An led luminaire comprises a rechargeable battery, led array(s), multiple drivers, and a control circuit. The led luminaire may be used to replace a fluorescent or a conventional led lamp connected to ac mains. The multiple drivers comprise a first driver configured to charge the rechargeable battery, a second driver configured to convert a dc voltage from the rechargeable battery to light up the led array(s) when a line voltage from the ac mains is unavailable, and a third driver configured to operate the led array(s) when the line voltage from the ac mains is available. The control circuit is configured to manage the multiple drivers in a way that the second driver is disabled when the line voltage from the ac mains is available and that the first driver and the third driver are disabled when a rechargeable battery test is performed, without ambiguity and safety issues.
|
1. A light-emitting diode (led) luminaire, comprising:
at least two electrical conductors configured to connect to alternate-current (ac) mains;
one or more led arrays;
a rechargeable battery;
a full-wave rectifier connected to the at least two electrical conductors and configured to convert a line voltage from the ac mains into a first direct-current (dc) voltage;
an input filter configured to suppress electromagnetic interference (EMI) noise;
a first driver comprising a first power sustaining device, a first ground reference, and a second ground reference electrically isolated from the first ground reference and coupled to the full-wave rectifier via the input filter, the first driver configured to convert the first dc voltage into a second dc voltage that charges the rechargeable battery to reach a third dc voltage;
a second driver comprising a second power sustaining device, the second driver configured to receive the third dc voltage from the rechargeable battery and convert the third dc voltage into a fourth dc voltage to light up the one or more led arrays when the line voltage from the ac mains is unavailable;
a third driver comprising a third power sustaining device and coupled to the full-wave rectifier via the input filter, the third driver configured to convert the first dc voltage into a fifth dc voltage that powers up the one or more led arrays at full power and to meet led luminaire efficacy requirements when the line voltage from the ac mains is available; and
a control circuit comprising an optocoupler, the control circuit configured to disable the second driver by controlling the second power sustaining device when the line voltage from the ac mains is available and to disable the third driver by controlling the third power sustaining device when a rechargeable battery test is performed,
wherein:
the optocoupler comprises an infrared led and a phototransistor, respectively coupled to the second ground reference and the first ground reference, the optocoupler configured to disable the first driver when disabled;
the first driver, the second driver, the third driver, and the control circuit are configured to auto-select the line voltage from the ac mains or the third dc voltage from the rechargeable battery to operate the one or more led arrays; and
the rechargeable battery test is performed to ensure that the rechargeable battery is in a working condition.
2. The led luminaire of
3. The led luminaire of
4. The led luminaire of
5. The led luminaire of
6. The led luminaire of
7. The led luminaire of
8. The led luminaire of
9. The led luminaire of
10. The led luminaire of
11. The led luminaire of
12. The led luminaire of
13. The led luminaire of
14. The led luminaire of
15. The led luminaire of
|
The present disclosure is part of a continuation-in-part (CIP) application of U.S. patent application Ser. No. 15/911,086, filed 3 Mar. 2018, which is part of a CIP application of U.S. patent application Ser. No. 15/897,106, filed 14 Feb. 2018, which is a CIP application of U.S. patent application Ser. No. 15/874,752, filed 18 Jan. 2018, which is a CIP application of U.S. patent application Ser. No. 15/836,170, filed 8 Dec. 2017, which is a CIP application of U.S. patent application of Ser. No. 15/649,392 filed 13 Jul. 2017, which is a CIP application of U.S. patent application Ser. No. 15/444,536, filed 28 Feb. 2017 and issued as U.S. Pat. No. 9,826,595 on 21 Nov. 2017, which is a CIP application of U.S. patent application Ser. No. 15/362,772, filed 28 Nov. 2016, which is a CIP application of U.S. patent application Ser. No. 15/225,748, filed 1 Aug. 2016 and issued as U.S. Pat. No. 9,743,484 on 22 Aug. 2017, which is a CIP application of U.S. patent application Ser. No. 14/818,041, filed 4 Aug. 2015 and issued as U.S. Pat. No. 9,420,663 on 16 Aug. 2016, which is a CIP application of U.S. patent application Ser. No. 14/688,841, filed 16 Apr. 2015 and issued as U.S. Pat. No. 9,288,867 on 15 Mar. 2016, which is a CIP application of U.S. patent application Ser. No. 14/465,174, filed 21 Aug. 2014 and issued as U.S. Pat. No. 9,277,603 on 1 Mar. 2016, which is a CIP application of U.S. patent application Ser. No. 14/135,116, filed 19 Dec. 2013 and issued as U.S. Pat. No. 9,163,818 on 20 Oct. 2015, which is a CIP application of U.S. patent application Ser. No. 13/525,249, filed 15 Jun. 2012 and issued as U.S. Pat. No. 8,749,167 on 10 Jun. 2014. Contents of the above-identified applications are incorporated herein by reference in their entirety.
The present disclosure relates to light-emitting diode (LED) luminaires and more particularly to an LED luminaire with multiple drivers auto-selected for operations with a line voltage from alternate-current (AC) mains or a direct-current (DC) voltage from a rechargeable battery without ambiguity.
Solid-state lighting from semiconductor LEDs has received much attention in general lighting applications today. Because of its potential for more energy savings, better environmental protection (with no hazardous materials used), higher efficiency, smaller size, and longer lifetime than conventional incandescent bulbs and fluorescent tubes, the LED-based solid-state lighting will be a mainstream for general lighting in the near future. Meanwhile, as LED technologies develop with the drive for energy efficiency and clean technologies worldwide, more families and organizations will adopt LED lighting for their illumination applications. In this trend, the potential safety concerns such as risk of electric shock and fire become especially important and need to be well addressed.
In today's retrofit applications of an LED lamp to replace an existing fluorescent lamp, consumers may choose either to adopt a ballast-compatible LED lamp with an existing ballast used to operate the fluorescent lamp or to employ an AC mains-operable LED lamp by removing/bypassing the ballast. Either application has its advantages and disadvantages. In the former case, although the ballast consumes extra power, it is straightforward to replace the fluorescent lamp without rewiring, which consumers have a first impression that it is the best alternative. But the fact is that total cost of ownership for this approach is high regardless of very low initial cost. For example, the ballast-compatible LED lamps work only with particular types of ballasts. If the existing ballast is not compatible with the ballast-compatible LED lamp, the consumer will have to replace the ballast. Some facilities built long time ago incorporate different types of fixtures, which requires extensive labor for both identifying ballasts and replacing incompatible ones. Moreover, the ballast-compatible LED lamp can operate longer than the ballast. When an old ballast fails, a new ballast will be needed to replace in order to keep the ballast-compatible LED lamps working. Maintenance will be complicated, sometimes for the lamps and sometimes for the ballasts. The incurred cost will preponderate over the initial cost savings by changeover to the ballast-compatible LED lamps for hundreds of fixtures throughout a facility. In addition, replacing a failed ballast requires a certified electrician. The labor costs and long-term maintenance costs will be unacceptable to end users. From energy saving point of view, a ballast constantly draws power, even when the ballast-compatible LED lamps are dead or not installed. In this sense, any energy saved while using the ballast-compatible LED lamps becomes meaningless with the constant energy use by the ballast. In the long run, the ballast-compatible LED lamps are more expensive and less efficient than self-sustaining AC mains-operable LED lamps.
On the contrary, an AC mains-operable LED lamp does not require a ballast to operate. Before use of the AC mains-operable LED lamp, the ballast in a fixture must be removed or bypassed. Removing or bypassing the ballast does not require an electrician and can be replaced by end users. Each AC mains-operable LED lamp is self-sustaining. Once installed, the AC mains-operable LED lamps will only need to be replaced after 50,000 hours. In view of above advantages and disadvantages of both the ballast-compatible LED lamps and the AC mains-operable LED lamps, it seems that market needs a most cost-effective solution by using a universal LED lamp that can be used with the AC mains and is compatible with a ballast so that LED lamp users can save an initial cost by changeover to such an LED lamp followed by retrofitting the lamp fixture to be used with the AC mains when the ballast dies.
Furthermore, the AC mains-operable LED lamps can easily be used with emergency lighting, which is especially important in this consumerism era. The emergency lighting systems in retail sales and assembly areas with an occupancy load of 100 or more are required by codes in many cities. Occupational Safety and Health Administration (OSHA) requires that a building's exit paths be properly and automatically lighted at least ninety minutes of illumination at a minimum of 10.8 lux so that an employee with normal vision can see along the exit route after the building power becomes unavailable. This means that emergency egress lighting must operate reliably and effectively during low visibility evacuations. To ensure reliability and effectiveness of backup lighting, building owners should abide by the National Fire Protection Association's (NFPA) emergency egress light requirements that emphasize performance, operation, power source, and testing. OSHA requires most commercial buildings to adhere to the NFPA standards or a significant fine. Meeting OSHA requirements takes time and investment, but not meeting them could result in fines and even prosecution. If a building has egress lighting problems that constitute code violations, the quickest way to fix is to replace existing lamps with multi-function LED lamps that have an emergency light package integrated with the normal lighting. The code also requires the emergency lights be inspected and tested to ensure they are in proper working conditions at all times. It is, therefore, the manufacturers' responsibility to design an LED lamp or an LED luminaire with an emergency LED module integrated such that after the LED lamp or the LED luminaire is installed on a ceiling or in a room, the emergency LED module can be individually inspected on site.
A light-emitting diode (LED) luminaire comprising a full-wave rectifier, multiple drivers, one or more LED arrays, a rechargeable battery, and a control circuit, is used to replace a fluorescent or a conventional LED luminaire in luminaire fixture sockets connected to the AC mains. The LED luminaire with the multiple drivers auto-selects a line voltage from the AC mains or a DC voltage from a rechargeable battery. The LED luminaire further comprises an input filter configured to suppress electromagnetic interference (EMI) noise. The full-wave rectifier is configured to convert an input AC voltage from the AC mains into a first direct current (DC) voltage. The multiple drivers comprise a first driver, a second driver, and a third driver. The first driver comprises a first power sustaining device, a first ground reference, and a second ground reference electrically isolated from the first ground reference. The first driver is coupled to the full-wave rectifier via the input filter, configured to convert the first DC voltage into a second DC voltage for charging the rechargeable battery to reach a third DC voltage. The second driver comprises a second power sustaining device, receiving the third DC voltage from the rechargeable battery and converting the third DC voltage into a fourth DC voltage to light up the one or more LED arrays when the line voltage from the AC mains is unavailable. The third driver comprises a third power sustaining device, coupled to the full-wave rectifier via the input filter. The third driver is configured to convert the first DC voltage into a fifth DC voltage for powering up the one or more LED arrays when the line voltage from the AC mains is available. The control circuit comprises an optocoupler, configured to disable the second driver by controlling the second power sustaining device when the line voltage from the AC mains is available and to disable the first driver and the third driver by respectively controlling the optocoupler and the third power sustaining device when a rechargeable battery test is performed, The optocoupler comprises an infrared emitting diode and a phototransistor, respectively coupled to the second ground reference and the first ground reference. The optocoupler is configured to disable the first driver when disabled. The first driver, the second driver, the third driver, and the control circuit are configured to auto-select the line voltage from the AC mains or the third DC voltage from the rechargeable battery to operate the one or more LED arrays without ambiguity. The rechargeable battery test is performed to ensure that the rechargeable battery is in a working condition at all times.
The first driver is coupled to the second driver via a first diode to control a current flowing direction. The second driver is coupled to the one or more LED arrays via a second diode and a first inductor. When the one or more LED arrays receive a driving current from the second driver, a current returned from the one or more LED arrays flows via a second inductor and a third diode to the second ground reference, completing a power transfer from the rechargeable battery. The third driver is coupled to the one or more LED arrays directly. When the one or more LED arrays receive a driving current from the third driver, a current returned from the one or more LED arrays flows back to the third driver connected to the first ground reference, completing a power transfer from the AC mains.
The control circuit further comprises a first transistor connected to the infrared LED of the optocoupler, whereas when the line voltage from the AC mains is available, the first transistor is on, and so is the infrared LED, thus turning on the phototransistor of the optocoupler and subsequently activating the first power sustaining device by accessing an electric current return path via the first ground reference, thereby enabling the first driver. The control circuit further comprises a second transistor coupled to the second driver, configured to pull down a voltage on the second power sustaining device, thereby disabling the second driver when the line voltage from the AC mains is available. The control circuit further comprises a third transistor coupled to the third driver, configured to pull down a voltage on the third power sustaining device, thereby disabling the third driver when a rechargeable battery test is performed. The control circuit further comprises a test switch, whereas when the rechargeable battery test is performed, the test switch is enabled to send a low-level test signal relative to the second ground reference. The test switch is further coupled to the second transistor to recover a voltage on the second power sustaining device, thereby enabling the second driver when the rechargeable battery test is performed. The test switch is further coupled to the first transistor, configured to disable the optocoupler, thereby disconnecting the first power sustaining device from the first ground reference and thus disabling the first driver when the rechargeable battery test is performed. The control circuit further comprises a voltage sensor configured to monitor the line voltage from the AC mains, whereas when the rechargeable battery test is performed, the voltage sensor senses a voltage glitch in the line voltage from the AC mains and controls the third transistor to disable the third driver.
In these ways, the control circuit is enabled to manage the multiple drivers such that the second driver is disabled when the line voltage from the AC mains is available and that the first driver and the third driver are disabled when a rechargeable battery test is performed, whereas the one or more LED arrays are operated by the multiple drivers controlled by the control circuit without ambiguity and safety issues.
In one embodiment, the multiple drivers, the rechargeable battery, and the control circuit are integrated with the one or more LED arrays in the LED luminaire to operate the one or more LED arrays. In another embodiment, the multiple drivers and the control circuit are integrated in an electronic control module to externally operate the one or more LED arrays in an LED lamp.
Non-limiting and non-exhaustive embodiments of the present disclosure are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various figures unless otherwise specified.
The first driver 501 is coupled to the second driver 502 via a first diode 140 to control a current flowing direction. The second driver 502 is coupled to the one or more LED arrays 214 via a second diode 204 and a first inductor 236. When the one or more LED arrays 214 receive a driving current from the second driver 502, a current returned from the one or more LED arrays 214 flows via a second inductor 237 and a third diode 209 to the second ground reference 255, completing a power transfer from the rechargeable battery 500. The third driver 503 is coupled to the one or more LED arrays 214 directly. When the one or more LED arrays 214 receive a driving current from the third driver 503, a current returned from the one or more LED arrays 214 flows back to the third driver 503 connected to the first ground reference 254, completing a power transfer from the AC mains.
In
In practice, the fourth DC voltage is designed to be lower than the fifth DC voltage to operate the one or more LED arrays 214 such that the one or more LED arrays 214 consume less power when the input AC voltage from the AC mains is unavailable than the one or more LED arrays do when the input AC voltage from the AC mains is available to save energy. In this case, the rechargeable battery 500 can last longer than 90 minutes, required by regulations. In
The first driver 501 is coupled to the second driver 502 via a first diode 140 to control a current flowing direction. The second driver 502 is coupled to the one or more LED arrays 214 via a second diode 204 and a first inductor 236. When the one or more LED arrays 214 receive a driving current from the second driver 502, a current returned from the one or more LED arrays 214 flows via a second inductor 237 and a third diode 209 to the second ground reference 255, completing a power transfer from the rechargeable battery 500. The third driver 503 is coupled to the one or more LED arrays 214 directly. When the one or more LED arrays 214 receive a driving current from the third driver 503, a current returned from the one or more LED arrays 214 flows back to the third driver 503 connected to the first ground reference 254, completing a power transfer from the AC mains.
In
Whereas preferred embodiments of the present disclosure have been shown and described, it will be realized that alterations, modifications, and improvements may be made thereto without departing from the scope of the following claims. Another kind of schemes with multiple drivers adopted in an LED-based luminaire using various kinds of combinations to accomplish the same or different objectives could be easily adapted for use from the present disclosure. Accordingly, the foregoing descriptions and attached drawings are by way of example only, and are not intended to be limiting.
Patent | Priority | Assignee | Title |
10892615, | Apr 25 2017 | ENERGY FOCUS, INC | Circuit for mitigating electric shock |
Patent | Priority | Assignee | Title |
9047076, | Dec 31 2013 | Uninterruptable power supply system and method | |
9667096, | Nov 06 2012 | ALLY BANK, AS COLLATERAL AGENT; ATLANTIC PARK STRATEGIC CAPITAL FUND, L P , AS COLLATERAL AGENT | LED-based emergency lighting equipment and methodology |
9948118, | Sep 11 2014 | AMPL LABS, INC | Recharging platform for electronic devices |
20130127362, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 06 2018 | ALEDDRA INC. | (assignment on the face of the patent) | / | |||
Apr 06 2018 | HSIA, CHUNGHO | ALEDDRA INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045466 | /0248 |
Date | Maintenance Fee Events |
Apr 06 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 02 2018 | SMAL: Entity status set to Small. |
Dec 07 2021 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Nov 06 2021 | 4 years fee payment window open |
May 06 2022 | 6 months grace period start (w surcharge) |
Nov 06 2022 | patent expiry (for year 4) |
Nov 06 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 06 2025 | 8 years fee payment window open |
May 06 2026 | 6 months grace period start (w surcharge) |
Nov 06 2026 | patent expiry (for year 8) |
Nov 06 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 06 2029 | 12 years fee payment window open |
May 06 2030 | 6 months grace period start (w surcharge) |
Nov 06 2030 | patent expiry (for year 12) |
Nov 06 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |