The present invention provides a packaging shell and a power module having the same. The packaging shell mainly comprises an accommodating recess for receiving a substrate disposed with a plurality of electronic devices/components, so as to make the substrate be further assembled with a heat sink through the support of the packaging shell. Most importantly, in the present invention, the accommodating recess has a stepped surface for contacting with the substrate, and the stepped surface is a curve surface having a flatness difference. By such design, the compressional force generated when assembling the packaging shell, the heat sink and the system circuit board can be uniformly transmitted to substrate via the curve surface structure; such that the compressional force is avoid from being concentrated to a certain point on the substrate, and then the substrate is protected from being ruptured due to the action of the concentrated compressional force.
|
1. A packaging shell for a power module comprising a plurality of electronic components and a substrate, wherein the electronic components are assembled on the substrate; the packaging shell comprising:
an accommodating recess providing an accommodating space for the electronic components;
a stepped surface surrounding the bottom edge of the accommodating recess for positioning the substrate, wherein the stepped surface has a bigger than normal flatness difference so as to form a curve outline opposing and contacting with the substrate to buffer the stress the substrate subjected to during the process of the power module and the packaging shell assembled with another object,
wherein the substrate is a smiling-like shape and has a warpage within a predetermined range, and the flatness difference of the stepped surface matches with the warpage of the substrate.
13. A power module, installed on a system circuit board and connected with a heat-sink at the same time, comprising:
a plurality of electronic components;
a substrate, wherein all the electronic components are mounted on the same surface of the substrate;
a packaging shell, comprising:
an accommodating recess providing space for the electronic components being assembled with the substrate; and
a stepped surface surrounding the bottom edge of the accommodating recess for positioning the substrate, wherein the stepped surface has a bigger than normal flatness difference so as to form a curve outline opposing and contacting with the substrate to buffer the stress the substrate subjected during the process of the power module and the packaging shell assembled with another object; and
a seal adhesive, adhering to the stepped surface and the substrate so as to sealing up the substrate and the packaging shell,
wherein the substrate is a smiling-like shape and has a warpage within a predetermined range, and the flatness difference of the stepped surface matches with the warpage of the substrate.
2. The packaging shell as recited in
3. The packaging shell as recited in
4. The packaging shell as recited in
5. The packaging shell as recited in
6. The packaging shell as recited in
7. The packaging shell as recited in
8. The packaging shell as recited in
9. The packaging shell as recited in
10. The packaging shell as recited in
11. The packaging shell as recited in
12. The packaging shell as recited in
14. The power module as recited in
15. The power module as recited in
16. The power module as recited in
17. The power module as recited in
18. The power module as recited in
19. The power module as recited in
|
1. Field of the Invention
The present invention relates to a plastic packaging structure, and more particularly, to a packaging shell and a power module having the same.
2. Description of the Prior Art
High power efficiency and high power density are industrial basic demands on power converters; wherein, high power efficiency implies energy conservation, carbon reduction, environment protection, and low operation cost, and high power density means small volume, light weight, low transportation cost, less space occupation, and low built cost.
Therefore, improving the space utilization inside the power converter is one of key factors to make the power converter achieve high power density and high power efficiency. Besides, semiconductor device is also an important factor for improving the space utilization inside the power converter, and the commonly used way is to dispose a plurality of semiconductor devices on a packaging shell for constructing an integrated power module (IPM).
There are several kinds of packaging technologies for the power module, such as metal packaging, ceramic packaging, plastic packaging, etc. Please refer to
In which, the electrodes formed on the top surface of the power device 5′ are connected to the substrate 9′ via a plurality of aluminum bonding wires 3′, and the power device 5′ is protected by a silicone gel 7′ injected into the shell 1′ of the power module. Moreover, a plurality of terminals 4′ are assembled on the substrate 9′ through bonding materials such as solder for electrically connecting a system circuit board. When assembling the power module, the top surface of the substrate 9′ is assembled to the shell 1′ using a sealing adhesive 10′, and the bottom surface of the substrate 9′ is assembled onto a heat sink 8′ through a thermal conductive grease 6′, and then a plurality of screw bolts 2′ are disposed on the assemble hole set in outer side of shell 1′ for tightly fixing the shell 1′ on the heat sink 8′. By such locking setup, the compressional force applied to the shell 1′ by the screw bolts 2′ would transform to a compressional force on the substrate 9′, such that the substrate 9′ would be compressed on the heat sink 8′ tightly and tightening the heat-conducting thermal silicone grease 6′. So that, by this way, the power loss generated by devices on the substrate 9′ may be highly efficiently transferred to the heat sink 8′ through the thermal conductive grease 6′, and achieve heat dispassion effect with the packaging.
