A first vehicle includes a light and a controller in communication with the light. The controller is programmed to detect a second vehicle positioned to sense the light, transmit a first message to the second vehicle requesting observation of the light, actuate the light to change state in response to a second message from the second vehicle, and receive a third message from the second vehicle specifying a state of the light.
|
17. A controller programmed to:
detect a reflective surface facing a light of a vehicle;
actuate the light to change state;
receive images of the reflective surface from a camera of the vehicle; and
determine a state of the light based on the images.
1. A controller programmed to:
detect a second vehicle positioned to sense a first vehicle light;
transmit a first message to the second vehicle requesting observation of the light;
actuate the light to change a state in response to a second message from the second vehicle; and
receive a third message from the second vehicle specifying a state of the light.
9. A first vehicle comprising:
a light; and
a controller in communication with the light and programmed to
detect a second vehicle positioned to sense the light;
transmit a first message to the second vehicle requesting observation of the light;
actuate the light to change state in response to a second message from the second vehicle; and
receive a third message from the second vehicle specifying a state of the light.
2. The controller of
3. The controller of
4. The controller of
5. The controller of
6. The controller of
7. The controller of
8. The controller of
10. The first vehicle of
11. The first vehicle of
12. The first vehicle of
13. The first vehicle of
14. The first vehicle of
15. The first vehicle of
16. The first vehicle of
18. The controller of
19. The controller of
20. The controller of
|
Motor vehicles include exterior lights to illuminate the environment and to signal to other vehicles. Headlights are attached to a front of the vehicle facing in a vehicle-forward direction. Headlights typically produce white light and illuminate a roadway in front of the vehicle. Brakelights are attached to a rear of the vehicle facing in a vehicle-backward direction and typically produce red light. Turn signals are attached at or near corners of the vehicle and typically produce yellow or orange light. Some brakelights are also turn signals. Brakelights communicate to other vehicles whether the vehicle is braking, and turn signals communicate to other drivers whether a vehicle intends to turn. Turn signals also function as four-way flashers and communicate to other vehicles that the vehicle is moving slowly, a hazardous situation is ahead, etc. Types of lights for vehicles include tungsten, halogen, high-intensity discharge (HID) such as xenon, light-emitting diode (LED), and laser.
With reference to the Figures, wherein like numerals indicate like parts throughout the several views, a first vehicle 30 includes a light 32, 34, 36 and a controller 42 in communication with the light 32, 34, 36. The controller 42 is programmed to detect a second vehicle 38 positioned to sense the light 32, 34, 36; transmit a first message to the second vehicle 38 requesting observation of the light 32, 34, 36; actuate the light 32, 34, 36 to change state in response to a second message from the second vehicle 38; and receive a third message from the second vehicle 38 specifying a state of the light 32, 34, 36. (The adjectives “first,” “second,” “third,” and “fourth” are used throughout this document for convenience as identifiers and are not intended to signify importance or order.)
An autonomous first vehicle 30 may be operated without occupants or carrying occupants who do not provide input to operate the first vehicle 30. Thus, if one of the exterior lights 32, 34, 36 of the vehicle malfunctions, no occupant may be present or willing to seek repairs for the light 32, 34, 36. The programming of the controller 42 advantageously solves the problem of diagnosing the lights 32, 34, 36 of an autonomous vehicle.
The first vehicle 30 may be an autonomous vehicle. The controller 42, sometimes referred to as the “virtual driver,” may be capable of operating the first vehicle 30 independently of the intervention of a human driver, entirely or to a greater or a lesser degree. The controller 42 may be programmed to operate propulsion 44, braking 46, steering 48, and/or other vehicle systems. The first vehicle 30 is considered to be fully autonomous (sometimes referred to as autonomous) when the controller 42 operates each of the propulsion 44, the braking 46, and the steering 48 without human intervention.
With reference to
The control system 40 may transmit signals through a communications network 52 such as a controller area network (CAN) bus, Ethernet, Local Interconnect Network (LIN), and/or by any other wired or wireless communications network. The controller 42 is in communication through the communications network 52 with the propulsion 44, the braking 46, the steering 48, the sensors 50, a transmitter 54, and the lights 32, 34, 36.
The first vehicle 30 may include the sensors 50. The sensors 50 may detect internal states of the first vehicle 30, for example, wheel speed, wheel orientation, and engine and transmission variables. The sensors 50 may detect the position or orientation of the first vehicle 30, for example, global positioning system (GPS) sensors; accelerometers such as piezo-electric or microelectromechanical systems (MEMS); gyroscopes such as rate, ring laser, or fiber-optic gyroscopes; inertial measurements units (IMU); and magnetometers. The sensors 50 may detect the external world, for example, radar sensors, scanning laser range finders, light detection and ranging (LIDAR) devices, and image processing sensors such as cameras 56. The sensors 50 may include communications devices, for example, vehicle-to-infrastructure (V2I) or vehicle-to-vehicle (V2V) devices.
The steering 48 is typically a known vehicle steering subsystem and controls the turning of wheels. The steering 48 is in communication with and receives input from a steering wheel and the controller 42. The steering 48 may be a rack-and-pinion system with electric power-assisted steering, a steer-by-wire system, as are both known, or any other suitable system.
The propulsion 44 of the first vehicle 30 generates energy and translates the energy into motion of the first vehicle 30. The propulsion 44 may be a known vehicle propulsion subsystem, for example, a conventional powertrain including an internal-combustion engine coupled to a transmission that transfers rotational motion to wheels; an electric powertrain including batteries, an electric motor, and a transmission that transfers rotational motion to the wheels; a hybrid powertrain including elements of the conventional powertrain and the electric powertrain; or any other type of propulsion. The propulsion 44 is in communication with and receives input from the controller 42 and from a human driver. The human driver may control the propulsion 44 via, e.g., an accelerator pedal and/or a gear-shift lever.
The braking 46 is typically a known vehicle braking subsystem and resists the motion of the first vehicle 30 to thereby slow and/or stop the first vehicle 30. The braking 46 may be friction brakes such as disc brakes, drum brakes, band brakes, and so on; regenerative brakes; any other suitable type of brakes; or a combination. The braking 46 is in communication with and receives input from the controller 42 and a human driver. The human driver may control the braking 46 via, e.g., a brake pedal.
The transmitter 54 may be connected to the communications network 52. The transmitter 54 may be adapted to transmit signals wirelessly through any suitable wireless communication protocol, such as Bluetooth, WiFi, 802.11a/b/g, radio, etc. The transmitter 54 may be adapted to communicate with a remote server 58, that is, a server distinct and geographically remote from the first vehicle 30. The remote server 58 may be located outside the first vehicle 30. For example, the remote server 58 may be in other vehicles (e.g., V2V communications), infrastructure components (e.g., V2I communications), emergency responders, mobile devices associated with the owner of the vehicle, etc. Further, the transmitter 54 can be used to allow the first vehicle 30 to communicate with second vehicles 38, i.e., for vehicle-to-vehicle (V2V) communicating.
With reference to
The first vehicle 30 includes brakelights 34. The brakelights 34 may be fixed relative to the first vehicle 30 and disposed at a rear of the first vehicle 30 facing in a vehicle-backward direction. The brakelights 34 may be any lighting system suitably visible to other vehicles around the first vehicle 30, including tungsten, halogen, high-intensity discharge (HID) such as xenon, light-emitting diode (LED), laser, etc. The brakelights 34 may have multiple states, and the multiple states may include bright, dim, and off. For example, the brakelights 34 may be bright if the braking 46 is activated, dim if the braking 46 is not activated and the headlights 32 are on, and off if the braking 46 is not activated and the headlights 32 are off. The brakelights 34 may be in communication with the braking 46 and/or the controller 42.
The first vehicle 30 includes turn signals 36. The turn signals 36 may be fixed relative to the first vehicle 30 and disposed at corners of the first vehicle 30 as well as, for example, on side mirrors and/or doors of the first vehicle 30. The turn signals 36 may be any lighting system suitably visible to other vehicles around the first vehicle 30, including tungsten, halogen, high-intensity discharge (HID) such as xenon, light-emitting diode (LED), laser, etc. The turn signals 36 may have multiple states, and the multiple states may include blinking and off. The turn signals 36 may be in communication with the controller 42. The brakelights 34 may also be turn signals 36.
Next, in a decision block 310, the controller 42 determines whether the second vehicle 38 is positioned to sense the light 32, 34, 36 of the first vehicle 30. Specifically, the controller 42 determines whether the second vehicle 38 is in a testing position relative to the light 32, 34, 36 of the first vehicle 30 and will remain in that testing position for a long enough time to complete the process 300, that is, whether the testing position is stable for a testing duration. An example of a stable testing position for the adaptive headlights 32 is that the first vehicle 30 is stopped and the second vehicle 38 is stopped in front of the first vehicle 30, as shown in
If the second vehicle 38 is positioned to sense the light 32, 34, 36 of the first vehicle 30, next, in a block 315, the controller 42 transmits a message to the second vehicle 38 asking whether the second vehicle 38 has a camera 60 facing the light 32, 34, 36. The camera 60 is “facing” an object if the camera 60 is aimed such that the object is in a field of vision of the camera 60. Specifically, the controller 42 instructs the transmitter 54 to send the message.
Next, in a decision block 320, the controller 42 determines whether the second vehicle 38 has the camera 60 facing the light 32, 34, 36 based on a reply message from the second vehicle 38. If the second vehicle 38 does not have the camera 60 facing the light 32, 34, 36, then the process 300 returns to the block 305, in which the controller 42 detects another second vehicle 38.
If the second vehicle 38 does have the camera 60 facing the light 32, 34, 36, next, in a block 325, the controller 42 transmits a message to the second vehicle 38 requesting observation of the light 32, 34, 36, that is, that the camera 60 record images or video of the light 32, 34, 36.
Next, in a decision block 330, the controller 42 determines whether the camera 60 of the second vehicle 38 will observe the light 32, 34, 36. Specifically, the controller 42 receives a message from the second vehicle 38 indicating whether the second vehicle 38 is instructing the camera 60 to observe the light 32, 34, 36. If the second vehicle 38 declines, that is, if the camera 60 of the second vehicle 38 will not observe the light 32, 34, 36, then the process 300 returns to the block 305, in which the controller 42 detects another second vehicle 38.
If the second vehicle 38 accepts, that is, if the camera 60 of the second vehicle 38 will observe the light 32, 34, 36, next, in a block 335, the controller 42 actuates the light 32, 34, 36 to change state in response to the message from the second vehicle 38 indicating observation. For example, the controller 42 may actuate the adaptive headlights 32 to rotate right relative to the first vehicle 30 by an angle θ and then rotate left relative to the first vehicle 30 by an angle 2θ before returning to a centered state, e.g., aligned with the longitudinal axis L of the first vehicle 30. For another example, the controller 42 may actuate the brakelights 34 to change to dim and then to bright. For a third example, the controller 42 may actuate the turn signals 36 to begin blinking.
Next, in a block 340, the controller 42 receives a message from the second vehicle 38 specifying a state of the light 32, 34, 36. The second vehicle 38 may use image analysis techniques, e.g., a known technique such as image subtraction analysis, to determine a change in state of the light 32, 34, 36, for example, the adaptive headlights 32 rotating, the brakelights 34 changing from off to bright, the turn signals 36 changing from off to blinking, etc. Then, the second vehicle 38 may send a message indicating that the light 32, 34, 36 did or did not change from a particular state to a particular state. Alternatively, the second vehicle 38 may send a sequence of images to the controller 42. The controller 42 may then use a known technique such as image subtraction analysis to determine whether the light 32, 34, 36 did or did not change state. With that determination, the controller 42 determines the operability of the light 32, 34, 36. After the block 340, the process 300 ends.
Next, in a decision block 710, the controller 42 determines whether the reflective surface 62 is facing the light 32, 34, 36 of the first vehicle 30. The reflective surface 62 is “facing” the light 32, 34, 36 if the reflective surface 62 reflects light from the light 32, 34, 36 back toward the first vehicle 30 such that the field of vision of the camera 56 of the first vehicle 30 encompasses the reflected light. If the reflective surface 62 is not facing the light 32, 34, 36 of the first vehicle 30, then the process 700 returns to the block 705, in which the controller 42 detects another reflective surface 62.
If the reflective surface 62 is facing the light 32, 34, 36 of the first vehicle 30, next, in a block 715, the controller 42 actuates the light 32, 34, 36 to change state, as described above with respect to the block 335 of the process 300.
Next, in a block 720, the controller 42 receives images of the reflective surface 62 from the camera 56 of the first vehicle 30. The images may be video or a sequence of still images.
Next, in a block 725, the controller 42 determines a state of the light 32, 34, 36 based on the images. Determining the state of the light 32, 34, 36 based on the images may include performing, e.g., image subtraction analysis to determine a change in state of the light 32, 34, 36, for example, the adaptive headlights 32 rotating, the brakelights 34 changing from off to bright, the turn signals 36 changing from off to blinking, etc. Then, the controller 42 may determine that the light 32, 34, 36 did or did not change from a particular state to a particular state. With that determination, the controller 42 determines the operability of the light 32, 34, 36. After the block 725, the process 700 ends.
The disclosure has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present disclosure are possible in light of the above teachings, and the disclosure may be practiced otherwise than as specifically described.
Patent | Priority | Assignee | Title |
10339815, | Dec 29 2017 | Hyundai Motor Company; Kia Motors Corporation | Apparatus and method for controlling lamp of platooning vehicle |
10882449, | Oct 03 2017 | Ford Global Technologies, LLC | Vehicle light platoon |
11724642, | Sep 28 2020 | Ford Global Technologies, LLC | Vehicle brake light control during one-pedal drive |
Patent | Priority | Assignee | Title |
7005977, | Mar 31 2005 | NISSAN MOTOR CO , LTD | System and method for providing wireless communication between vehicles |
7227611, | Aug 23 2004 | The Boeing Company | Adaptive and interactive scene illumination |
7440828, | Dec 16 2003 | HONDA MOTOR CO , LTD | Operation checking method for adaptive front lighting system |
8582091, | Sep 01 2011 | Ford Global Technologies, LLC; Ford Global Technology, LLC | Vision-based headlamp aiming |
8660734, | Oct 05 2010 | GOOGLE LLC | System and method for predicting behaviors of detected objects |
20110063861, | |||
20130113935, | |||
20130257274, | |||
20140085468, | |||
20140226349, | |||
20160003439, | |||
DE102011118534, | |||
KR20130055836, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 11 2016 | Ford Global Technologies, LLC | (assignment on the face of the patent) | / | |||
Oct 11 2016 | DUDAR, AED M | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040309 | /0649 |
Date | Maintenance Fee Events |
Jan 13 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 07 2021 | 4 years fee payment window open |
Feb 07 2022 | 6 months grace period start (w surcharge) |
Aug 07 2022 | patent expiry (for year 4) |
Aug 07 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 07 2025 | 8 years fee payment window open |
Feb 07 2026 | 6 months grace period start (w surcharge) |
Aug 07 2026 | patent expiry (for year 8) |
Aug 07 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 07 2029 | 12 years fee payment window open |
Feb 07 2030 | 6 months grace period start (w surcharge) |
Aug 07 2030 | patent expiry (for year 12) |
Aug 07 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |