A pulsed sonar-based wireless rod position indication system that utilizes nuclear radiation and high temperature tolerant hardware. The pulsed sonar-based rod position indication system can precisely locate the rod position by measuring the time of flight of a transmitted signal and by using the phase and amplitude information of the same transmitted signal. Primary and secondary antenna probes located in the interior of the control rod drive rod travel housing and full hardware redundancy provide for improved accuracy. The time of flight, phase and amplitude raw signals are inputted to a wireless data transmitter capable of sending the raw signals to a receiver antenna located elsewhere inside a containment for further processing.
|
1. A nuclear reactor system having a reactor vessel that houses a nuclear core in which fissile reactions take place within a pressure boundary of the reactor vessel and a control rod system for controlling the fissile reactions, the control rod system comprising:
a control rod configured to move, within a sonically conductive coolant, into and out of the nuclear core, to control the fissile reactions;
a drive system for driving the control rod into and out of the core; and
a control rod position monitoring system comprising:
a sonar pulse generator configured to generate a series of sonar pulses;
an antenna fixedly positioned within the pressure boundary, above an upper limit of travel of the control rod and configured to receive the sonar pulses generated by the sonar pulse generator and transmit the sonar pulses to the upper portion of the control rod and receive a reflected sonar signal from the control rod and communicate the reflected sonar signal to a selected location a spaced distance from the antenna outside of the pressure boundary, wherein the control rod includes a control rod drive rod and a control rod drive rod housing surrounds an upper portion of a travel path of the control rod drive rod with the antenna supported within an interior of the control rod drive rod housing; and
a receiver positioned at the spaced distance from the antenna and configured to receive the reflected sonar signal and communicate the reflected sonar signal to a processing unit that is configured to analyze the reflected sonar signal to determine a control rod position.
2. The nuclear reactor system of
3. The nuclear reactor system of
5. The nuclear reactor system of
6. The nuclear reactor system of
7. The nuclear reactor system of
8. The nuclear reactor system of
9. The nuclear reactor system of
11. The nuclear reactor system of
12. The nuclear reactor system of
14. The nuclear reactor system of
15. The nuclear reactor system of
16. The nuclear reactor system of
17. The nuclear reactor system of
18. The nuclear reactor system of
19. The nuclear reactor system of
|
1. Field
This invention pertains generally to nuclear reactor control rod position indication systems and more particularly to such a system that uses pulse sonar to determine the position of a control rod.
2. Related Art
Control rod position indication systems derive the axial positions of the control rods by direct measurement of the drive rod positions. Currently, both analog control rod position indication systems and digital control rod position indication systems are used in pressurized water reactors. The conventional digital control rod position indication systems have been in service for over thirty years in nuclear power stations worldwide and are currently being used as the basis for the control rod position indication systems in the new Westinghouse AP1000® designs offered by Westinghouse Electric Company LLC, Cranberry Township, Pa.
A conventional pressurized water reactor control rod position indication system is illustrated in
A conventional digital rod position indication system, such as the one schematically illustrated in
It should be noted that for purposes of this application, the phrase “control rod” is used generally to refer to a unit for which separate axial position information is maintained, such as a group of control rods physically connected in a cluster assembly. The number of control rods varies according to the plant design. For example, a typical four-loop pressurized water reactor has fifty-three control rods. Each control rod requires its own set of coils having one or more channels and the digital rod position indication electronics associated with each channel in the case of digital systems. Thus, in a typical four-loop pressurized water reactor, the entire digital rod position indication system would include fifty-three coil stacks, each having two independent channels, and 106 digital rod position indication electronics units.
Existing control rod position indication systems use hardwired connections from the rod position detectors 12 to the rod position indication electronics cabinets 14 and from the rod position indication electronics cabinets 14 to a display cabinet 20. The analog rod position indication system employs rod position indication electronics cabinets located outside the containment 18, while the digital rod position indication system employs rod position indication electronics cabinets located inside the containment 18. During outages, fuel rods are replaced by removing the reactor vessel head. To remove the head, all rod position indicator detectors 12 must be disconnected. This can take several days depending on whether an integrated head package exists. Even in cases where an integrated head is used, the process can still take up to one full day. All cables are disconnected and manipulated, causing stress and wear on the cable assemblies. This may lead to connection issues and, ultimately, can adversely affect rod position measurement.
Currently, digital rod position indication is accomplished by detectors (69 total detector assemblies for an AP1000® plant) mounted outside and concentric with the rod travel housing 26 located above the reactor vessel head. These detectors consist of coiled wire slipped over a tube and spaced along its length at 3.75 inch (9.53 cm.) intervals. The tube fits over the drive rod travel housing. As the rod moves through the coil, the magnetic flux from the coils change. This magnetic flux change is processed by signal processing hardware to produce a measurement and reporting of rod position.
Each detector assembly requires a tube which is positioned over the rod travel housing. Also, each of the 48 detector coils per detector assembly requires several cable assemblies in order to supply the AC current needed to generate the electromagnetic field. They also need two cabinets for signal processing. Lastly, the resolution of the detectors is only plus or minus 3.125 inches (7.938 cm.) limited by the magnetic field interaction between the coils. This limitation precludes the system from achieving single-step (⅝ inch (1.59 cm.)) accuracy. Instead, the system is limited to providing positional information in groups of five steps, therefore adding un-necessary conservatism to plant safety margins.
Accordingly, a new control rod position indication system is desired that can provide greater accuracy and efficiency during refueling outages.
These and other objects are achieved in a nuclear reactor system having a reactor vessel that houses a nuclear core in which fissile reactions take place within a pressure boundary of the reactor vessel and a control rod system for controlling the fissile reactions. The control rod system comprises a control rod configured to move within a sonically conductive coolant, into and out of the nuclear core, to control the fissile reactions. A drive system is configured to drive the control rod into and out of the core. A control rod position monitoring system is also provided comprising a sonar pulse generator configured to generate a series of sonar pulses. An antenna is fixedly positioned within the pressure boundary, above an upper limit of travel of the control rod and is configured to receive the sonar pulses generated by the sonar pulse generator and transmit these sonar pulses to the upper portion of the control rod and receive a reflected sonar signal from the control rod and communicate the reflected sonar signal to a selected location a spaced distance from the antenna outside of the pressure boundary. A receiver is positioned at the spaced distance from the antenna and is configured to receive the reflected sonar signal and communicate the reflected sonar signal to a processing unit that is configured to analyze the reflected sonar signal to determine a control rod position.
In one embodiment, the sonar pulse generator is supported outside of the coolant and transmits the series of sonar pulses wirelessly to the antenna and the antenna transmits the reflected sonar signal wirelessly to the receiver. Preferably, the sonar signal is an ultrasonic signal and the sonar pulse generator is a vacuum micro-electronic device. Desirably, the sonar pulse generator and the receiver are a vacuum micro-electronic device transceiver. Conventionally, the control rod comprises a plurality of separately movable control rods with each of the separately movable control rods having a corresponding control rod position monitoring system, wherein in accordance with one embodiment of this invention the sonar pulses for each of the separately movable control rod position monitoring systems has its own unique frequency. Preferably, the respective frequencies of the sonar pulses are different than any other frequency of electromagnetic noise within the nuclear reactor system.
In still another embodiment, the control rod position monitoring system comprises redundant control rod position monitoring systems including two distinct sonar pulse generators that are independent of each other and two distinct receivers that are independent of each other. Such a system may also include two distinct, separate antennas. In one such embodiment, the sonar pulses emitted from the two distinct sonar pulse generators are substantially emitted at the same frequency. In another such case, the sonar pulses emitted from the two distinct sonar pulse generators are emitted at separate distinct frequencies. Preferably, the antenna is a ceramic antenna.
In still another embodiment, the control rod includes a control rod drive rod and a control rod drive rod housing surrounds an upper portion of a travel path of the control rod drive rod with the antenna supported within an interior of the control rod drive rod housing. Preferably, the power required to energize the sonar pulse generator and the receiver is supplied by a thermoelectric generator with a hot junction attached to the control rod drive rod housing and a cold junction located opposite the hot junction, away from the control rod drive rod housing.
The system may also include a data transmitter that receives an original sonar pulse from the series of sonar pulses and a corresponding one of a reflected sonar signal, including amplitude and phase, and sends the original sonar pulse and reflected sonar signal to a signal processing base station for computation. Preferably, the data transmitter is a wireless data transmitter. The system may also include a temperature sensor for monitoring a temperature within the control rod drive rod housing and operable to communicate the temperature to the data transmitter which is operable to transmit the temperature to the signal processing base station. Desirably, the temperature sensor includes a plurality of temperature sensors spaced along the control rod drive rod housing. The signal processing base station is configured to determine the time of flight of the original sonar pulse and the reflected sonar signal and compensate the determination with the temperature.
A further understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
The preferred embodiment of this invention is illustrated in
Typical pressurized water reactors operate at 2,220 psig (15.3 megapascal) and 626 degrees Fahrenheit (330° Celsius). According to the N. Bilaniuk and G. S. K. Wong model1, the speed of sound in water is c=5,062 feet/second at 212 degrees Fahrenheit (100° Celsius). Using equation one, the round trip travel of the signal can be calculated:
where d is the distance of the top of the control rod and c is the speed of sound in water at a specific temperature. Based on the above equation and assuming that the transreceiver antenna is located approximately one foot above the control rod drive rod when the rod is fully withdrawn, and that the total distance the rod can travel is sixteen feet, we can obtain the following round trip travel times:
t(1 ft)=0.395 mseconds
t(17 ft)=6.672 mseconds
1 N. Bilaniuk and G. S. K. Wong (1993), Speed of sound in pure water as a function of temperature, J. Acoust. Soc. Am. 93(3) pp 1609-1612, as amended by N. Bilaniuk and G. S. K. Wong (1996), Erratum: Speed of sound in pure water as a function of temperature [J. Acoust. Soc. Am. 93, 1609-1612 (1993)], J. Acoust. Soc. Am. 99(5), p 3257
If the control rod drive rod moves one step (⅝ inches (1.59 cm.)) from the fully withdrawn position, the round trip time becomes
t=414.86 μseconds
The delta in the received signal for a ⅝ inch (1.59 cm.) movement would be 19.75 μseconds. This case would be the most demanding in the time of flight calculations and can be easily resolved with a 1 MHz clock in the processing base station. As stated above, the phase of the received signal and the amplitude information will also be used to determine the rod position. Phase and amplitude also change proportional to rod movement and are used as error correction terms. The estimated accuracy of this system is plus or minus 0.4 inch, which is over seven times better than the current system.
Accordingly, this system provides improved accuracy, which would be mainly limited by the control rod drive mechanism step accuracy; with the conservatism built into the current safety margin essentially eliminated by the better accuracy. The accuracy of the current prior art system is +/−3.125″. The accuracy of the system of this invention is only limited by the smallest rod movement which is 0.625″. The improved safety margins provided by this invention ultimately means that the reactors employing this concept can generate more electricity than their counterparts employing conventional technology. Redundant sensors provide the same accuracy instead of a half accuracy as with the current design. Only initial installation calibration is needed and sensor interaction issues within the rod travel housing and with adjacent rod housings are eliminated. Furthermore, the system enables elimination of the signal and powering cables which facilitates a more efficient fuel reload outage. Furthermore, the control rod position monitoring system of this invention provides substantially improved accuracy over current systems. Additionally, the drive rods no longer have to be ferromagnetic.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular embodiments disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any and all equivalents thereof.
Arlia, Nicola G., Carvajal, Jorge V., Heibel, Michael D., James, Michael A., Walter, Melissa M., Flammang, Robert W., Sumego, David M.
Patent | Priority | Assignee | Title |
11862350, | Jan 22 2021 | Westinghouse Electric Company LLC | Nuclear movable element position indication apparatus, system, and method |
Patent | Priority | Assignee | Title |
5229066, | Aug 05 1991 | WESTINGHOUSE ELECTRIC CO LLC | Control rod position indication system |
5276719, | Aug 14 1991 | Siemens Aktiengesellschaft | Hydraulic control rod drive for a nuclear reactor |
7005783, | Feb 04 2002 | Innosys, Inc. | Solid state vacuum devices and method for making the same |
7679996, | Jun 13 2006 | PROVIDENTIAL INNOVATIONS, LLC | Methods and device for ultrasonic range sensing |
8767903, | Jan 07 2011 | Westinghouse Electric Company LLC | Wireless in-core neutron monitor |
8824617, | Jan 09 2009 | Analysis and Measurement Services Corporation | Control rod position indication systems and methods for nuclear power plants |
20140321593, | |||
JP2000028781, | |||
JP2728834, | |||
WO2004044611, |
Date | Maintenance Fee Events |
Dec 24 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 10 2021 | 4 years fee payment window open |
Jan 10 2022 | 6 months grace period start (w surcharge) |
Jul 10 2022 | patent expiry (for year 4) |
Jul 10 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 10 2025 | 8 years fee payment window open |
Jan 10 2026 | 6 months grace period start (w surcharge) |
Jul 10 2026 | patent expiry (for year 8) |
Jul 10 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 10 2029 | 12 years fee payment window open |
Jan 10 2030 | 6 months grace period start (w surcharge) |
Jul 10 2030 | patent expiry (for year 12) |
Jul 10 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |