus and substrate transfer apparatus
WO7780,
WO2004024401,
WO2004043653,
WO2007008702,
WO9960610,
WO101454,
WO204176,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 18 2017Kawasaki Jukogyo Kabushiki Kaisha(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 19 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 27 20214 years fee payment window open
May 27 20226 months grace period start (w surcharge)
Nov 27 2022patent expiry (for year 4)
Nov 27 20242 years to revive unintentionally abandoned end. (for year 4)
Nov 27 20258 years fee payment window open
May 27 20266 months grace period start (w surcharge)
Nov 27 2026patent expiry (for year 8)
Nov 27 20282 years to revive unintentionally abandoned end. (for year 8)
Nov 27 202912 years fee payment window open
May 27 20306 months grace period start (w surcharge)
Nov 27 2030patent expiry (for year 12)
Nov 27 20322 years to revive unintentionally abandoned end. (for year 12)