This invention relates to an air purification apparatuses and methods for air purification. The air purification apparatuses pass air through energy beams that form one or more fields of energy within a chamber to produce an outflow of sterilized air. In some aspects, a charge generation system is implemented to repel particles from the chamber walls. In some aspects, the fields of energy extend across substantially an entirety of the cross sectional area of the interior volume of the chamber and longitudinally within the chamber. In some aspects, a controller is configured to rotate a beam of collimated light energy within the chamber at a rotational velocity corresponding to at least V/W, wherein V is the linear velocity of a particle within the chamber along the longitudinal axis, and W is the width of the beam of collimated light energy.
|
1. An air purification apparatus, comprising:
a chamber comprising a first end with a first opening, and a second end with a second opening, and one or more substantially continuous walls extending substantially continuously between the first opening and the second opening to form an interior volume, wherein at least one of the walls comprises a reflective surface facing inwardly towards the interior volume;
a collimated light source configured to direct a beam of collimated light energy into the chamber; and
a charge generation system configured to impart a charge to the one or more substantially continuous walls, to repel particles contained within the interior volume from the one or more walls.
11. An air purification apparatus comprising:
a chamber comprising:
one or more sidewalls forming an interior volume, the one or more sidewalls comprising one or more surfaces facing inwardly towards the interior volume; and
a first opening and a second opening configured to allow air to flow through the interior volume from the first opening to the second opening along a longitudinal axis;
a collimated light source configured to direct a beam of collimated light energy into the interior volume of the chamber;
a beam redirector disposed within the interior volume and configured to rotate through a complete revolution about a rotational axis such that the beam of collimated light energy is redirected to form a field of collimated light energy extending across substantially an entirety of a cross sectional area of the interior volume during said revolution; and
a controller configured to rotate the beam redirector about the rotational axis at a rotational velocity corresponding to at least V/W, wherein V is the linear velocity of a particle within the chamber along the longitudinal axis, and W is the width of the beam of collimated light energy.
2. The air purification apparatus of
3. The air purification apparatus of
6. The air purification apparatus of
7. The air purification apparatus of
8. The air purification apparatus of
9. The air purification apparatus of
10. The air purification apparatus of
12. The air purification apparatus of
13. The air purification apparatus of
16. The air purification apparatus of
17. The air purification apparatus of
18. The air purification apparatus of
19. The air purification apparatus of
|
This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/830,158 filed 14 Mar. 2013, which claims priority to U.S. Provisional Patent Application No. 61/613,776 filed 21 Mar. 2012 under the same title. This application is also related to U.S. patent application Ser. No. 13/249,035 filed 29 Sep. 2011, now issued U.S. Pat. No. 8,319,195, which is a continuation of U.S. patent application Ser. No. 11/302,179 filed 12 Dec. 2005, which is a continuation-in-part application that claims priority benefit of International Application PCT/US2004/018772 filed on 14 Jun. 2004, designating the United States, which claims priority benefits to U.S. Provisional Patent Application No. 60/478,231, filed 12 Jun. 2003 and U.S. patent application Ser. No. 10/640,477 filed 11 Aug. 2003. The entire disclosures of the aforementioned documents are hereby incorporated herein by reference.
Field
This application relates generally to an air purification apparatus and methods of air purification.
Description of the Related Art
Air circulation and purification systems are directed to the removal of airborne particulates from the air. Airborne particulates comprise a complex mixture of organic and inorganic substances, bacteria, viruses and any other substances that are small enough to become suspended in the air and atmosphere. Exposure to airborne particulates poses dangers to humans and other organisms because particulates may, for example, induce allergic reactions or cause sickness. The respiratory system is the major route of entry for airborne particulates. The deposition of particulates in different parts of the human respiratory system depends on particle size, shape, density, and individual breathing patterns.
Air circulation systems, for example, air conditioning and heating systems in buildings, aircraft, vessels and vehicles, have been known to circulate airborne viruses and bacteria, which can spread sickness to the occupants. Some air circulation systems in buildings, aircraft, and automobiles use physical filters to trap dust and other particulates. However, physical filters do not to trap small particulates, for example, viruses and spores. Additionally, physical filters can become clogged which in turn decreases air flow, increasing facility costs. Also, the accumulation of particulates on physical filters requires regular cleaning or replacement of the filter, which can interrupt air flow and can be expensive. In some systems, air is purified or sterilized by irradiating the circulating air with ultraviolet lights. One drawback of this method is that dust and particulates collect on the emission source which reduces the intensity of the ultraviolet light. Over time, this collection of particulates reduces the effectiveness of the purification process. Additionally, ultraviolet systems must slow the air to gain more energy to pathogen exposure time to be effective. Slowing the air, as filters also do, significantly increases energy expenses. Therefore, it is desirable to provide a cost effective and efficient means of sterilizing large volumes of air.