Thus, through above descriptions, it can be informed that the prior technique is firstly screw the shell 1′ to the system circuit board (not shown in
For overcoming the shortcomings and drawbacks consisted in the conventional plastic packaging technology, the primary objective of the present invention is to provide a packaging shell, wherein the packaging shell mainly comprises an accommodating recess for receiving a substrate disposed with a plurality of electronic devices/components, so as to make the substrate be further assembled with a heat sink through the support of the packaging shell. Most importantly, the accommodating recess has a stepped surface for contacting with the substrate, and the stepped surface is a curve surface having a flatness difference. By such design, the compressional force generated when assembling the packaging shell, the heat sink and the system circuit board can be uniformly transmitted to substrate via the curve surface structure; such that the compressional force is avoid from being concentrated to a certain point on the substrate, and then the substrate is protected from being ruptured due to the action of the concentrated compressional force.
Moreover, another objective of the present invention is to provide a packaging shell having at least one pressure releasing opening disposed between flank parts of the packaging shell and the accommodating recess. Hence, the compressional force generated when tightly fastening the packaging shell by using a few screws would be transferred to the end point of the accommodating recess along the at least one pressure releasing opening and the problem of the stress concentration of the compressional force can be effectively solved, so as to enhance the reliability of installing the packaging shell.
Accordingly, to achieve the primary objective of the present invention, the inventor of the present invention provides a packaging shell for a power module comprising a plurality of electronic components and a substrate, wherein the electronic components are assembled on the substrate; the packaging shell comprising: an accommodating recess providing an accommodating space for the electronic components; a stepped surface surrounding the bottom edge of the accommodating recess for positioning the substrate, wherein the stepped surface has a bigger than normal flatness difference so as to form a curve outline to buffer the stress the substrate subjected during the process of the power module and the packaging shell assembled with another object.
According to one exemplary embodiment of the packaging shell, the flatness difference of the stepped surface ranges from 0.03 mm to 1.0 mm to form the curve outline of the stepped surface.
According to one exemplary embodiment of the packaging shell, the stepped surface is rectangle-shape and is consisted of four sides.
According to one exemplary embodiment of the packaging shell, all the surfaces of the four sides are convex.
According to one exemplary embodiment of the packaging shell, two surfaces of two parallel sides are convex; two surfaces of the other two parallel sides are concave.
According to one exemplary embodiment of the packaging shell, the packaging shell further comprises two flank parts, wherein the two flank parts are extended from the two parallel sides respectively and perpendicular to the accommodating recess.
According to one exemplary embodiment of the packaging shell, each of the flank parts has at least a hole for installation of a heat-sink.
According to one exemplary embodiment of the packaging shell, each of the flank parts has a pressure releasing opening abutting the side the flank part extended from.
According to one exemplary embodiment of the packaging shell, the pressure releasing opening is rectangular, and the length of the pressure releasing opening is parallel to the side the flank part extended from.
According to one exemplary embodiment of the packaging shell, the accommodating recess further comprises a column located at the bottom and pointing to the substrate.
According to one exemplary embodiment of the packaging shell, the accommodating recess further comprises a gel-injection hole at the bottom.
According to one exemplary embodiment of the packaging shell, the substrate is a smiling-like shape and has a warpage within predetermined range.
According to one exemplary embodiment of the packaging shell, the flatness difference of the stepped surface matches with the warpage of the substrate.
According to one exemplary embodiment of the packaging shell, the packaging shell further comprises a plurality of locking holes in the outer surface for locking the packaging shell with a system circuit board.
In addition, to achieve the objective of the present invention, the inventor of the present invention further provides a power module, installed on a system circuit board and connected with a heat-sink at the same time, comprising:
According to one exemplary embodiment of the power module, the flatness difference of the stepped surface ranges from 0.03 mm to 1.0 mm to form the curve outline of the stepped surface.
According to one exemplary embodiment of the power module, the stepped surface is rectangle-shaped and consisting four sides.
According to one exemplary embodiment of the power module, the packaging shell further comprises two flank parts, wherein the two flank parts are extended from the two parallel sides respectively and perpendicular to the accommodating recess.
According to one exemplary embodiment of the power module, each of the flank parts has a pressure releasing opening abutting the side the flank part extended from.
According to one exemplary embodiment of the power module, the pressure releasing opening is a rectangular opening, and the length of the pressure releasing opening is parallel to the side the flank part extended from.
According to one exemplary embodiment of the power module, a plurality of locking hole is formed on the outside surface of the packaging shell.
According to one exemplary embodiment of the power module, wherein the substrate is a smiling-like shape and has a warpage within predetermined range.
According to one exemplary embodiment of the power module, the flatness difference of the stepped surface matches with the warpage of the substrate. According to one exemplary embodiment of the power module, the warpage of the substrate ranges from 0.03 mm to 1.0 mm. In summary, compared to the controversial technologies, the present invention has the following advantages:
1. The packaging shell mainly comprises an accommodating recess for receiving a substrate disposed with a plurality of electronic devices/components, so as to make the substrate be further assembled with a heat sink through the support of the packaging shell. Most importantly, the accommodating recess has a stepped surface for contacting with the substrate, and the stepped surface is a curve surface having a flatness difference. By such design, the compressional force generated when assembling the packaging shell, the heat sink and the system circuit board can be uniformly transmitted to substrate via the curve surface structure; such that the compressional force is avoid from being concentrated to a certain point on the substrate, and then the substrate is protected from being ruptured due to the action of the concentrated compressional force.
2. Inheriting to above point 1, moreover, the packaging shell having at least one pressure releasing opening disposed between flank parts of the packaging shell and the accommodating recess. Hence, the action area of a compressional force generated when tightly fastening the packaging shell by using a few screws would expand to the end point of the accommodating recess along the at least one pressure releasing opening and the problem of the stress concentration of the compressional force can be effectively solved, so as to enhance the reliability of installing the packaging shell.
The present invention will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of present invention. Further, some features may be exaggerated to show details of particular parts.
Among those benefits and improvements have been disclosed, other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying figures. Detail embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely illustrative of the invention that may be embodied in various forms. In addition, each of the examples given in connection with the various embodiments of the invention is intended to be illustrative, and not restrictive.
Throughout the specification and claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise. The phrases “In some embodiments” and “in some embodiments” as used herein do not necessarily refer to the same embodiment(s), though it may. Furthermore, the phrases “in another embodiment” and “in some other embodiments” as used herein do not necessarily refer to a different embodiment, although it may. Thus, as described below, various embodiments of the invention may be readily combined, without departing from the scope or spirit of the invention.
As used herein, “flatness difference” is a concept similar with the professional definition of term “flatness difference”. “flatness difference” herein means the vertical distance of the lowest point and highest point in one plane. The flatness difference of the stepped surface is big enough to form the curve outline of the stepped surface. The curve outline of the stepped surface may be not found out at the first glimpse. Maybe through the careful observation or making use of precision measurement tools, the curve outline of the stepped surface can be observed. The value of flatness difference ranges from 0.03 mm to 1 mm, which is greater than the normal value of flatness difference smaller than 0.03 mm.
In some embodiments of the instant invention, as shown in
In some embodiments, the packaging shell comprising the stepped surface has the features given in
In some embodiments, the stepped surface 110 have features given in
In some embodiments, the hL is designed to be slightly greater then hS for balancing the aforesaid compressional force. Therefore, the relationship of the hL and the hS can be represented by the formula of 0.03 mm≤hS≤hL≤1.0 mm. This kind of design for the stepped surface could perfectly match the features as mentioned above about the substrate 2, which is smiling-like shape and has warpage.
As the embodiments of the stepped surface 110 given above, the stepped surface 110 is not a plane in tradition because of bigger flatness difference than the normal flatness difference. Then, the curve outline of the stepped surface 110 can be observed by the careful observation or some precision measurement tools. Since the stepped surface 110 is consisted of four sides in some embodiments, some side of the stepped surface 110 is concave and some side of stepped surface 110 is convex, there are some more embodiments shown about convex side and concave side in
In
In
In one embodiment, as shown in
In one embodiment, as shown in
In some other embodiments, as shown in
All of the pressures releasing openings in the flank parts of the packaging shell are designed to release the pressure the packaging shell suffered and reduce the compressive stress the packaging shell transfers to the substrate. Please refer to the
In some embodiment of a power module, the power module normally comprises a packaging shell and a substrate. The embodiments above illustrate some features about the packaging shell and substrate. As shown in
In one exemplary embodiment, the substrate could be the DCB (Direct Copper Bonded) which is normally used in the power module. As known for the technician in this art, the DCB substrate is brittle. Thus, the DCB substrate is easily broken during complicate assembly, for instance, assembly of DCB substrate, heat sinks, system circuit board and packaging shell.
In some embodiments, the power module has insulation material encapsulating the electronic components on the substrate. Usually, the insulation material is injected into the sealed space formed between the substrate and packaging shell. Please refer to the
While a number of embodiments of the present invention have been described, it is understood that these embodiments are illustrative only, and not restrictive, and that many modifications may become apparent to those of ordinary skill in the art.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6906413, | May 30 2003 | Honeywell International Inc | Integrated heat spreader lid |
8395254, | Mar 30 2006 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit package system with heatspreader |
20020149916, | |||
20030035270, | |||
20080111228, | |||
20120032341, | |||
20130020687, | |||
20140197445, | |||
CN1591850, | |||
CN1799141, | |||
TW200733537, | |||
TW229063, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 03 2014 | HONG, SHOUYU | DELTA ELECTRONICS SHANGHAI CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034635 | /0857 | |
Dec 17 2014 | WANG, XIANMING | DELTA ELECTRONICS SHANGHAI CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034635 | /0857 | |
Jan 05 2015 | Delta Electronics (Shanghai) Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 15 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 03 2021 | 4 years fee payment window open |
Jan 03 2022 | 6 months grace period start (w surcharge) |
Jul 03 2022 | patent expiry (for year 4) |
Jul 03 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 03 2025 | 8 years fee payment window open |
Jan 03 2026 | 6 months grace period start (w surcharge) |
Jul 03 2026 | patent expiry (for year 8) |
Jul 03 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 03 2029 | 12 years fee payment window open |
Jan 03 2030 | 6 months grace period start (w surcharge) |
Jul 03 2030 | patent expiry (for year 12) |
Jul 03 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |