A semiconductor device includes: a first base layer; a drain layer disposed on the back side surface of the first base layer; a second base layer formed on the surface of the first base layer; a source layer formed on the surface of the second base layer; a gate insulating film disposed on the surface of both the source layer and the second base layer; a gate electrode disposed on the gate insulating film; a column layer formed in the first base layer of the lower part of both the second base layer and the source layer by opposing the drain layer; a drain electrode disposed in the drain layer; and a source electrode disposed on both the source layer and the second base layer, wherein heavy particle irradiation is performed to the column layer to form a trap level locally.

Patent
   10217856
Priority
Sep 01 2008
Filed
Aug 14 2017
Issued
Feb 26 2019
Expiry
Aug 31 2029

TERM.DISCL.
Assg.orig
Entity
Large
0
50
currently ok
1. A semiconductor device comprising:
a first base layer of a first conductivity type;
a drain layer of the first conductivity type formed on a back side surface of the first base layer;
a second base layer of a second conductivity type formed in a surface side of the first base layer;
a source layer of the first conductivity type formed in a surface side of the second base layer;
a gate insulating film disposed on a surface of both the source layer and the second base layer;
a gate electrode disposed on the gate insulating film;
a column layer of the second conductivity type formed in the first base layer directly below both the second base layer and the source layer by opposing the drain layer so that a long-side direction of the column layer is a direction vertical to a principal surface of the drain layer;
a drain electrode disposed on the drain layer; and
a source electrode disposed on both the source layer and the second base layer, wherein
the column layer and the first base layer are alternately-arranged repeatedly in a direction parallel to the principal surface of the drain layer, and a bottom surface of the column layer and a top surface of the drain layer are separated from each other, wherein
space is defined between a bottom surface of the column layer and the upper surface of the drain layer,
the bottom surface of the column layer or an upper portion of the space is subjected to a charged particle irradiation, and
a resistance value of the space is increased from the top surface of the drain layer toward the bottom surface of the column layer.
10. A fabrication method for a semiconductor device, the fabrication method comprising:
forming a first base layer of a first conductivity type;
forming a drain layer of the first conductivity type on a back side surface of the first base layer;
forming a second base layer of a second conductivity type in a surface side in the first base layer;
forming a source layer of the first conductivity type in a surface side in the second base layer;
forming a gate insulating film on a surface of both the source layer and the second base layer;
forming a gate electrode on the gate insulating film;
forming a column layer of the second conductivity type in the first base layer directly below both the second base layer and the source layer by opposing the drain layer so that a long-side direction of the column layer is a direction vertical to a principal surface of the drain layer;
forming a drain electrode on the drain layer,
forming a source electrode on both the source layer and the second base layer; and
performing a charged particle irradiation with respect to the bottom surface of the column layer or an upper portion of space, the space being defined between a bottom surface of the column layer and the upper surface of the drain layer, a resistance value of the upper portion of the space being increased from the top surface of the drain layer toward the bottom surface of the column layer, wherein
the column layer and the first base layer are alternately-arranged repeatedly in a direction parallel to the principal surface of the drain layer, and a bottom surface of the column layer and a top surface of the drain layer are separated from each other.
2. The semiconductor device according to claim 1, wherein a charged particle irradiation is subjected to a lower part of the column layer to form the trap level locally.
3. The semiconductor device according to claim 2, wherein the trap level is due to the charged particle irradiation.
4. The semiconductor device according to claim 1, wherein the attenuation peak position of the charged particle irradiation is included between: a first position between the bottom surface of the column layer and the top surface of the drain layer; and a second position between the bottom surface of the column layer and the top surface of the drain layer, the first position determined by obtaining a distance from the bottom surface of the column layer so that reverse recovery time is shorter than a predetermined time period, the second position determined by obtaining a distance from the bottom surface of the column layer so that a saturation current between the drain and the source is lower than a predetermined saturation current, on the basis of the bottom surface of the column layer.
5. The semiconductor device according to claim 1, wherein an amount of dosage of the charged particle irradiation is 5×1010/cm2 to 5×1012/cm2.
6. The semiconductor device according to claim 1, wherein a planar pattern on the basis of one of a rectangle and a hexagon is disposed being checkered lattice-like or zigzagged checkered lattice-like, in the first base layer, the second base layer, and the source layer.
7. The semiconductor device according to claim 1, wherein the bottom surface of the column layer and the drain layer are separated by the first base layer.
8. The semiconductor device according to claim 2, wherein the trap level extends over the column layer and the first base layer.
9. The semiconductor device according to claim 1, wherein a distance between two neighboring column layers is smaller than a width of each of the column layers.

This is a Continuation of U.S. application Ser. No. 15/173,652, filed on Jun. 4, 2016, and allowed on May 15, 2017, which is a Continuation of U.S. application Ser. No. 14/320,671 filed on Jul. 1, 2014, and issued as U.S. Pat. No. 9,385,217 on Jul. 5, 2016, which is a Continuation of U.S. application Ser. No. 13/922,441, filed on Jun. 20, 2013, and issued as U.S. Pat. No. 8,802,548 on Aug. 12, 2014, which was a Divisional of U.S. application Ser. No. 12/737,912, filed on Feb. 28, 2011, and issued as a U.S. Pat. No. 8,492,829 B2 on Jul. 23, 2013, which was a National Stage application of PCT/JP2009/065171, filed Aug. 31, 2009, and claims the benefit of the following Japanese Patent application 2008-223370, filed on Sep. 1, 2008, the subject matters of which are incorporated herein by reference.

The present invention relates to a semiconductor device and a fabrication method for such semiconductor device. In particular, the present invention relates to a semiconductor device having a super junction Metal Oxide Semiconductor (MOS) structure, and a fabrication method for such semiconductor device.

When a MOS Field Effect Transistor (FET) is composed in a bridge circuit, three power loss reductions are required.

The first power loss is on-state power loss. The on-state power loss is a power loss associated with current flowing through a channel of the MOSFET, and reduction of the on resistance of the MOSFET is required.

The second power loss is a switching power loss associated with turn-on switching. In order to reduce the switching power loss associated with the turn-on switching, it is required that a turn-on switching time period should be shortened by increasing a gate sensitivity of the MOSFET and reducing an amount of gate charge Qg needed for the turn-on switching.

The third power loss is a switching power loss associated with the turn-off switching, and is called “through loss”. In order to reduce the through loss, it is required that the turn-off switching time should be shortened by shortening Reverse Recovery Time trr of the MOSFET.

As shown in FIG. 11, a MOSFET of planar structure as a semiconductor device related to a conventional example includes: a high resistivity first base layer 12 of a first conductivity type; a drain layer 10 of the first conductivity type formed on the back side surface of the first base layer 12; a second base layer 16 of a second conductivity type formed on the surface of the first base layer 12; a source layer 18 of the first conductivity type formed on the surface of the second base layer 16; a gate insulating film 20 disposed on the surface of both the source layer 18 and the second base layer 16; a gate electrode 22 disposed on the gate insulating film 20; and an interlayer insulating film 24 disposed on the gate electrode 22. In FIG. 12, the illustration is omitted about a drain electrode disposed on the drain layer 10, and a source electrode disposed on both the source layer 18 and the second base layer 16.

FIG. 12 shows an example of a switching waveform of the semiconductor device related to the conventional example.

Although the MOSFET including the super junction MOS structure denotes higher performance in respect of both the switching power loss and the on-state power loss compared with the MOSFET of the conventional planar structure, the performance is poor in respect of the through loss.

That is, the super junction MOSFET includes a column layer of the second conductivity type formed in the first base layer 12 of the lower part of both the second base layer 16 and the source layer 18 by opposing the drain layer 10. Accordingly, the on resistance is reduced and the gate sensitivity increases, the amount of gate charge Qg needed for the turn-on switching is reduced, and thereby the turn-on switching time period can be shortened. On the other hand, since the column layer is included, a pn junction area increases, the reverse recovery time trr increases, and thereby the turn-off switching time is increased. Herein, the amount of gate charge Qg is defined as an amount of charge needed for a voltage VGS between the gate and the source in order to reach 10 V, for example.

Generally, a method of using diffusion of a heavy metal and a method of electron irradiation are known as technology for shortening the reverse recovery time trr. According to the above-mentioned methods, although the reverse recovery time trr can be shortened, since the controllability for forming a trap level is wrong, there is a problem that the leakage current between the drain and the source increases.

Also, in an Insulated Gate Bipolar Transistor (IGBT), it is already proposed about a technology for forming locally a life-time controled layer (for example, refer to Patent Literature 1).

Moreover, in the IGBT, it is already also disclosed about a technology for irradiating only a predetermined region with an electron ray by using a source electrode formed with aluminum as wiring and using as a mask of electron irradiation (for example, refer to Patent Literature 2).

Patent Literature 1: Japanese Patent Application Laying-Open Publication No. H10-242165 (FIG. 1, and Pages 3-4)

Patent Literature 2: Japanese Patent Application Laying-Open Publication No. H10-270451 (FIG. 1, and Page 4)

The object of the present invention is to provide a semiconductor device including a super junction MOS structure where the reverse recovery time trr can be shortened without increasing the leakage current between the drain and the source, and to provide a fabrication method for such semiconductor device.

According to one aspect of the present invention for achieving the above-mentioned object, it is provided of a semiconductor device comprising: a high resistance first base layer of a first conductivity type; a drain layer of the first conductivity type formed on a back side surface of the first base layer; a second base layer of a second conductivity type formed on a surface of the first base layer; a source layer of the first conductivity type formed on a surface of the second base layer; a gate insulating film disposed on a surface of both the source layer and the second base layer; a gate electrode disposed on the gate insulating film; a column layer of the second conductivity type formed in the first base layer of the lower part of both the second base layer and the source layer by opposing the drain layer; a drain electrode disposed in the drain layer; and a source electrode disposed on both the source layer and the second base layer, wherein heavy particle irradiation is performed to the column layer to form a trap level locally.

According to another aspect of the present invention, it is provided of a fabrication method for a semiconductor device, the fabrication method comprising: forming a high resistance first base layer of a first conductivity type; forming a drain layer of the first conductivity type on a back side surface of the first base layer; forming a second base layer of a second conductivity type on a surface of the first base layer; forming a source layer of the first conductivity type on a surface of the second base layer; forming a gate insulating film on a surface of both the source layer and the second base layer; forming a gate electrode on the gate insulating film; forming a column layer of the second conductivity type in the first base layer of a lower part of both the second base layer and the source layer by opposing the drain layer; forming a drain electrode in the drain layer, forming a source electrode on both the source layer and the second base layer; and performing heavy particle irradiation to the column layer and forming a trap level locally.

According to the present invention, it can be provided of the semiconductor device including the super junction MOS structure where the reverse recovery time trr can be shortened without increasing the leakage current between the drain and the source, and can be provided of the fabrication method for such semiconductor device.

FIG. 1 A schematic cross-sectional configuration diagram of a semiconductor device according to a first embodiment of the present invention.

FIG. 2 A schematic bird's-eye view of the semiconductor device according to the first embodiment of the present invention.

FIG. 3 A schematic planar pattern configuration diagram of the semiconductor device according to the first embodiment of the present invention.

FIG. 4 An alternative schematic planar pattern configuration diagram of the semiconductor device according to the first embodiment of the present invention.

FIG. 5 An example of a switching waveform of a comparative example of the semiconductor device according to the first embodiment of the present invention.

FIG. 6 The schematic cross-sectional configuration diagram explaining the relation between the irradiation target position and the device structure, in the case of 3He++ ion irradiation to the semiconductor device according to the first embodiment of the present invention from a back side surface.

FIG. 7 A diagram showing the relation between a saturation current IDSS between the drain and the source and a distance from a bottom surface of a column layer, in the semiconductor device according to the first embodiment of the present invention.

FIG. 8 A diagram showing the relation between the reverse recovery time trr and the distance from the bottom surface of the column layer, in the semiconductor device according to the first embodiment of the present invention.

FIG. 9 A schematic diagram showing the relation between the reverse recovery time trr and the saturation current IDSS between the drain and the source and the distance from the bottom surface of the column layer, in the semiconductor device according to the first embodiment of the present invention.

FIG. 10 A diagram showing the relation between impurity concentration N, resistivity and sheet resistance R and the distance from the bottom surface of the column layer, in the semiconductor device related to the first embodiment of the present invention.

FIG. 11 A schematic bird's-eye view of a semiconductor device according to a conventional example.

FIG. 12 An example of a switching waveform of the semiconductor device according to the conventional example.

Next, embodiments of the present invention will be described with reference to drawings. It explains simple by attaching the same reference numeral as the same block or element to below, in order to avoid duplication of description. However, the drawings are schematic and it should care about differing from an actual thing. Of course, the part from which the relation or ratio between the mutual sizes differ also in mutually drawings may be included.

The embodiments shown in the following exemplifies the device and method for materializing the technical idea of the present invention, and the embodiments of the present invention does not specify assignment of each component parts, etc. as the following. Various changes can be added to the technical idea of the present invention in scope of claims.

(Element Structure)

FIG. 1 shows a schematic cross-section structure of a semiconductor device according to a first embodiment of the present invention. Moreover, FIG. 2 shows a schematic bird's-eye view structure of the semiconductor device according to the first embodiment. As shown in FIG. 1 to FIG. 2, the semiconductor device according to the first embodiment includes: an n type impurity doped high resistivity first base layer 12; an n type impurity doped drain layer 10 disposed on the back side surface of the first base layer 12; a p type impurity doped second base layer 16 famed on the surface of the first base layer 12; an n type impurity doped source layer 18 famed on the surface of the second base layer 16; a gate insulating film 20 disposed on the surface of both the source layer 18 and the second base layer 16; a gate electrode 22 disposed on the gate insulating film 20; a p type impurity doped column layer 14 famed in the first base layer 12 of the lower part of both the second base layer 16 and the source layer 18 by opposing the drain layer 10; a drain electrode 28 disposed in the drain layer 10; and a source electrode 26 disposed on both the source layer 18 and the second base layer 16. An interlayer insulating film 24 is disposed on the gate electrode 22. Dashed lines shown in FIG. 1 indicate current which flows between the drain and the source. As clearly illustrated in FIGS. 1 and 2, the column layer 14 extends in a first direction vertical to a principal surface of the drain layer 10, a length of the column layer 14 in the first direction being larger than a length thereof in a second direction that is parallel to the principal surface of the drain layer 10. The column layer 14 and the first base layer 12 are repeatedly alternately-arranged in the second direction.

In the semiconductor device according to the first embodiment, a trap level (see “TR” in FIG. 1) is formed locally by performing heavy particle irradiation to the column layer 14. Thus, as illustrated in FIG. 1, the trap level is formed below the second base layer 16.

P, As, Sb, etc. can be applied as the n type impurity, and B, Al, Ga, etc. can be applied as the p type impurity, for example. The above-mentioned impurities can be doped on each layer using diffusion technology or ion implantation technology.

A silicon dioxide film, a silicon nitride film, a silicon oxynitride film, a hafnium oxide film, an alumina film, a tantalum oxide film, etc. can be applied, for example, as the gate insulating film 20.

Polysilicon can be applied as the gate electrode 22, and aluminum can be applied to both the drain electrode 28 and the source electrode 26, for example.

A silicon dioxide film, a silicon nitride film, a tetraethoxy silane (TEOS) film, etc. are applicable, for example, as the interlayer insulating film 24.

In the example of FIG. 2, the schematic planar pattern configuration of the semiconductor device according to the first embodiment shows an example which is disposed being checkered lattice-like on the basis of a rectangular pattern. On the other hand, as shown in FIG. 3, the planar pattern configuration may be disposed being zigzagged checkered lattice-like on the basis of a rectangular pattern, for example. Alternatively, as shown in FIG. 4, the planar pattern configuration may be disposed being zigzagged checkered lattice-like on the basis of a hexagonal pattern, for example. Moreover, the planar pattern configuration is not limited to the rectangle or the hexagon. That is, the planar pattern configuration is also effective on the basis of circular, an oval figure, a pentagon, a polygon greater than heptagon, etc. Each of FIG. 3 and FIG. 4 shows schematically the pattern of semiconductor layers, such as the first base layer 12, the column layer 14, the second base layer 16, and the source layer 18. However, illustrating of the gate electrode 22, the source electrode 26, etc. is omitted.

FIG. 5 shows an example of a switching waveform in the comparative example which does not control life time by the heavy particle irradiation, in the semiconductor device according to the first embodiment. The reverse recovery time trr is 160 nsec according to a result shown in FIG. 5, and is longer than the reverse recovery time being 130 nsec of the conventional example shown in FIG. 12.

FIG. 6 shows a schematic cross-section structure for explaining the relation between an irradiation target position and device structure, in the case of performing 3He++ ion irradiation (IR) to the semiconductor device according to the first embodiment from the back side surface.

In FIG. 6, WA denotes the thickness of the drain layer 10 measured from the back side surface of the semiconductor device. Also, WB denotes the distance to the bottom surface of the column layer 14 measured from the back side surface of the semiconductor device. In the example shown in FIG. 6, it is WA=208 μm, and is WB=220 μm.

Moreover, as shown in FIG. 6, a coordinate system is defined by applying the direction of the source electrode 26 into a positive direction and applying the direction of the drain layer 10 into a negative direction on the basis of the bottom surface of the column layer 14. The irradiation target position can be defined as an attenuation peak position of the range of the heavy ion irradiated from the back side surface of the semiconductor device, and can be indicated on the above-mentioned coordinate system.

(Result of Experiment)

FIG. 7 shows the relation between the saturation current IDSS between the drain and the source and the distance from the bottom surface of the column layer 14 corresponding to the attenuation peak position, in the semiconductor device according to the first embodiment. FIG. 7 shows the case of the amount of dosage of 3He ion is set to 1×1012/cm2, and is set to 5×1012/cm2.

Moreover, FIG. 8 shows the relation between the reverse recovery time trr and the distance from the bottom surface of the column layer 14 corresponding to the attenuation peak position, in the semiconductor device according to the first embodiment. FIG. 8 also shows the case of the amount of dosage of 3He++ ion is set to 1×1012/cm2, cm and is set to 5×1012/cm2.

As clearly from FIG. 7, the value of the saturation current IDSS between the drain and the source tends to decrease as the distance from the bottom surface of the column layer 14 corresponding to the attenuation peak position increases. On the other hand, as clearly from FIG. 8, the reverse recovery time trr tends to increase as the distance from the bottom surface of the column layer 14 corresponding to the attenuation peak position increases.

FIG. 9 shows schematically the relation between: the reverse recovery time trr and the saturation current IDSS between the drain and the source; and the distance from the bottom surface of the column layer 14, in the semiconductor device according to the first embodiment.

In the semiconductor device according to the first embodiment, the heavy particle irradiation is performed so that the attenuation peak position of the heavy particle irradiation may be included between: the first position PB obtained from the relation between the distance from the bottom surface of the column layer 14 and the reverse recovery time trr on the basis of the bottom surface of the column layer 14; and the second position PA obtained from the relation between the distance from the bottom surface of the column layer 14 and the saturation current IDSS between the drain and the source, and thereby it can be obtained of the semiconductor device having the reverse recovery time trr shorter than the reverse recovery time t0, and having the saturation current IDSS between the drain and the source smaller than the saturation current I0 between the drain and the source. In FIG. 9, the curve D denotes the attenuation peak curve of the heavy particle irradiation for obtaining the semiconductor device having the reverse recovery time trr shorter than the reverse recovery time t0, and having the saturation current IDSS between the drain and the source smaller than the saturation current I0 between the drain and the source.

Here, the first position PB is the attenuation peak position of the heavy particle irradiation corresponding to the reverse recovery time t0. Moreover, the second position PA is the attenuation peak position of the heavy particle irradiation corresponding to the saturation current I0 between the drain and the source. For example, when the reverse recovery time t0 is set to 80 nsec and the saturation current I0 between the drain and source is set to 1 μA, it can be obtained of the semiconductor device whose the reverse recovery time trr<t0=80 nsec, and the saturation current between the drain and the source IDSS<I0=1 μA.

Here, a proton, 3He++, or 4He++ can be used for the particle species for performing the heavy particle irradiation, for example. When using 4He++ as the particle species for performing the heavy particle irradiation, it is preferable to use the drain layer 10 composed of a thin substrate.

The amount of dosage of the heavy particle irradiation can be set as the scope of 5×1010/cm2 to 5×1012/cm2, for example.

FIG. 10 shows the relation between the impurity concentration N, the resistivity p, and sheet resistance R and the distance from the bottom surface of the column layer 14, in the semiconductor device according to the first embodiment. Corresponding to the tendency of the attenuation peak curve of heavy particle irradiation, the peak characteristics that the resistivity p and sheet resistance R increase are shown, and the peak characteristics that the impurity concentration N decreases are shown.

(Fabrication Method)

As shown in FIG. 1 to FIG. 2, a fabrication method of the semiconductor device according to the first embodiment includes: the step of forming a high resistivity first base layer 12 of a first conductivity type; the step of forming a drain layer 10 of the first conductivity type on the back side surface of the first base layer 12; the step of forming a second base layer 16 of a second conductivity type on the surface of the first base layer 12; the step of forming a source layer 18 of the first conductivity type on the surface of the second base layer 16; the step of forming a gate insulating film 20 on the surface of both the source layer 18 and the second base layer 16; the step of forming a gate electrode 22 on the gate insulating film 20; the step of forming a column layer 14 of the second conductivity type in the first base layer 12 of the lower part of both the second base layer 16 and the source layer 18 by opposing the drain layer 10; the step of forming a drain electrode 28 in the drain layer 10; the step of forming a source electrode in both the source layer and the second base layer; and the step of performing heavy particle irradiation to the column layer 14 and forming a trap level locally.

As shown in FIG. 9, the step of forming the trap level locally includes: the step of determining a first position PB based on the relation between the distance from the bottom surface of the column layer 14 and the reverse recovery time trr on the basis of the bottom surface of the column layer 14; the step of determining a second position PA obtained from the relation between the distance from the bottom surface of the column layer 14 and the saturation current IDSS between the drain and the source; and the step of performing the heavy particle irradiation so that an attenuation peak position may be included between the first position PB and the second position PA.

According to the first embodiment, it can achieve controlling degradation of both the saturation current IDSS between the drain and the source and the threshold value voltage between the gate and the source, and improving the reverse recovery characteristics of a built-in diode. Thus, it is possible to reduce the switching power loss, and reduce the diode reverse recovery loss.

According to the first embodiment, it can be provided of the semiconductor device including the super junction MOS structure where the reverse recovery time trr can be shortened without increasing the leakage current between the drain and the source, and can be provided of the fabrication method for such semiconductor device.

The present invention has been described by the first embodiment, as a disclosure including associated description and drawings to be construed as illustrative, not restrictive. With the disclosure, a person skilled in the art might easily think up alternative embodiments, embodiment examples, or application techniques.

Thus, the present invention includes various embodiments etc. which have not been described in this specification.

The semiconductor device according to the present invention is applicable to a bridge circuit, a LCD inverter, a motor, automotive High Intensity Discharge lamp (HID) headlight lighting apparatus, etc. which use a high breakdown voltage MOSFET.

Nakajima, Toshio

Patent Priority Assignee Title
Patent Priority Assignee Title
4053925, Aug 07 1975 IBM Corporation Method and structure for controllng carrier lifetime in semiconductor devices
4762802, Nov 09 1984 American Telephone and Telegraph Company AT&T, Bell Laboratories Method for preventing latchup in CMOS devices
5569941, Oct 20 1992 Mitsubishi Denki Kabushiki Kaisha Insulated gate semiconductor device with a buried gapped semiconductor region
5759904, Nov 06 1996 Southwest Research Institute Suppression of transient enhanced diffusion in ion implanted silicon
5808352, Feb 20 1995 Rohm Co., Ltd. Semiconductor apparatus having crystal defects
6168981, Jul 25 1994 Consorzio per la Ricerca sulla Microelettronica Nel Mezzogiorno Method and apparatus for the localized reduction of the lifetime of charge carriers, particularly in integrated electronic devices
6479876, Jul 17 1997 Infineon Technologies AG Vertical power MOSFET
6509240, May 15 2000 Infineon Technologies Americas Corp Angle implant process for cellular deep trench sidewall doping
6709955, Apr 17 2000 STMICROELECTRONICS S R L Method of fabricating electronic devices integrated in semiconductor substrates provided with gettering sites, and a device fabricated by the method
6768167, May 21 2002 FUJI ELECTRIC CO , LTD MIS semiconductor device and the manufacturing method thereof
6768170, Aug 09 2001 SILICONIX TECHNOLOGY C V Superjunction device with improved avalanche capability and breakdown voltage
6838321, Sep 26 2002 Mitsubishi Denki Kabushiki Kaisha SEMICONDUCTOR SUBSTRATE WITH DEFECTS REDUCED OR REMOVED AND METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR DEVICE CAPABLE OF BIDIRECTIONALLY RETAINING BREAKDOWN VOLTAGE AND METHOD OF MANUFACTURING THE SAME
6838729, Apr 27 2001 Infineon Technologies AG Semiconductor component with enhanced avalanche ruggedness
6847091, Jul 02 1999 Infineon Technologies AG Vertical semiconductor component having a reduced electrical surface field
6870199, Nov 05 1999 FUJI ELECTRIC CO , LTD Semiconductor device having an electrode overlaps a short carrier lifetime region
7276764, Mar 25 1997 Rohm Co., Ltd. Semiconductor device with metal wire layer masking
7361970, Sep 20 2002 Infineon Technologies AG Method for production of a buried stop zone in a semiconductor component and semiconductor component comprising a buried stop zone
7518197, May 23 2005 Toshiba Electronic Devices & Storage Corporation Power semiconductor device
7586148, Mar 21 2002 General Semiconductor, Inc. Power semiconductor device having a voltage sustaining region that includes doped columns formed by terraced trenches
7767500, Oct 21 2003 SILICONIX TECHNOLOGY C V Superjunction device with improved ruggedness
7968953, Apr 03 2007 Denso Corporation Semiconductor device including schottky barrier diode and method of manufacturing the same
20030025124,
20030155610,
20050280076,
20060151829,
20110042791,
20110147829,
JP10150208,
JP10242165,
JP10270451,
JP2001102577,
JP2002093813,
JP2003282575,
JP2004022716,
JP2005197497,
JP2006024690,
JP2007150142,
JP2008124300,
JP2008258313,
JP2012142330,
JP2014209507,
JP2015135987,
JP3259537,
JP3263376,
JP62219664,
JP62298120,
JP63115383,
JP8227895,
JP9121052,
WO2010024433,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 02 2013NAKAJIMA, TOSHIOROHM CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0432880007 pdf
Aug 14 2017Rohm Co., Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
Aug 10 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Feb 26 20224 years fee payment window open
Aug 26 20226 months grace period start (w surcharge)
Feb 26 2023patent expiry (for year 4)
Feb 26 20252 years to revive unintentionally abandoned end. (for year 4)
Feb 26 20268 years fee payment window open
Aug 26 20266 months grace period start (w surcharge)
Feb 26 2027patent expiry (for year 8)
Feb 26 20292 years to revive unintentionally abandoned end. (for year 8)
Feb 26 203012 years fee payment window open
Aug 26 20306 months grace period start (w surcharge)
Feb 26 2031patent expiry (for year 12)
Feb 26 20332 years to revive unintentionally abandoned end. (for year 12)