The purification of air and objects has been a common requirement for numerous types of practices and environments. For example, sterilized air and objects are required for hospital surgical rooms. The practice of dentistry usually does not require a sterile environment, but it does require the use of sterile dental tools. The state of the art discloses various devices and methods for achieving these objectives. However, the prior art tool sterilization systems may not provide adequate sterilization, or may have similar limitations as those described above generally for air purification systems.
Additionally, recent world developments and increased concern over biological weapons and viruses, such as the SARS virus, or a. niger spores, has created a need for simple apparatuses that provide a safe haven by destroying biological pathogens as well as aerosols and suspended particulates. Conventional technology is directed primarily towards filtration methods for removing the above-noted micro objects. However, filtration has its limits described above: efficiency, cost, size, etc.
The apparatuses, methods and devices of this disclosure each have several innovative aspects, no single one of which is solely responsible for the desirable attributes disclosed herein.
One innovative aspect of the subject matter described in this disclosure can be implemented in an air purification apparatus. The air purification apparatus includes a chamber comprising one or more walls forming an interior volume, wherein at least one of the walls comprises a reflective surface facing inwardly towards the interior volume. The air purification apparatus includes a collimated light source configured to direct a beam of collimated light energy into the chamber. The air purification apparatus includes a charge generation system configured to impart a charge to the one or more walls, to repel particles contained within the interior volume from the one or more walls.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an air purification apparatus. The air purification apparatus includes a chamber comprising one or more sidewalls forming an inner cross-sectional area extended longitudinally along a longitudinal axis to form an interior volume. Each sidewall includes an inwardly-facing reflective surface. The air purification apparatus includes a collimated light source configured to direct a beam of collimated light into the chamber. The air purification apparatus includes a beam redirector disposed within the interior volume and configured to rotate through a complete revolution about a rotational axis such that the beam of collimated light energy is redirected to form a field of collimated light energy extending across substantially an entirety of the cross sectional area of the interior volume and extending longitudinally along the longitudinal axis.
Another innovative aspect of the subject matter described in this disclosure can be implemented in an air purification apparatus. The air purification apparatus includes a chamber. The chamber includes one or more sidewalls forming an interior volume. The one or more sidewalls include one or more surfaces facing inwardly towards the interior volume. The chamber includes a first opening and a second opening configured to allow air to flow through the interior volume from the first opening to the second opening along a longitudinal axis. The air purification apparatus includes a collimated light source configured to direct a beam of collimated light energy into the interior volume of the chamber. The air purification apparatus includes a beam redirector disposed within the interior volume and configured to rotate through a complete revolution about a rotational axis such that the beam of collimated light energy is redirected to form a field of collimated light energy extending across substantially an entirety of a cross sectional area of the interior volume during said revolution. The air purification apparatus includes includes a controller configured to rotate the beam redirector about the rotational axis at a rotational velocity corresponding to at least V/W, wherein V is the linear velocity of a particle within the chamber along the longitudinal axis, and W is the width of the beam of collimated light energy.
Details of one or more implementations of the subject matter described in this specification are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages will become apparent from the description, the drawings, and the claims. Note that the relative dimensions of the following figures may not be drawn to scale.
Like reference numbers and designations in the various drawings indicate like elements.
This application is directed to methods and apparatus for purification of air and objects by directing a beam of energy from an energy source into a chamber. Some embodiments use light energy of proscribed frequencies (wavelengths), energy densities and durations. Some embodiments use a cleaning system that repels particles from a wall of the chamber, to allow the particles to be impacted by the beam of energy, and to keep the reflective surfaces, if any, within the chamber clean. Some embodiments include a beam redirector that rotates an energy beam to form a field of collimated light energy extending across a cross sectional area of an interior volume of the chamber and extending longitudinally within the chamber. Some embodiments include a controller configured to rotate a beam redirector within the chamber at a rotational velocity corresponding to at least V/W, wherein V is the linear velocity of a particle within the chamber, and W is the width of the beam of collimated light energy. Each of these embodiments increase the likelihood of particulate within the chamber being impacted, and thus destroyed, by the beam of energy, or the energy field created by sweeping the beam through the chamber. The duration and frequency of the energy exposure to the particulate depends, in part, upon the residency period of objects within the volume, the intensity and/or energy density of the energy, the frequency or frequencies of the energy, the flow of air through the chamber, and other variables that will be described in more detail below.
Examples of possible particulates suspended in an air flow include bacteria, viruses, toxic gases, toxic molecules, and any other harmful particles. Exposure to a singular energy field within the chamber, or multiple energy fields within the ventilation chamber, destroys and neutralizes spores, bacteria, viruses, protozoa, eukaryotes, other organics, and other particulates. The size of the particulates may vary greatly, however substantially all of the particulates, regardless of their size are irradiated by at least one energy field. In some embodiments, 100% of all the particulates, regardless of size, traveling through the air purification apparatus collide with at least one energy field before exiting the chamber. In other embodiments, 99.8% of all the particulates traveling through the air purification apparatus collide with at least one energy field before exiting the chamber. In yet other embodiments, 99.98% of all the particulates traveling through the air purification apparatus collide with at least one energy field before exiting the chamber. In yet other embodiments, 99.99% of all the particulates traveling through the air purification apparatus collide with at least one energy field before exiting the chamber.
The air purification apparatuses described herein can be integrated into vehicle platforms such as land vehicles, water craft, underwater craft, and aircraft. For example, the system can be configured to be implemented within surface ships and submarines, for example, during a bio attack on a naval fleet. These vehicle platforms are chosen due to their intrinsically controlled internal environment. Using an aircraft platform as an example, the air purification apparatus can be placed preferably downstream of any air conditioning packs that may be present on the aircraft, and close to the external air intake(s). The air purification apparatuses can be located in the central recirculation plenum or at a singular exit from that plenum so all returned air is sterilized. Recirculated air in conventional aircraft systems is only HEPA filtered. The chamber inlet end and outlet end are operative coupled to the main air flow such that all air to be delivered to the interior areas of the aircraft, e.g., cabin and cockpit, may pass through the air purification apparatus. Power for the apparatus can be obtained from the aircraft power harness, taking into account obvious requirements for voltage and load matching. Upon activation of the air purification apparatus, all air being delivered to the interior areas of the aircraft may be subjected to purification. Moreover, if intelligently integrated into the aircraft environmental controls, recirculated air can also be subjected to re-purification thereby addressing issues of contamination originating from within the interior areas of the aircraft. Similar integration approaches can be taken with respect to other vehicle platforms.
In certain embodiments of this series, the air purification apparatus can be portable, e.g., not integrated with or part of a permanent or semi-permanent structure (non-deployable assets). In these embodiments, the apparatus may further comprise an air handler, e.g., a blower having an air displacement element and a motor, and the outlet of the chamber is adapted to fluidly couple with a portable structure such as a container or other transportable rigid structure, or couple with erectable structures such as hazardous materials tents, field medical tents and related medical temporary structures, neonatal care tents, burn recovery tents, and other inflatable tents. Preferably, either type of structure is relatively sealable from an external environment whereby the apparatus provides sterilized air to the interior of the structure and further creates/maintains some level of positive pressure within the structure relative to the environment's atmospheric pressure adjacent to the structure, thus minimizing the undesirable ingress of unconditioned air. The apparatus can be discrete from the structure whereby only a duct or similar air transport conduit is used to operative link the apparatus to the structure, or the apparatus can be integrated with the structure whereby the outlet of the chamber is directly exposed to the interior space of the structure. The optional air handler can be located either upstream or downstream of the apparatus, depending upon design considerations. The air purification systems described herein, such as the portable systems, can be used within the ventilation systems of buildings, vehicles, etc., or can be implemented discretely, for example, to purify a single room or enclosure.
With respect to portable air purification apparatus, it may be desirable to have the apparatus operate off grid. In these embodiments, the apparatus further comprises a power source. The power source may comprise a power generator utilizing an internal or external combustion engine to provide mechanical energy to a suitable electrical generator, the power source may be a battery (rechargeable or not), or the power source may be a fuel cell. For critical applications such as military or first responder environments, fuel cells provide a convenient and reliable means for providing the necessary power to operate even high power lasers and optionally air handlers.
Chamber 10 can be linear or curvilinear, and/or can have both linear and curvilinear portions. For example, a first end 15 of the chamber 10 can be perpendicular with respect to a second end 13 of the chamber 10. The degree of curvature of the chamber 10, and the angle between first end 15 and second end 13 may cover any possible range. For example, the end 15 to the chamber 10 can be oriented approximately 45 degrees from the second end 13 of the ventilation duct.
The chamber 10 can comprise one or more sidewalls 12 that form an interior volume 14. In some embodiments, sidewalls 12 can comprise a sheet metal or other thin material, similar to the ductwork within a ventilation system. However, it will be understood that sidewalls 12 can comprise any structure that forms the interior volume 14. For example, sidewalls 12 can comprise a portion of a housing, manifold, block, or other structure. For example, sidewalls 12 can comprise a portion of a larger support structure in or on which the other components of chamber 10 are supported or contained.
The interior volume 14 of chamber 10 can have various cross-sectional shapes, such as the square-shape shown, to form a square duct. The interior volume 14 can have a round cross-sectional shape, to form a cylindrical duct, or any other regular or irregular cross-sectional shape suitable to form an interior volume when extended longitudinally along a longitudinal axis 900. It will be understood that longitudinal axis 900 follows the general shape of interior volume 14, and is not necessarily straight. For example, the chamber 10 can form a curvilinear duct, in which the longitudinal axis 900 follows the same curvilinear shape longitudinally within the duct. Generally, the ends 13, 15 can include openings 13A, 15A, configured to attach to a ventilation system and allow air to flow through the interior volume 14 along the longitudinal axis 900, such that chamber 10 forms a portion of a ventilation duct. However, in some embodiments, the chamber 10 can be a substantially closed chamber, wherein ends 13, 15 include additional sidewalls to cover openings 13A, 15A. For example, chamber 10 can be configured to be used as a sterilization apparatus for medical equipment.
The energy source 20 can comprise a collimated light source, such as a laser or other source of non-ionizing collimated electromagnetic radiation capable of directing a beam of collimated light energy 22 towards a target volume, and irradiating the volume. The energy source 20 can comprise any other type of energy source capable of directing a beam of energy into a volume, having a power output sufficient for achieving the intended purpose of the apparatus and methods. Energy source 20 can provide a beam of sufficient strength to destroy or neutralize one or more of dust particles, pollen, pathogens, allergens, gasses, or other particulates that are present in the flow of air through the system. The energy source 20 may be of the continuous wave or pulsed type, with many embodiments employing a pulsed type for reasons well known to those skilled in the art. Depending upon the energy density for a given application, a 10 watt CO2 laser emitting radiation in the infrared region may be sufficient and higher power and/or additional lasers may be employed. In some embodiments a 15 watt laser is used, and in still other embodiments a 60 watt laser is used. In an embodiment, the wavelength of the laser or energy of the emitted beam(s) is selected based upon the target species identified for neutralization. For example, in some embodiments a wavelength ranging between approximately 1056 and 1064 microns (μm) provided benefits in neutralizing certain species, such as spores of Aspergillus niger.
The energy source 20 can be positioned outside the chamber 10, and the beam 22 can be directed through one or more openings 18 extending through sidewall 12. The opening 18 can include a transparent optical window or other structure to prevent contamination into chamber 10 through opening 18. The optical window may or may not be used to redirect at least on beam through sidewall 12. The optical window may be placed along any portion of the chamber 10. One having skill in the art may vary the placement of the optical window to optimize exposure of the energy field to the inside of the chamber 10.
The optical window may be constructed out of any suitable material known to those having skill in the art. In an embodiment, the optical window comprises a material that allows at least one beam 22 of energy to pass from the outside of the chamber 10 to the inside of the chamber 10. In another embodiment, the optical window comprises a material that allows for substantially all of the collimated light energy to pass through the outside of the optical window and into the chamber.
At least one of sidewalls 12 can include a reflective surface 16, to reflect the beam 22 within chamber 10. In some embodiments, each of sidewalls 12 includes a reflective surface 16, to repeatedly reflect and redirect the beam 22 within chamber 10. Other embodiments described herein provide additional ways to further reflect and redirect the beam 22 within chamber 10.
Surface 16 may be curvilinear, rectilinear or any combination thereof. Furthermore, a portion or the entire interior surface 16 may have various characteristics including highly reflective properties, surface undulations (linear or curvilinear) or features to assist in beam scattering or intended beam redirection. Moreover, the interior surface may be rigid or flexible. If flexible, the surface may be acted upon by a force (mechanical, electrical or pneumatic) to cause deflection thereof. In certain embodiments, the deflection is cyclical and characterized as a vibration.
The reflective surface 16 can be any layer, coating, or other structure suitable to reflect an energy beam such as a collimated light source. For example, the reflective surface 16 can comprise a reflective metal, such as gold, aluminum, silver, or nickel, reflective polymers, or other suitably reflective materials. The one or more reflective inner walls of the chamber 10 can reflect the beam 22 so that air passing through the chamber 10 passes through multiple beams or fields of energy. One having skill in the art may increase or decrease the length of the chamber 10 to increase or decrease the number of fields or beams through which air must pass before exiting the chamber 10.
Cleaning system 30 can be configured to repel particles contained within the inner volume 14 from the sidewalls 12, to prevent particles from settling on and accumulating on sidewalls 12. Particles that settle on sidewalls 12 may provide a focal point for beam 22 on reflective surface 16, causing overheating and decreasing the reflective functionality of surface 16. In some situations, particle accumulation on sidewall 12 may cause beam 22 to burn a hole through sidewall 12, causing system contamination. To repel particles from the sidewalls 12, cleaning system 30 can comprise a charge generation system configured to impart a charge on one or more of sidewalls 12, for example, to surface 16. The charge can be provided at a similar polarity as the particles within chamber 10. For example, it has been observed that particles flowing within a ventilation system may naturally form a charge, such as a negative charge. Thus, charge generation system 30 can employ a similar charge to sidewalls 12 as the particles, such as a negative charge, to repel the particles as described. In some embodiments, a charge generation system can be employed to actively charge the particles, in addition to the aforementioned natural charge that may be formed. For example, a screen, nodes, or other structure can be extended across or from the interior of chamber 10, and the screen or nodes can be charged with another charge generation system, to impart the same charge to particles passing through the screen or node field, prior to contacting and being destroyed by beam 22. Such active charge to the particles can further prevent particle accumulation on sidewalls 12 when sidewalls 12 are similarly charged by charge generation system 30. Charge generation system 30 can comprise any suitable power source, such as battery, electrode, or other related electronic components, capable of placing a charge on sidewalls 12. Cleaning system 30 is very different from conventional ventilation cleaning systems, in which the goal was to attract particles to a device mounted on a sidewall, such as a filter or adhesive, etc., rather than repelling them, and allowing them to continue to flow within the ductwork being decontaminated. The sidewall charge may be provided by redirected waste thermal energy formed within apparatus 100, or within a system within which apparatus 100 is implemented.
Referring to
The rotation of optical element 52 can allow beam 22 to be redirected at various incident angles within chamber 10, as illustrated schematically by the beams 22A-22F in
In use, air enters the chamber 10 through the opening 13A, and passes through energy field 80. As the air passes through energy field 80, any particles suspended in the air, are irradiated. Energy field 80 is generally of sufficient strength to neutralize the particulates. Once the air exits the chamber 10 through the opening 15A, the air is substantially sterile.
Referring to
Referring to
Referring again to
In some embodiments, controller 70 may control the speed of the rotation of the beam redirector 50. For example, controller 70 may control the speed of rotation of the beam redirector 50 based upon the linear speed of a particle within the chamber 10, and the width of the beam 22, to increase the likelihood that the beam 22 would contact (e.g., destroy) the particle within the field of energy created during a single rotation of the beam redirector. As such, controller 70 can be configured to rotate configured to rotate the beam redirector 50 about the rotational axis 901 at a rotational velocity ω corresponding to V/W, wherein V is the linear velocity of a particle within the chamber along the longitudinal axis 900, and W is the width (e.g., diameter) of the beam of collimated light energy. Examples 1 and 2 below provide further details on this relationship and method of controlling beam redirector 50 with controller 70. Controller 70 can be employed within any of the air purification apparatuses described herein.
Chamber 10A can be similar to chamber 10 in
In embodiments with reflective surface 16, energy field 80 can then be reflected off reflective surface 16 and repeated, radially and longitudinally along axis 900 down the interior volume 14 of chamber 10A, to form one or more additional reflected energy fields 80A, 80B, 80C. The reflective angle of the beams impacting and reflecting from surface 16 are shown as angle θ1. Such repeated, reflected, three-dimensional energy fields further increase the likelihood that any particulate traveling through volume 14 will be contacted by a portion of the energy beam 20 that forms fields 80A, 80B, 80C, etc. Additionally, any particulate that is not destroyed through an initial contact with energy field 80, will have an increased likelihood of subsequently being destroyed by one of the subsequent, reflected energy fields. In some embodiments, the length of the chamber is adjusted so that air flowing through the chamber passes through five different fields of light energy before exiting the chamber. In another embodiment, the length of the chamber is adjusted so that air flowing through the chamber passes through four different fields of light energy before exiting the chamber. In another embodiment, the length of the chamber is adjusted so that air flowing through the chamber passes through three different fields of light energy before exiting the chamber. In another embodiment, the length of the chamber is adjusted so that air flowing through the chamber passes through two different fields of light energy before exiting the chamber. In another embodiments, as many as 19 different fields of light energy can be reflected within the chamber, and more or less fields are within the scope of the invention.
Embodiments of the air ventilation systems described herein can include an energy abatement device positioned within the chamber to limit the travel of the energy beams or fields produced by the energy source within the chamber. For example, the energy abatement device can prevent a portion of the energy field from exiting the chamber of the air ventilation system and traveling within the ventilation system to which the chamber is attached. Any suitable material known to one having skill in the art as being capable of absorbing beam energy may be used for the energy abatement device, and/or the energy abatement device may be located along any portion of an interior of the chamber.
An example of an energy abatement device 11 is illustrated in
In some embodiments, one or more light baffles can be extended across the inner volume of the chambers described herein. The baffles can permit air flow thereby but occlude any direct or indirect beam from exiting the chamber. The baffles can be constructed from any suitable material that absorbs and/or reflects beam energy. If the baffles absorb the energy, it may also be desirable to include means for cooling the baffles if the air flow rate is insufficient for the task. Examples of embodiments of light baffles that can be implemented within the air purification apparatuses described herein are disclosed in U.S. Pat. No. 8,319,195, entitled “Methods and Apparatus for Sterilization of Air and Objects” and issued Nov. 27, 2012, the entire contents of which are incorporated herein by reference.
In some embodiments of the air purification apparatuses described herein, a safety mechanism can be employed to disable energy source 20, and prevent injury, such as retina damage to a person. For example, a shock (e.g., earthquake) sensor can be connected to energy source 20 (or its related controller) that deactivates energy source 20 in the event that it is subjected to shock above a threshold. A secure light box or similar device can be employed to prevent tampering with the airflow apparatuses described herein, and accidental exposure to energy emitted from energy source 20.
Referring to
The reflective surface 16 can include a second portion 16B oriented to be substantially non-parallel with the longitudinal axis 900A. The depth, width, angle, or number of reflective portions 16B may be adjusted to redirect the path of the fields of energy 80 within chamber 10B. For example, portion 16B can allow the entry angle θ1 of energy field 80, defined as the angle between energy field 80 and axis 900A, can be less than the exit angle θ2 of energy field 80, defined as the angle between the reflected energy field 80A and axis 900A. Such reduction between angle θ1 and θ2 can decrease the total length L consumed by the repeated, reflected energy fields within chamber 10B, and thus decreasing the size of air sterilization apparatus within which chamber 10B is implemented.
The second portion 16B can have any of a number of different configurations. For example, the second portion 16B can extend around some, or substantially the entirety of an inner perimeter of chamber 10B. Second portion 16B can protrude from, or can be recessed with respect to first portion 16A of reflective surface 16. A recessed portion 16B can reduce flow restrictions within chamber 10B. In some embodiments, second portion 16B comprises a groove that is recessed within reflective surface 16. It will be understood that the second portion 16B can be implemented within other chambers and other air purification apparatuses described herein.
In some embodiments, both the length of the chamber and the depth, width, and number of angled reflective portions are configured so that air passing through the ventilation chamber must pass through at least five, four, three, or two fields of energy before exiting the ventilation chamber.
It will be understood that both the two and three dimensional energy fields described herein can be formed within various shapes and sizes of chambers, at various orientations within the chambers, and can be formed with various embodiments of beam redirectors. Additional embodiments of air sterilization apparatus that can form energy fields are shown in
In some embodiments, one or more objects other than air can be placed within the chambers of the air sterilization apparatuses described herein. Such embodiments can allow for one or more objects such as medical tools and the like, placed within the chambers of the apparatus to be sterilized.
Some embodiments of the present application relate to a method of purifying or sterilizing air. In an embodiment, the air purification method comprises flowing air into an interior volume of a chamber; directing a beam of collimated light energy into the chamber; and imparting a charge to one or more walls of the chamber to repel particles within the interior volume from one or more sidewalls of the chamber. Some embodiments further include reflecting the beam of collimated light energy off at least one sidewall. Imparting a charge can include imparting a negative charge. Some embodiments further include imparting a similar charge to particles within the interior volume of the chamber.
In another embodiment, the air purification method comprises directing a beam of collimated light energy into an interior volume of a chamber; rotating the beam of collimated light energy within the interior volume about a rotational axis; and redirecting the beam of collimated light energy to form a field of collimated light energy extending across substantially an entirety of a cross sectional area of the interior volume and extending longitudinally along a longitudinal axis within the interior volume. Some embodiments further comprise flowing air through an opening into the interior volume, and from the interior volume through a second opening. Some embodiments further comprise reflecting the field of collimated light energy to form a reflected field of collimated light energy extending across substantially an entirety of a cross sectional area of the interior volume and extending longitudinally along a longitudinal axis within the interior volume.
In another embodiment, the air purification method comprises directing a beam of collimated light energy of width W into an interior volume of a chamber; and rotating the beam of collimated light energy within the interior volume about a rotational axis at a rotational velocity corresponding to at least V/W, wherein V is the linear velocity of a particle within the chamber along the longitudinal axis. Some embodiments further comprise adjusting the linear velocity of the particle within the chamber by adjusting the amount of airflow through the chamber. In some embodiments, rotating comprises rotating the beam of collimated light energy a complete revolution about a rotational axis such that the beam of collimated light energy is redirected to form a field of collimated light energy extending across substantially an entirety of a cross sectional area of the interior volume during said revolution. In some embodiments, rotating further comprises extending the field of collimated light energy longitudinally along the longitudinal axis. Some embodiments further comprise adjusting the wavelength of the beam of collimated light energy
As described above, the speed of the rotation of the rotating optical element within embodiments of the air sterilization apparatus described herein may be adjusted via any method known to those having skill in the art, including adjustment via the controller. The below examples illustrate that the speed of the rotation of the optical element can be configured so that the energy field impacts approximately 100% of any particles traveling in the airstream.
This example discusses how the field of laser energy impacts an increased portion, such as up to approximately 100% of the particulates in a ventilation airstream traveling through a cylindrical ventilation duct, such as the embodiment shown with respect to
Those having skill in the art recognize that ventilation systems are generally constructed to contain a laminar air flow. Laminar air flow requires a Reynolds Number (NR) that is less than 3,000. An NR above 3,000 will result in turbulent flow. Note: the change from laminar to turbulent flow can be reached at NR=2,000 and as low as NR=1,000.
For this example, we will select the highest NR that still describes a laminar flow: 3,000. We select the worst case scenario parameters for the example to demonstrate functionality in the extreme and thus also the norm.
The Reynolds Number (NR) is given by:
Where: d=diameter of vent (meters)
ρ=density of air
V=linear air flow rate within vent
n=viscosity of air (pascals×second)
For example purposes, the following assumption will be made:
The temperature of air within the vent is T=20° C.=68° F.
By definition, at 20° C. the density of air is
and the viscosity of air is n=0.018 m Pas=0.018×10−3 Pas=0.000018 Pas.
As we determined earlier the linear air flow rate is given by:
Therefore, for NR=3,000
Thus, the maximum possible laminar air flow rate within the vent yields a particle linear speed of:
V3,000=0.724 ft/sec=0.221 m/s
Our example will continue by setting a revolution per minute (RPM) for the refractive window that is equivalent to the time it takes a dimensionless particle (so used to negate a limitation of the system by nanometer sized particles) to travel a distance equivalent to the width of the laser beam. This will ensure that each particulate is impacted by the laser at least once, in a single rotation of the optical element, which forms a single energy field. In addition, reflections of the energy field down the reflective vent will generate further impacts for any remaining particles not completely destroyed by a single impact with the laser beam.
For this example, a laser beam of width 2 mm will be used.
The time that it takes a particulate to travel the width of this laser beam is:
Now, from the time that the particulate travels the width of the beam, the optical element must rotate the beam once around the circumference of the vent. Doing so will increase the likelihood of any particulate passing through the “laser field” without being hit by the laser beam; as mentioned above. The optical element must therefore rotate at a velocity (v) of:
Continuing unit's yields:
v=70.57 meter/sec×rev/0.6387 meter×60 sec/min=6,629 rev/min (rpm)
Thus, for the maximum airflow that will be found in any laminar ventilation system, the field of laser energy created using a 2 mm beam in an 8 inch diameter ventilation duct with a refractive window that is rotating at 7,000 rpm will impact approximately 100% of particulate.
Following this same example, a 1 mm beam in an 8 inch diameter chamber rotated at approximately 12,600 rpm will impact approximately 100% of particulate.
Also, following this example a chamber with a 6 ft diameter and a 1 mm beam will yield
V3000=0.0245 m/s
T=0.04078 seconds
V=140.886 m/s=>V=1,471.31 rpm
This example discusses how the field of laser energy achieves an increased impact of approximately 100% of particulate in a ventilation airstream, for example, in a square chamber, such as that shown in
Those familiar with the art recognize that ventilation systems are constructed to contain a laminar air flow. Laminar air flow requires a Reynolds Number (NR) that is less than 3,000. An NR above 3,000 will result in turbulent flow. Note: the change from laminar to turbulent flow can be reached at NR=2,000 and as low as NR=1,000.
For this example, we will select the highest NR that still describes a laminar flow: 3,000. We select the worst case scenario parameters for the example to demonstrate functionality in the extreme and thus also the norm.
The Reynolds Number (NR) for a square duct is given by:
Where: v=linear mean velocity (meters/seconds)
n=viscosity of air (pascals×second)
DH=Hydraulic diameter=L=length of square vent
For example purposes, the following assumption will be made:
The temperature of air within the vent is T=20° C.=68° F.
By definition, at 20° C. the density of air is
and the viscosity of air is n=0.018 m Pas=0.018×10−3 Pas=0.000018 Pas.
As we determined earlier the linear air flow rate is given by:
Therefore, for NR=3,000
Thus, the maximum possible laminar air flow rate within the vent yields a particle linear speed of:
V3,000=0.483 ft/sec=0.147 m/sec
Our example will continue by setting a revolution per minute (RPM) for the reflective plate that is equivalent to the time it takes a dimensionless particle (used to negate a limitation of the system by nanometer sized particles) to travel a distance equivalent to the width of the laser beam. This will ensure that each particulate is hit by the laser at least once. There will be a vortex created by the plate. However, the 1st reflection off the reflective surface of the ventilation duct will fill that vortex space with energy thereby sterilizing it.
For this example, a laser beam of width 3 mm will be used.
The time that it takes a particulate to travel the width of this laser beam is:
Now, from the time that the particulate travels the width of the beam, the reflective plate must rotate the beam once around the circumference of the vent. Doing so will guarantee that no particulate will pass through the “laser field” without being hit by the laser beam; as mentioned above. The refractive window must therefore rotate at a velocity (v) of:
Continuing unit's yields:
v=59.75 meter/sec×revolution/1.2192 meter×60 sec/min=>2,940.5 rev/min (rpm)
Thus, for the maximum airflow that will be found in any square laminar ventilation system, the field of laser energy created using a 3 mm beam in a 1 ft×1 ft square diameter ventilation duct with a reflective plate that is rotating at 3,000 rpm will impact approximately 100% of particulate.
Examples 1 and 2 above can be similarly employed for other cylindrical or square shaped chambers, or chambers of other shapes, to increase the likelihood of particulate traveling at a given velocity to be impacted by an energy beam in a single rotation of the optical element. It will be understood that although Examples 1 and 2 employ laminar flow examples, higher linear speed velocities creating turbulent flows (such as in laboratory exhaust plumes) can be similarly purified and/or sterilized through similar use of beam width, beam director rotational velocity, and linear velocity of a particle within a ventilation system air stream.
All references cited herein are incorporated herein by reference in their entirety. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.
Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only and are not meant to be limiting in any way. It is intended that the specification and examples be considered as exemplary only.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4115280, | Nov 12 1970 | Massachusetts Institute of Technology | Apparatus for altering the biological and chemical activity of molecular species |
4397823, | Jan 29 1982 | Chevron Research Company | Process and apparatus for removing a pollutant from a gas stream |
5126020, | Jun 27 1988 | Detoxification apparatus and method for toxic waste using an energy beam and electrolysis | |
5250258, | Feb 11 1992 | Method for purifying and activating air and apparatus therefor | |
5323413, | Dec 11 1990 | Conoco Inc. | Apparatus for the laser dissociation of molecules |
5549735, | Jun 09 1994 | STRIONAIR, INC | Electrostatic fibrous filter |
5589132, | Feb 03 1994 | Method and device for purifying and moistening air | |
5744094, | Apr 12 1991 | Elopak Systems AG | Treatment of material |
5770785, | Jul 09 1992 | Kabushiki Kaisha Toshiba | Apparatus and method for removing carbon dioxide contained in exhaust gas |
5863752, | Aug 02 1991 | Oxoid Limited | Methods and apparatus for monitoring the growth of microorganisms in liquid culture |
6225462, | Jan 16 1998 | Lever Brothers Company, Division of Conopco, Inc | Conjugated polysaccharide fabric detergent and conditioning products |
6673137, | Nov 27 2001 | Apparatus and method for purifying air in a ventilation system | |
6730141, | Jul 12 2001 | Eads Deutschland GmbH | Device and method for selectively removing gaseous pollutants from the ambient air |
6863864, | Dec 30 1998 | US Sterlizer Corp. | Method and apparatus for infrared sterilization |
7373254, | May 03 2001 | PHOTOMETICS, INC | Disinfestation of medical implants with radiation |
8319195, | Jun 12 2003 | Safe Haven, Inc. | Methods and apparatus for sterilization of air and objects |
20040017556, | |||
20040228756, | |||
20060165563, | |||
20110302881, | |||
20120051977, | |||
20120074335, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jan 09 2023 | REM: Maintenance Fee Reminder Mailed. |
May 12 2023 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
May 12 2023 | M2554: Surcharge for late Payment, Small Entity. |
Date | Maintenance Schedule |
May 21 2022 | 4 years fee payment window open |
Nov 21 2022 | 6 months grace period start (w surcharge) |
May 21 2023 | patent expiry (for year 4) |
May 21 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 21 2026 | 8 years fee payment window open |
Nov 21 2026 | 6 months grace period start (w surcharge) |
May 21 2027 | patent expiry (for year 8) |
May 21 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 21 2030 | 12 years fee payment window open |
Nov 21 2030 | 6 months grace period start (w surcharge) |
May 21 2031 | patent expiry (for year 12) |
May 21 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |