manufacturing techniques for producing thin magnetic elements are designed to accommodate the mechanical properties of sintered magnetic substrates. One of the manufacturing processes involves cutting a magnetizable substrate into a number of slices and adhesively coupling the slices to a sheet that can take the form of a layer of grinding tape. After concurrently grinding a first surface of each of the slices, the slices are flipped over so that the first surface of each slice is attached to another layer of grinding tape. A second surface of each of the slices is then ground until a desired thickness is achieved. Subsequent to the grinding, dicing operations can be applied to the slices to produce magnets having a desired length and width.
|
1. A method of manufacturing an ultra-thin magnet for use in a small form factor electronic component, the method comprising:
cutting a substrate formed of magnetizable material into slices;
thinning the slices to form thinned slices by:
mounting the slices to a first support structure;
removing a first amount of material from exposed first surfaces of the slices,
flipping the slices over and mounting the slices to a second support structure, and
removing a second amount of material from exposed second surfaces of the slices;
singulating the thinned slices into individual magnetic elements; and
magnetizing the individual magnetic elements in accordance with a desired magnetic property.
10. A method for forming an ultra-thin magnet for use in an electronic component for a portable electronic device, comprising:
cutting a magnetizable substrate into slices;
removing a first amount of material from a first side of each of the slices while the slices are secured to a first adhesive support structure;
flipping the slices over and securing the slices to a second adhesive support structure;
removing a second amount of material from a second side of each of the slices that is opposite to the first side while the slices are secured to the second adhesive support structure until a desired thickness of each of the slices is achieved;
of singulating the slices into magnetic elements; and
magnetizing the magnetic elements.
2. The method as recited in
3. The method as recited in
4. The method as recited in
magnetically coupling a ferrous substrate with each of the individual magnetic elements by placing the ferrous substrate in direct contact with a surface of the second support structure that is opposite to a surface of the second support structure that is in contact with the individual magnetic elements.
5. The method as recited in
6. The method as recited in
7. The method as recited in
8. The method as recited in
9. The method as recited in
plating the individual magnetic elements with an anti-corrosive layer.
11. The method as recited in
detaching the magnetic elements from the second adhesive support structures; and
installing the magnetic elements on a printed circuit board (PCB) so that an exposed surface of each of the magnetic elements is coupled with a surface of the PCB.
12. The method as recited in
13. The method as recited in
coupling a magnetically attractable plate to the second adhesive support structure, thereby fixing the magnetic elements in place on the second adhesive support structure.
14. The method as recited in
15. The method as recited in
irradiating the second adhesive sheet to reduce adhesive coupling between the first side of each of the slices and the second adhesive sheet; and
subsequently, separating each of the slices from the second adhesive sheet.
16. The method as recited in
plating the first and second sides of the magnetic elements with an anti-corrosive layer.
|
The described embodiments relate generally to methods for accurately forming and magnetizing thin magnetic substrates. In particular, methods for producing thin magnetic substrates while minimizing sample variation are discussed.
Modern magnet fabrication processes suffer from substantial sample variation as magnetic substrates of increasingly reduced thicknesses are produced. Often magnets formed by conventional processes begin suffering from substantial sample variation as a thickness of the magnets falls below 1 mm. Magnets of this size can be advantageous in the construction of small form factor electronic components. In some embodiments, a field strength and size of the magnets can be critical to achieving a desired field size. In some embodiments, a magnet having too much dimensional sample variation can prevent the magnet from being successfully packaged within one of the small form factor electronic components. In some embodiments, sample variations of a tenth of a millimeter or less can adversely affect the function and/or fit of one of the magnets.
This paper describes various embodiments that relate to manufacturing methods for producing magnets having particularly small dimensions.
A manufacturing method is disclosed. The manufacturing method includes at least the following steps: cutting a substrate formed of magnetizable material into slices having an initial thickness greater than a desired thickness; removing portions of the slices until the desired thickness of the slices is achieved; singulating each of the slices into a number of magnetic elements while the slices are coupled with a support structure; and magnetizing the magnetic elements in accordance with a desired magnetic polarity pattern prior to removing the magnetic elements from the support structure.
A method is disclosed. The method includes at least the following steps: cutting a magnetizable substrate into a number of slices; grinding a first side of each of the slices; coupling the first side of each of the slices to an adhesive sheet; concurrently grinding a second side of each of the slices until a desired thickness of each of the slices is achieved, the second side being opposite the first side; dicing each of the slices into a number of magnetic elements having a desired length and width; plating exposed surfaces of each of the magnetic elements with an anti-corrosive layer; magnetizing the magnetic elements; and coupling a magnetically attractable plate to a surface of the adhesive sheet opposite the magnetic elements to keep the magnetic elements fixed in place on the adhesive sheet.
A non-transitory computer readable storage medium is described. The non-transient computer readable medium is configured to store instructions that, when executed by a processor in a computer numerical control (CNC) device, cause the CNC device to carry out a manufacturing method, by carrying out steps that include: cutting a sintered magnetic substrate into a number of slices having substantially similar geometries; adhesively coupling a first surface of each of the slices to a first adhesive sheet; grinding a second surface of each of the slices, the second surface being positioned opposite the first surface, until a desired surface finish is achieved on the second surface; adhesively coupling the second surface of each slice to a second adhesive sheet; separating the first surface of each of the slices from the first adhesive sheet; grinding the first surface of each of the slices until a desired thickness of each of the slices is reached; and dicing each of the slices into a number of magnetic elements.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the described embodiments.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, where like reference numerals designate like structural elements, and in which:
Representative applications of methods and apparatus according to the present application are described in this section. These examples are being provided solely to add context and aid in the understanding of the described embodiments. It will thus be apparent to one skilled in the art that the described embodiments may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order to avoid unnecessarily obscuring the described embodiments. Other applications are possible, such that the following examples should not be taken as limiting.
In the following detailed description, references are made to the accompanying drawings, which form a part of the description and in which are shown, by way of illustration, specific embodiments in accordance with the described embodiments. Although these embodiments are described in sufficient detail to enable one skilled in the art to practice the described embodiments, it is understood that these examples are not limiting; such that other embodiments may be used, and changes may be made without departing from the spirit and scope of the described embodiments.
Sintered magnetic substrates can provide several manufacturing difficulties due to the material properties inherent to sintered magnetic substrates. For example, sintered magnetic substrates made from rare earth metals tend to be quite brittle, resulting in a low mechanical strength. For this reason, conventional manufacturing operations can subject the sintered magnetic substrates to cracking or fracture under stresses induced during the conventional manufacturing operations. Consequently, shaping operations are generally carried out utilizing cutting tools having extremely sharp edges that minimize mechanical stresses experienced by the sintered magnetic substrates. Unfortunately, even when extremely sharp edged cutting tools are utilized, getting consistent dimensional accuracy when shaping a sintered magnetic substrate to have a dimension of less than 500 microns can be quite challenging. Achieving a dimensional thickness of less than 100 microns during a cutting operation is generally considered to be infeasible. Dimensional variations resulting from the aforementioned types of cutting operations, in which a consistent dimensional accuracy cannot be reliably achieved, can have highly detrimental effects on yields of magnets formed from the sintered magnetic substrates. For this reason, alternative ways of forming thin magnet that include one or more dimensions of less than a millimeter are highly desired.
One solution to this problem is to cut the sintered magnetic substrates to a shape or geometry slightly larger than desired in a final magnet and then to apply grinding operations that alter the dimensions of the sintered magnetic substrate to a desired size and shape. In particular, the grinding operations can be particularly effective at reliably achieving magnet thicknesses as small as about 80 microns. As mentioned above, dimensional accuracy can be particularly critical when a desired dimension is particularly small. For example, when shaping a sintered magnetic substrate to have a final dimension of less than a millimeter, dimensional sample variations amounting to greater than 10 microns can begin to have substantial effects on an overall volume of the sintered magnetic material. The greater accuracy inherent with finely tuned grinding operations can provide the accuracy necessary to achieve consistent dimensional accuracies. In some embodiments, total thickness variation of the magnets can be tightly controlled to be within +/−5 microns, whereas traditional approaches yield accuracies that can vary by as much as +/−30 microns. In addition to providing very tight thickness control, the disclosed manufacturing methods also provide excellent parallelism, which results in very consistent thicknesses for magnets of the same batch as well as substantially parallel opposing surfaces of each produced magnet. The substantially parallel surfaces can be very helpful in many kinds of configurations where one or more of the magnets is stacked with other magnets or components.
These and other embodiments are discussed below with reference to
In
In some embodiments, the attachment of magnetic elements 202 to substrate 218 should be conducted quickly to avoid undue exposure of an exposed surface of magnetic element 202 to corrosive molecules in the air. In some embodiments, the pick and place step can be performed under near vacuum conditions to prevent exposure of the exposed surface of magnetic element 202 to the aforementioned corrosive molecules. Once mounted to substrate 218, anti-corrosive coating 206 in cooperation with substrate 218 can prevent magnetic element 202 from being exposed to any potentially corrosive gases. In some embodiments, substrate 218 can take the form of a printed circuit board (PCB). Such a configuration can allow the PCB to act as both a carrier for magnetic element 202 and to support other electrical components such as processors and other discrete electrical components. In some embodiments, a shunt or shielding device can be arranged around magnetic element 202 to help shield other electrical components mounted to the PCB. The shunt can also be utilized to concentrate a magnetic field emitted by magnetic element 202 towards a location in which a magnetic field emitted by the magnet is designed to act. In some embodiments, the magnet positioned upon the PCB can be integrated into a voice coil motor (VCM). In certain cases the reduced thickness achieved by the aforementioned machining operations can produce a VCM with particularly small dimensions that can reduce an overall size of a camera module utilizing the VCM. For example, the VCM can be utilized to drive an autofocus component of the camera module without significantly adding to an overall size of the camera module.
At step 306, slices of the magnetic substrate are affixed to a layer of grinding tape. In some embodiments, the magnetic substrate can be adhesively fixed to the layer of grinding tape with UV curable adhesive. At step 308, an exposed layer of each slice undergoes a grinding operation in which a desired finish is produced and in some embodiments, a uniform thickness of each of the slices is achieved. In some embodiments, the desired finish can increase a surface energy of the surface to enhance adhesion between the surface of the slice and another object. At step 310, the ground surfaces of the magnetic substrates are adhesively affixed to another layer of grinding tape. After affixing the magnetic substrates to the other layer of grinding tape, the first layer of grinding tape can be removed to reveal an opposite side of each of the magnetic substrates. In some embodiments, when the slices are affixed to the other layer of grinding tape with the UV curable adhesive, the UV curable adhesive can be irradiated to reduce adhesive coupling between the slices and the other layer of grinding tape. At step 312, each of the magnetic substrates can undergo another grinding operation until the slices are thinned to a desired thickness.
The steps in the method continue in
Electronic device 400 can also include user input device 408 that allows a user of the electronic device 400 to interact with the electronic device 400. For example, user input device 408 can take a variety of forms, such as a button, keypad, dial, touch screen, audio input interface, visual/image capture input interface, input in the form of sensor data, etc. Still further, electronic device 400 can include a display 410 (screen display) that can be controlled by processor 402 to display information to the user. Data bus 416 can facilitate data transfer between at least file system 404, cache 406, processor 402, and controller 413. Controller 413 can be used to interface with and control different manufacturing equipment through equipment control bus 414. For example, control bus 414 can be used to control a computer numerical control (CNC) mill, a press, or other manufacturing devices. For example, processor 402, upon a certain manufacturing event occurring, can supply instructions to control another manufacturing device through controller 413 and control bus 414. Such instructions can be stored in file system 404, RAM 420, ROM 422 or cache 406.
Electronic device 400 can also include a network/bus interface 411 that couples to data link 412. Data link 412 can allow electronic device 400 to couple to a host computer or to accessory devices. The data link 412 can be provided over a wired connection or a wireless connection. In the case of a wireless connection, network/bus interface 411 can include a wireless transceiver. Sensor 426 can take the form of circuitry for detecting any number of stimuli. For example, sensor 426 can include any number of sensors for monitoring such as, for example, a Hall Effect sensor responsive to external magnetic field, an audio sensor, a light sensor such as a photometer and so on.
The various aspects, embodiments, implementations or features of the described embodiments can be used separately or in any combination. Various aspects of the described embodiments can be implemented by software, hardware or a combination of hardware and software. The described embodiments can also be embodied as computer readable code on a computer readable medium for controlling manufacturing operations or as computer readable code on a computer readable medium for controlling a manufacturing line. The computer readable medium is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include read-only memory, random-access memory, CD-ROMs, HDDs, DVDs, magnetic tape, and optical data storage devices. The computer readable medium can also be distributed over network-coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of specific embodiments are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the described embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3160860, | |||
3710291, | |||
4133911, | Dec 17 1974 | BASF Aktiengesellschaft | Manufacture of magnetic discs |
4417167, | Sep 14 1977 | Sony Corporation | DC Brushless motor |
5804959, | Feb 18 1997 | Tabuchi Electric Company of America | Shunt core transformer with a second secondary coil comprised of a ferrous material |
6303471, | Oct 14 1998 | Nippon Telegraph and Telephone Corporation | Method of manufacturing semiconductor device having reinforcing member and method of manufacturing IC card using the device |
6355166, | Aug 25 1994 | IOWA RESEARCH FOUNDATION, UNIVERSITY OF, THE | Magnetically enhanced composite materials and methods for making and using the same |
6903475, | Feb 23 2001 | Black & Decker Inc | Stator assembly with an overmolding that secures magnets to a flux ring and the flux ring to a stator housing |
8066897, | Dec 28 2007 | Western Digital Technologies, INC | Dynamic hard magnet thickness adjustment for reduced variation in free layer stabilization field in a magnetoresistive sensor |
8211259, | Nov 28 2007 | Seiko Epson Corporation | Separating method of bonded body |
20040001973, | |||
20040164730, | |||
20120075749, | |||
20120156441, | |||
JP7183119, | |||
KR101165303, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 03 2015 | MAGEN, ADAR | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035811 | /0543 | |
Jun 07 2015 | KRIMAN, MOSHE | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035811 | /0543 | |
Jun 08 2015 | Apple Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 14 2022 | REM: Maintenance Fee Reminder Mailed. |
Aug 01 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 26 2021 | 4 years fee payment window open |
Dec 26 2021 | 6 months grace period start (w surcharge) |
Jun 26 2022 | patent expiry (for year 4) |
Jun 26 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 26 2025 | 8 years fee payment window open |
Dec 26 2025 | 6 months grace period start (w surcharge) |
Jun 26 2026 | patent expiry (for year 8) |
Jun 26 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 26 2029 | 12 years fee payment window open |
Dec 26 2029 | 6 months grace period start (w surcharge) |
Jun 26 2030 | patent expiry (for year 12) |
Jun 26 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |