devices, methods, and systems are provided for loading an implantable device into a container. One aspect of the loading system contains a loader element with a loading tunnel that is configured to gradually contract an implantable device into a compressed state of reduced size relative to an expanded state as the implantable device travels through the loading tunnel.

Patent
   10350048
Priority
Sep 23 2011
Filed
Dec 14 2017
Issued
Jul 16 2019
Expiry
Sep 24 2032

TERM.DISCL.
Assg.orig
Entity
Small
1
321
currently ok
4. A method for loading an implantable device into a container, comprising:
pulling an implantable device using a puller element through a funnel-shaped loading tunnel in a loader element thereby gradually contracting the implantable device into a compressed state of reduced size relative to an expanded state as the implantable device travels through the loading tunnel, wherein the puller element is removably attached to the implantable device via a suture;
automatically releasing the suture after the implantable device is contracted into the compressed state;
placing a portion of a delivery catheter into the loader element; and
pushing the implantable device through the loading tunnel and into the delivery catheter using a plunger.
6. A method for loading an implantable pulmonary device into a container, comprising:
pulling an implantable pulmonary device using a puller element through a funnel-shaped loading tunnel in a loader element thereby gradually contracting the implantable pulmonary device into a compressed state of reduced size relative to an expanded state as the implantable pulmonary device travels through the loading tunnel, wherein the puller element is removably attached to the implantable pulmonary device;
automatically releasing the implantable pulmonary device from the puller element after the implantable pulmonary device is contracted into the into a compressed state; and
pushing the implantable pulmonary device through the loading tunnel and into the delivery catheter using a plunger.
1. A method for loading an implantable device into a container, comprising:
pulling an implantable device using a puller element through a funnel-shaped loading tunnel in a loader element thereby gradually contracting the implantable device into a compressed state of reduced size relative to an expanded state as the implantable device travels through the loading tunnel, wherein the puller element is removably attached to the implantable device via a suture; and
automatically releasing the suture after the implantable device is contracted into the compressed state;
wherein a rotator disposed on the puller element is removably attached to the suture; and
wherein automatically releasing the suture after the implantable device is contracted into the compressed state comprises rotation of the rotator thereby causing the suture to detach from the rotator.
9. A method for loading an implantable pulmonary device into a container, comprising:
pulling an implantable pulmonary device using a puller element through a funnel-shaped loading tunnel in a loader element thereby gradually contracting the implantable pulmonary device into a compressed state of reduced size relative to an expanded state as the implantable pulmonary device travels through the loading tunnel, wherein the puller element is removably attached to the implantable pulmonary device;
automatically releasing the implantable pulmonary device from the puller element after the implantable pulmonary device is contracted into the into a compressed state;
wherein a rotator disposed on the puller element is removably attached to a suture; and
wherein automatically releasing the implantable pulmonary device from the puller element after the implantable pulmonary device is contracted into the compressed state comprises rotation of the rotator thereby causing the suture to detach from the rotator.
2. The method of claim 1, wherein the suture is drawn through and exits the implantable device after the detachment of the suture from the rotator thereby detaching the suture from the implantable device.
3. The method of claim 1, further comprising separating the puller element from the loader element.
5. The method of claim 1, wherein the implantable device is a pulmonary implant.
7. The method of claim 6, further comprising separating the puller element from the loader element.
8. The method of claim 6, further comprising placing a portion of a delivery catheter into the loader element.
10. The method of claim 9, wherein the suture is drawn through and exits the implantable pulmonary device after the detachment of the suture from the rotator thereby detaching the suture from the implantable pulmonary device.

This application is a continuation of U.S. patent application Ser. No. 14/938,216 filed Nov. 11, 2015, now U.S. Pat. No. 9,872,755 , which is a continuation of U.S. patent application Ser. No. 13/625,615 , filed Sep. 24, 2012, which claims the benefit of Provisional Application No. 61/538,723 , filed Sep. 23, 2011, the full disclosure of which is incorporated herein by reference. This application is also a continuation-in-part application of U.S. patent application Ser. No. 12/820,393 , filed on Jun. 22, 2010, which is a continuation application of U.S. Pat. No. 7,771,472 , filed on Nov. 18, 2005, which claims the benefit and priority of U.S. Provisional Application No. 60/630,399 , filed on Nov. 19, 2004, all of which are incorporated herein by reference.

Present embodiments relate generally to devices, methods, and systems for loading an implantable device into a container.

Pulmonary diseases, such as chronic obstructive pulmonary disease, (COPD), reduce the ability of one or both lungs to fully expel air during the exhalation phase of the breathing cycle. Such diseases are accompanied by chronic or recurrent obstruction to air flow within the lung. Because of the increase in environmental pollutants, cigarette smoking, and other noxious exposures, the incidence of COPD has increased dramatically in the last few decades and now ranks as a major cause of activity-restricting or bed-confining disability in the United States. COPD can include such disorders as chronic bronchitis, bronchiectasis, asthma, and emphysema.

It is known that emphysema and other pulmonary diseases reduce the ability of one or both lungs to fully expel air during the exhalation phase of the breathing cycle. One of the effects of such diseases is that the diseased lung tissue is less elastic than healthy lung tissue, which is one factor that prevents full exhalation of air. During breathing, the diseased portion of the lung does not fully recoil due to the diseased (e.g., emphysematic) lung tissue being less elastic than healthy tissue. Consequently, the diseased lung tissue exerts a relatively low driving force, which results in the diseased lung expelling less air volume than a healthy lung. The reduced air volume exerts less force on the airway, which allows the airway to close before all air has been expelled, another factor that prevents full exhalation.

The problem is further compounded by the diseased, less elastic tissue that surrounds the very narrow airways that lead to the alveoli, which are the air sacs where oxygen-carbon dioxide exchange occurs. The diseased tissue has less tone than healthy tissue and is typically unable to maintain the narrow airways open until the end of the exhalation cycle. This traps air in the lungs and exacerbates the already-inefficient breathing cycle. The trapped air causes the tissue to become hyper-expanded and no longer able to effect efficient oxygen-carbon dioxide exchange.

In addition, hyper-expanded, diseased lung tissue occupies more of the pleural space than healthy lung tissue. In most cases, a portion of the lung is diseased while the remaining part is relatively healthy and, therefore, still able to efficiently carry out oxygen exchange. By taking up more of the pleural space, the hyper-expanded lung tissue reduces the amount of space available to accommodate the healthy, functioning lung tissue. As a result, the hyper-expanded lung tissue causes inefficient breathing due to its own reduced functionality and because it adversely affects the functionality of adjacent healthy tissue.

Some recent treatments include the use of devices that isolate a diseased region of the lung in order to reduce the volume of the diseased region, such as by collapsing the diseased lung region. According to such treatments, a delivery catheter is used to implant one or more implantable devices in airways feeding a diseased region of the lung to regulate fluid flow to the diseased lung region in order to fluidly isolate the region of the lung. These implanted implantable devices can be, for example, one-way valves that allow flow in the exhalation direction only, occluders or plugs that prevent flow in either direction, or two-way valves that control flow in both directions.

The implantable device is radially compressed into a contracted size for loading into the delivery catheter or a container associated with the catheter. It can be difficult to properly compress the implantable device to a size small enough to fit in the delivery catheter. Thus, there is a need for devices for properly compressing and loading an implantable device into a container.

Present disclosure relates to aspects of devices, methods, and systems for loading an implantable device into a container.

In one aspect, an embodiment of a loading system comprises a loader element with a loading tunnel that is configured to gradually contract an implantable device into a compressed state of reduced size relative to an expanded state as the implantable device travels through the loading tunnel. The loading system further comprises a puller element that is removably attached to the implantable device via a suture, wherein the puller element pulls the implantable device through the loading tunnel. In one aspect, the puller element automatically releases the suture after the implantable device contracts into the compressed state.

In one aspect, a loading system further comprises a rotator that is disposed on the puller element that is configured to be removably attached to a portion of the suture, wherein a rotation of the rotator causes the suture to detach from the rotator. In another aspect, the rotator may be disposed on the loader element.

In another aspect, the loading system further comprises a plunger element, wherein the plunger element comprises an elongated portion that is configured to push the implantable device through the loading tunnel. In one aspect, the plunger element is configured to push the implantable device into a delivery catheter.

In another aspect, the loading tunnel of the loading system comprises a funnel housing that defines an internal, funnel-shaped loading cavity.

In yet another aspect, the loading tunnel of the loading system further defines an internal transfer cavity that communicates with the loading cavity. In one aspect, the transfer cavity is sized to receive the implantable device from the loading cavity and retain the implantable device in the compressed state.

In yet another aspect, the loading tunnel of the loading system further defines a container cavity that communicates with the transfer cavity. In one aspect, the container cavity is sized to receive a container that receives the implantable device in the compressed state.

In one aspect, the implantable device is a pulmonary implant that is configured to be placed within a lung region. In another aspect, the container is a housing of a delivery catheter that is configured to receive the compressed implantable device.

In yet another aspect, an embodiment of the loading system further comprises a tension element that is configured to communicate a force to the loading tunnel. Additionally or optionally, an aspect of the loading system comprises a container locking element that is configured to secure and align the container with the loader element.

This and other aspects of the present disclosure are described herein.

Present embodiments have other advantages and features which will be more readily apparent from the following detailed description and the appended claims, when taken in conjunction with the accompanying drawings, in which:

FIG. 1A shows one embodiment of a loading system where various elements of the loading system are connected;

FIG. 1B shows one embodiment of a loading system where the various elements are separated;

FIGS. 2A-2B show two different views of the various components of one embodiment of the loader element and the puller element;

FIG. 2C shows one embodiment of a suture attachment element disposed on the puller element;

FIG. 3 is a flow diagram illustrating an exemplary operation of one embodiment of the loading system;

FIGS. 4A-4C show various steps of an exemplary operation of one embodiment of the loading system;

FIGS. 5A-5B illustrate an embodiment of the loading system comprising a catheter locking element;

FIGS. 6A-6C illustrate an alternative embodiment of the loading system.

Although the detailed description contains many specifics, these should not be construed as limiting the scope of the disclosure but merely as illustrating different examples and aspects of the disclosure. It should be appreciated that the scope of the disclosure includes other embodiments not discussed herein. Various other modifications, changes and variations which will be apparent to those skilled in the art may be made in the arrangement, operation and details of the method, device, and system of the present embodiments disclosed herein without departing from the spirit and scope of the disclosure as described here.

Throughout the specification and claims, the following terms take the meanings explicitly associated herein unless the context clearly dictates otherwise. The meaning of “a”, “an”, and “the” include plural references. The meaning of “in” includes “in” and “on.” Referring to the drawings, like numbers indicate like parts throughout the views. Additionally, a reference to the singular includes a reference to the plural unless otherwise stated or inconsistent with the disclosure herein.

The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any implementation described herein as “exemplary” is not necessarily to be construed as advantageous over other implementations.

Disclosed herein are methods, devices and systems for loading an implantable device into a delivery device for delivering the apparatus to a body region, such as a bronchial passageway.

Throughout this disclosure, reference is made to the term “implantable device”. As used herein, the term “implantable device” refers to various collapsible and/or self-expanding implant including implants configured to maintain openings in vascular, urinary, biliary, esophageal, and renal tracts, and vena cava filters. Furthermore, it is contemplated that the implantable device may be various pulmonary implants configured to be placed within a lung region to treat pulmonary disorders including but limited to flow restrictive devices such as valves including one-way valves that allow flow in the exhalation direction only, occluders or plugs that prevent flow in either direction, or two-way valves that control flow in both directions.

In one embodiment, present disclosure describes devices, systems, and methods for loading a collapsible pulmonary implant into a delivery system, such as a delivery catheter, in preparation for delivering the implant into a lung region such as the pulmonary airways of a patient. In one embodiment, collapsible pulmonary implants are made of memory-shape materials, such as Nitinol, and are compressed to enable delivery through relatively small and curved bodily pathways to the lung region. In one embodiment, delivery devices, such as catheters, retain the collapsed pulmonary implants in a radially compressed state for delivery to the treatment site, where the implant is released into the lung region and regains its non-compressed shape. The present embodiments disclose various aspects of loading devices that collapse such implants and optionally insert them into a container such as a delivery catheter.

FIGS. 1A and 1B show two perspective views of one embodiment of a loading system 100 for compressing an implantable device such as a pulmonary implant and optionally for inserting the implantable device into a housing of the delivery catheter. As seen in FIGS 1A and 1B, one embodiment of the loading system 100 comprises a loader element 110, a puller element 120, and a plunger element 130. The plunger element 130 comprises an elongated portion 131 and optionally comprises a locking element 132 whereby the locking element 132 is configured to be inserted into the loader element 110 and the puller element 120 such that the loading system 100 may be configured, at least before the loading operation, as an inter-connected discrete unit. Alternatively, the loader element 110 and the puller element 120 may be secured through other locking or securing means and the plunger element 130 may be a separate unit.

Referring now to FIGS. 2A-2D, where various components of one embodiment of the loader element 110 and the puller element 120 are shown. As described in detail below, the loader element 110 is used to compress a collapsible implantable device 140 to a size that can fit into a container, such as a housing of the delivery catheter. Additionally and optionally the loader element 110 is configured to facilitate the alignment of the compressed implantable device 140 with a container, such as a housing of the delivery catheter. As seen in FIG. 2, the loader element 110 comprises a loading tunnel 112 disposed longitudinally within the loader housing 111. In one embodiment, the loading tunnel 112 may comprise three regions, including a funnel-shaped loading region 112a, a container region 112b, and a catheter region 112c. The loading region 112a of the loading tunnel 112 gradually reduces in diameter moving in a rearward direction from the front opening 110a toward the rear opening 110b of the loader element 110 so as to provide the loading region 112a with a funnel shape. The housing region 112b has a shape that substantially conforms to the outer shape of the catheter housing or configured to receive a portion of the catheter so that the catheter housing may be inserted into and/or aligned with the housing region 112c. The catheter region 112c is shaped to receive the housing of the delivery catheter. Additionally and optionally, the loading tunnel 112 may be connected to a tension element 113 exemplarily shown as a spring that is configured to apply a force to the loading tunnel towards the front opening 110a.

Referring now to the puller element 120, which in one embodiment may comprise a substantially cylindrical hollow body. The puller element 120 comprises a pin 121 disposed on the hollow body or it may be suspended within the hollow body. The puller element 120 further comprises a moveable rotator 122 that is configured to rotate along the pin 121. As seen in FIG. 2B, in one embodiment, the rotator 122 may comprise a body that is configured to connect to the pin 121, a first tine 122a and a second tine 122b, whereby the first tine 122a is longer than the second tine 122b. In one embodiment, one or both tines may be substantially triangular in shape such that the base of the tines that is connected to the body of the rotator is larger than the tip of the tines. Alternatively, the tines may assume various other configurations. Furthermore, it is contemplated that the rotator may comprise a single tine.

The loader element 110 further comprises a rotator track that is configured to accommodate the rotator 122. The rotator 122 is received by the tack disposed on the loader element 110 such that the rotator 122 resides within the rotator track when the loader element 110 and the puller element 120 are connected. The rotator track is further configured to allow the rotator 122 to slide along the rotator track during the loading operation, when the puller element 120 is moved away from the loader element 110.

As seen in FIG. 2C, the loading system 100 further comprises at least one flexible element that is configured to connect the puller element 120 and the implantable device 140. The flexible element may be a wire or suture, such as polypropylene monofilament suture. In one embodiment, the suture 150 is affixed to the puller element 120 by one or more adhesives configured to bond the suture 150 to the puller element 120. Alternatively or additionally, the second end of the suture 150 may be affixed to the puller element 120 by fastening, tying, or looping the suture 150 to the puller element 120. It is contemplated that the puller element 120 comprises a suture attachment element 123 that is configured to receive the second portion of the suture 150 and enables and/or facilitates affixing the suture 130 to the puller element 120. In one embodiment, the suture attachment element 123 may comprise an attachment anchor 123a where the suture 150 may be attached to the attachment anchor 123a by fastening, tying, and/or looping around the attachment anchor 123a. The attachment element 123 may further comprise a receiving track configured to receive the suture 150 and may comprise slots where adhesives may be applied to affix the suture 150 to the puller element 120.

In one embodiment, the suture 150 is configured as a suture loop that is removably attached to the implantable device 140 by threading the loop through a portion of the implantable device 140 as described in co-pending U.S. application Ser. No. 12/820,393. The suture loop is further removably attached to the rotator 122 such that the suture loop resides between the first and second tines of the rotator 122.

Referring now to FIG. 3, which is a flow diagram that illustrates exemplary steps of operating one embodiment of the loading system. Aspects of the steps described herein are also illustrated in FIGS. 4A-4C as well as FIGS. 1A-1B. In one embodiment, as seen in FIG. 1A, the loading system 100 comprising a loader element 110, a pulling element 120, and a plunger element 130 are mated to form a discrete unit. It is further noted that the implantable device 140 is placed within loading region 112a of the loading tunnel 112 and attached to the suture 150 prior to the loading operation.

At step 201, the loader element 110, puller element 120, and the plunger element 130 are unlocked. In an embodiment, where the loading system 100 is configured as a discrete unit, the locking element 132 is released by removing the plunger element 130 from the puller element 120 and the loader element 110. Alternatively, the loader element 110 and the puller element 120 may be locked or secured through other means, and it is contemplated that during step 201 that such lock means is released thus enabling the loader element 110 and the puller element 120 to be separated.

At step 202, the implantable device 140 is pulled through the loading region 112a of the loading tunnel thereby causing the implantable device 140 to transition from an expanded state to a compressed state. The puller element 120 is pulled or moved away from the loader element 110. As the puller element 120 is moved away from the loader element 110, the suture 150 attached to the implantable device 160 and the puller element 120 pulls the implantable device 140 through the loading region 112a towards the container region 112b of the loading tunnel 112. As this happens, the funnel shape of the loading region 112a causes the implantable device 140 to be gradually compressed such that the diameter of the implantable device 140 is gradually reduced as the implantable device 140 moves toward and into the container region 112b. In one embodiment, the walls of the loading tunnel 112 provide an equally balanced compressive force around the entire circumference of the implantable device 140 as the implantable device moves through the loading tunnel 112. This reduces the likelihood of deforming the implantable device 140 during compression. Concurrent to the pulling of the implantable device 140, the rotator which is removably attached to the suture 150 is configured to move or slide away from the loader device 110 along the rotator track disposed on the loader device 110.

At step 203, and as seen in FIG. 4A, the puller element 120 is sufficiently pulled or moved away from the loader element 110 causing the implantable device 140 to be pulled into the container region 112b of the loading tunnel 112. Furthermore, the movement of the puller element 110 in conjunction with the resulting suture tension causes the rotator to move sufficiently away from the loader element 110 such that that the rotator exits the track. Thereafter, the suture tension due to the continued pulling of the puller element 120 causes the rotator 122 to rotate along the pin. The rotation of rotator 122 causes the rotator 122 to transition from a first position (while rotator was inside the rotator track) to a second position (after the rotator exists the rotator track) and/or causes the orientation of the rotator tines to change. The rotation and/or the subsequent transition of the rotator 122 cause the suture 150 that was attached to the rotator 122 to detach from the rotator 122. For example, the portion of the suture 150 that was attached to the rotator 122 between the first and second tines 122a and 122b may slide off due to the rotation thus detaching the suture 150 from the rotator 122.

At step 204, the puller element 120 is further pulled or moved away from the loader element 110 causing a complete separation of the puller element 120 and the loader element. The suture 150 is attached to the puller element 120 while it is detached from the implantable device 140. Specifically, after the detachment of the suture 150 from the rotator 122, the suture 150 is drawn through and exits the implantable device 140 and thereby detaching the suture 150 from the implantable device 140.

At step 205, and as seen in FIG. 4B, a portion of the delivery catheter 160 is placed into the loader element 110, such that the portion of the delivery catheter 160 is inserted into and/or aligned with the catheter region 112c of the loading tunnel 112. Optionally, prior to placing the delivery catheter 160 into the loader element 110, the loader tunnel 112 is first pushed towards the rear opening 110a and thereby compressing the tension element 113. Thereafter, a portion of the delivery catheter 160 is placed into the loader element 110 as described above and the loading tunnel 112 is released. The compressed tension element 113 thereby applies a force that pushes the loading tunnel 112 towards the front opening 110b; this force may be advantageous since it may ease the alignment of the delivery catheter 160 with the catheter region 112c of the loading tunnel 112 by pushing the loading tunnel 112 towards the delivery catheter 160.

At step 206, and as seen in FIG. 4C, after the portion of the delivery catheter 160 is placed into and/or substantially aligned with the loader element 110, the plunger element 130 is used to push the implantable device 140 into the delivery catheter 160. In one embodiment, the elongated portion 131 of the plunger element 130 is inserted into the loading tunnel 112 through the rear opening 110b of the loader element 110, thereafter, the elongated portion 131 forces the implantable device 140 that resides in the container region of the loading tunnel 112 into the delivery catheter 160. Thereafter, the delivery catheter containing the implantable device is removed from the loader element 110.

An alternative embodiment of a loading system is shown in FIGS. 5A and 5B. As seen FIG. 5A, an embodiment of a loading system 300 comprises a loader element 310, a puller element 320, and a plunger element (not shown). The loader element 310 comprises a front opening 310a and a rear opening 310b. The loader element 310 further comprises a loading tunnel 311 that is held in place or suspended within the housing element 310 by a tunnel mount 312. The loading tunnel 311 may comprise a loading region, a container region, and the catheter region similar to the configuration as described above. An optional first tension element 313 is disposed within the housing element 310 that applies a tension to the loading tunnel 311 and/or the tunnel mount 312.

As seen in FIGS. 5A and 5B, in one embodiment, a catheter locking element 340 comprises a first opening 341 and a second opening 342 is movably disposed within the loader element 310. The area of the first opening 341 is configured to accommodate a delivery catheter 350 while facilitates in placing and/or securing the delivery catheter 350 such that the catheter is substantially aligned with the loading tunnel 312. The second opening 342 is configured with a larger area than the first opening 341 to facilitate the insertion and/or removal of the delivery catheter 350 from the loader element 310. The first opening 341 and the second opening 342 are connected via a channel, wherein the channel is configured to accommodate the delivery catheter 350 such that the delivery catheter 350 may transition from the first opening 341 to the second opening 342 and vice-versa. In one embodiment, the catheter locking element 340 is disposed on top of a second tension element 314 within the housing element 310.

Prior to the loading operation, as seen in FIG. 5A, the second tension element 314 is compressed by the catheter locking element 340 by using a locking pin 315 that protrudes from the tunnel mount 312. The locking pin 315 may be inserted into the first opening 341 of the catheter locking element 320 thereby causing the catheter locking element 340 to compress the second tension element 314 and substantially aligns the second opening 342 with the loading tunnel 311.

The puller element 320 comprises a pin 321 and a moveable rotator 322 that is configured to rotate along the pin 321. As seen in FIG. 2B, in one embodiment, the rotator 322 comprises a body that is configured to connect to the pin 321 and a tine 322a. Alternatively, the rotator 322 may assume various other configurations such as the rotator previously described comprising multiple tines.

Additionally, the loading system 300 further comprises a suture that is affixed to a suture attachment element (not shown) on the puller element 320. The suture may be configured as a suture loop that is threaded through an implantable device 330 and removably attached to the rotator 322 as described above.

In an exemplary operation of the loading device 300, the puller element 320 is pulled or moved away from the housing element 310 until the rotator 322 rotates to release the suture and consequently the suture is released from the implantable device 330. Thereafter, a delivery catheter 350 is inserted into the loader element 310 through the second opening 342 of the catheter locking element 340. Tension is then applied to the catheter 350 which causes the tunnel mount 312 to move towards the rear opening 310b of the loader element 310. The movement of the tunnel mount 312 causes the locking pin 315 to exit from the first opening 341 of the catheter locking element 340 thereby causing the second tension element 314 to transition from a compressed state to a relaxed state which moves the catheter locking element 340 away from the base of the second tension element 314. The movement causes the first opening 341 of the catheter locking element 340 to align with the loading tunnel 311 and causes the delivery catheter 350 to exit the second opening 342 and transition through the channel into the first opening 341 as seen in FIG. 5B. Since the first opening 341 is configured with a smaller diameter than the second opening 342, by aligning with the loading tunnel 311 and placing the catheter 350 in the first opening 341, the catheter locking element 350 is configured to facilitate or aid in the stabilizing and/or the aligning of the catheter 350 with the loading tunnel 311. Thereafter, the plunger element (not shown) is applied to push the implantable device 330 into the catheter 350.

Thereafter, the plunger element is removed from the loader element 310, and the catheter 350 is release from the catheter locking element 340 by applying tension to the second tension element 314 such that the catheter 350 transitions back into the second opening 342, thereafter, the catheter 350 is removed from the loader element 310.

In yet another embodiment, as seen in FIGS. 6A-C, one embodiment of a loading system 400 comprises a loader element 410, puller element 420, and the plunger element 430. The loader element 410 comprises loading tunnel 411 comprising a loading region, container region, and a catheter region as described above. In one embodiment, the loader element 410 further comprises a tunnel mount 412, a pin connected to the loader element 410 and a rotator 413 configured to rotate along the pin. A suture is affixed to the puller element and it is removably attached to implantable device 440 and the rotator 413 as described above. The loader element 410 further comprises a tension element 414 that is disposed between tunnel mount 412 and the loading portion of the loading tunnel 411a. The puller element 420 comprises a tunnel locking element 421 that is configured to secure the loading tunnel 411 when the puller element 420 and the loader element 410 are mated.

In an exemplary operation of the loading system 400, as seen in FIG. 6B the loading element 410 and the plunger element 430 are initially mated. Likewise, the puller element 420 and the loader element 410 are initially connected. As seen in FIG. 6C, a delivery catheter is first placed into the loading system 400 through the puller element 420. The puller element 420 is moved towards the plunger element 430, and consequently, a tension is applied through the suture to pull the implantable device 440 from the loading portion into the housing portion of the loading tunnel 411. Further movement of the puller element 420 causes the rotator 413 disposed on the loader element 410 to rotate and the suture is released from the rotator 413. Thereafter, the suture is released from the implantable device 440. Further movement of the puller element 420 towards plunger element 430 causes the elongated portion of the plunger element 430 to push the implantable device 440 into the delivery catheter 450, thereafter, the loaded delivery catheter is removed from the loader element 410.

Also provided are kits for use in practicing the subject methods, where the kits typically include one or more of the above system for loading an implantable device, as described above. In certain embodiments, the kits at least include a loader element. Kits may also include a plunger element, an implantable device, and/or a delivery catheter. Additional components may be included in the kit.

In addition to above-mentioned components, the subject kits typically further include instructions for using the components of the kit to practice the subject methods. The instructions for practicing the subject methods are generally recorded on a suitable recording medium. For example, the instructions may be printed on a substrate, such as paper or plastic, etc. As such, the instructions may be present in the kits as a package insert, in the labeling of the container of the kit or components thereof (i.e., associated with the packaging or subpackaging) etc. In other embodiments, the instructions are present as an electronic storage data file present on a suitable computer readable storage medium, e.g. CD-ROM, diskette, etc. In yet other embodiments, the actual instructions are not present in the kit, but means for obtaining the instructions from a remote source, e.g. via the internet, are provided. An example of this embodiment is a kit that includes a web address where the instructions can be viewed and/or from which the instructions can be downloaded. As with the instructions, this means for obtaining the instructions is recorded on a suitable substrate

While the above is a complete description of various embodiments, any of a number of alternatives, modifications, and equivalents may be used in alternative embodiments. Therefore, the above description should not be taken as limiting the scope of the invention as it is defined by the appended claims.

Nguyen, Hoang, Olivera, Ryan

Patent Priority Assignee Title
11083556, Nov 19 2004 Pulmonx Corporation Implant loading device and system
Patent Priority Assignee Title
2981254,
3657744,
3667069,
3788327,
3874388,
4014318, Aug 20 1973 Circulatory assist device and system
4086665, Dec 16 1976 Thermo Electron Corporation Artificial blood conduit
4212463, Feb 17 1978 Humane bleeder arrow
4250873, Apr 26 1977 Richard Wolf GmbH Endoscopes
4302854, Jun 04 1980 Electrically activated ferromagnetic/diamagnetic vascular shunt for left ventricular assist
4477930, Sep 28 1982 SYMBION, INC Natural tissue heat valve and method of making same
4710192, Dec 30 1985 Diaphragm and method for occlusion of the descending thoracic aorta
4732152, Dec 05 1984 AMS MEDINVENT S A Device for implantation and a method of implantation in a vessel using such device
4759758, Dec 07 1984 Prosthetic heart valve
4774942, Aug 28 1987 CARLETON LIFE SUPPORT SYSTEMS, INC Balanced exhalation valve for use in a closed loop breathing system
4795449, Aug 04 1986 Hollister Incorporated Female urinary incontinence device
4808183, Jun 03 1980 University of Iowa Research Foundation Voice button prosthesis and method for installing same
4819664, Nov 15 1984 Device for selective bronchial intubation and separate lung ventilation, particularly during anesthesia, intensive therapy and reanimation
4830003, Jun 17 1988 Medtronic Ave, Inc Compressive stent and delivery system
4832680, Jul 03 1986 C R BARD, INC Apparatus for hypodermically implanting a genitourinary prosthesis
4846836, Oct 03 1988 Artificial lower gastrointestinal valve
4850999, May 26 1981 SCHNEIDER USA INC Flexible hollow organ
4852568, Feb 17 1987 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
4877025, Oct 06 1988 Tracheostomy tube valve apparatus
4879998, Aug 28 1987 CARLETON LIFE SUPPORT SYSTEMS, INC Balanced exhalation valve for use in a closed loop breathing system
4934999, Jul 28 1987 Closure for a male urethra
4968294, Feb 09 1989 OPTICON MEDICAL INC Urinary control valve and method of using same
4990151, Sep 28 1988 AMS MEDINVENT S A Device for transluminal implantation or extraction
5061274, Dec 04 1989 Kensey Nash Corporation Plug device for sealing openings and method of use
5116360, Dec 27 1990 MAQUET CARDIOVASCULAR LLC Mesh composite graft
5116564, Oct 11 1988 Adiam Life Science AG Method of producing a closing member having flexible closing elements, especially a heart valve
5123919, Nov 21 1991 SULZER CARBOMEDICS, INC Combined prosthetic aortic heart valve and vascular graft
5151105, Oct 07 1991 Collapsible vessel sleeve implant
5158548, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5161524, Aug 02 1991 Glaxo Inc. Dosage inhalator with air flow velocity regulating means
5306234, Mar 23 1993 Ancra International LLC Method for closing an atrial appendage
5352240, May 31 1989 CRYOLIFE, INC Human heart valve replacement with porcine pulmonary valve
5358518, Jun 25 1991 Artificial venous valve
5366478, Jul 27 1993 Ethicon, Inc. Endoscopic surgical sealing device
5382261, Sep 01 1992 VACTRONIX SCIENTIFIC, LLC Method and apparatus for occluding vessels
5392775, Mar 22 1994 Duckbill valve for a tracheostomy tube that permits speech
5409019, Oct 30 1992 Coronary artery by-pass method
5411507, Jan 08 1993 Richard Wolf GmbH Instrument for implanting and extracting stents
5411552, May 18 1990 Edwards Lifesciences AG Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
5413599, Sep 20 1988 Nippon Zeon Co., Ltd. Medical valve apparatus
5417226, Jun 09 1994 Female anti-incontinence device
5445626, Dec 05 1991 Valve operated catheter for urinary incontinence and retention
5453090, Mar 01 1994 Cordis Corporation Method of stent delivery through an elongate softenable sheath
5486154, Jun 08 1993 ENDONETICS, INC Endoscope
5499995, May 25 1994 Body passageway closure apparatus and method of use
5500014, May 31 1989 3F THERAPEUTICS, INC Biological valvular prothesis
5522881, Jun 28 1994 LifeShield Sciences LLC Implantable tubular prosthesis having integral cuffs
5562608, Aug 28 1989 Temple University - of the Commonwealth System of Higher Education Apparatus for pulmonary delivery of drugs with simultaneous liquid lavage and ventilation
5588424, Jun 28 1995 The Cleveland Clinic Foundation Bronchial blocker endotracheal apparatus
5645519, Mar 18 1994 LEE, JAI S Endoscopic instrument for controlled introduction of tubular members in the body and methods therefor
5645565, Jun 13 1995 Ethicon Endo-Surgery, Inc. Surgical plug
5649906, Jul 17 1991 GORY, PIERRE; BOVYN, GILLES Method for implanting a removable medical apparatus in a human body
5660175, Aug 21 1995 Endotracheal device
5662713, Oct 09 1991 Boston Scientific Corporation Medical stents for body lumens exhibiting peristaltic motion
5676671, Apr 12 1995 Device for introducing an appliance to be implanted into a catheter
5683451, Jun 08 1994 Medtronic Ave, Inc Apparatus and methods for deployment release of intraluminal prostheses
5697968, Aug 10 1995 Aeroquip Corporation Check valve for intraluminal graft
5755770, Jan 31 1995 LifeShield Sciences LLC Endovascular aortic graft
5800339, Feb 09 1989 OPTICON MEDICAL INC Urinary control valve
5803080, Dec 20 1995 Merit Medical Systems, Inc Instrument for interventional flexible tracheoscopy/bronchoscopy
5824037, Oct 03 1995 Medtronic Ave, Inc Modular intraluminal prostheses construction and methods
5840081, May 18 1990 Edwards Lifesciences AG System and method for implanting cardiac valves
5843158, Jan 05 1996 Medtronic Ave, Inc Limited expansion endoluminal prostheses and methods for their use
5851232, Mar 15 1997 Venous stent
5855587, Jun 13 1996 HYON, CHON-IK Hole forming device for pierced earrings
5855597, May 07 1997 Vascular Concepts Holdings Limited Stent valve and stent graft for percutaneous surgery
5855601, Jun 21 1996 The Trustees of Columbia University in the City of New York Artificial heart valve and method and device for implanting the same
5868779, Aug 15 1997 Apparatus and methods for dilating vessels and hollow-body organs
5891195, May 24 1996 CORCYM S R L Combined prosthetic aortic heart valve and vascular graft with sealed sewing ring
5910144, Jan 09 1998 LifeShield Sciences LLC Prosthesis gripping system and method
5944738, Feb 06 1998 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Percutaneous catheter directed constricting occlusion device
5947997, Nov 25 1992 Cook Medical Technologies LLC Closure prothesis for transcatheter placement
5954765, Nov 03 1997 Self-adjusting prosthesis for treating constrictions in growing vessels
5954766, Sep 16 1997 Pulmonx Corporation Body fluid flow control device
5957949, May 01 1997 Medtronic Vascular, Inc Percutaneous placement valve stent
5976174, Dec 15 1997 Medical hole closure device and methods of use
5980455, Feb 22 1993 Edwards Lifesciences, LLC Method for manipulating a tissue structure within a thoracic cavity
5984965, Aug 28 1997 CYSTOMEDIX, INC Anti-reflux reinforced stent
5989288, Aug 13 1996 SOLACE THERAPEUTICS, INC Device for maintaining urinary continence
6007575, Jun 06 1997 Inflatable intraluminal stent and method for affixing same within the human body
6009614, Apr 21 1998 Advanced Cardiovascular Systems, Inc. Stent crimping tool and method of use
6020380, Nov 25 1998 TAP HOLDINGS INC Method of treating chronic obstructive pulmonary disease
6022312, May 05 1995 CHAUSSY, CHRISTIAN Endosphincter, set for releasable closure of the urethra and method for introduction of an endosphincter into the urethra
6024759, May 08 1998 Zimmer Biomet CMF and Thoracic, LLC Method and apparatus for performing pectus excavatum repair
6027508, Oct 03 1996 Boston Scientific Scimed, Inc Stent retrieval device
6027525, May 23 1996 SAMSUNG ELECTRONICS CO , LTD Flexible self-expandable stent and method for making the same
6036694, Aug 03 1998 Innovasive Devices, Inc. Self-tensioning soft tissue fixation device and method
6051022, Dec 30 1998 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Bileaflet valve having non-parallel pivot axes
6068635, Mar 04 1998 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Device for introducing an endoprosthesis into a catheter shaft
6068638, Oct 13 1995 Medtronic Vascular, Inc Device, system and method for interstitial transvascular intervention
6077291, Jan 21 1992 Regents of the University of Minnesota Septal defect closure device
6083255, Apr 07 1997 Boston Scientific Scimed, Inc Bronchial stenter
6123663, Jul 04 1996 Surgical appliance for the treatment of pulmonary emphysema
6135729, Nov 10 1993 The United States of America as represented by the Administrator of the Blood pump bearing system
6135991, Mar 06 1997 KARDIAMETRICS, LLC Aspiration method
6141855, Apr 28 1998 Advanced Cardiovascular Systems, Inc. Stent crimping tool and method of use
6162245, May 07 1997 Vascular Concepts Holdings Limited Stent valve and stent graft
6168614, May 18 1990 Edwards Lifesciences AG Valve prosthesis for implantation in the body
6174323, Jun 05 1998 EKOS LLC Method and assembly for lung volume reduction
6183520, Aug 13 1996 SOLACE THERAPEUTICS, INC Method of maintaining urinary continence
6190381, Jun 07 1995 Arthrocare Corporation Methods for tissue resection, ablation and aspiration
6200333, Apr 07 1997 Boston Scientific Scimed, Inc Bronchial stenter
6206918, May 12 1999 CORCYM S R L Heart valve prosthesis having a pivot design for improving flow characteristics
6232365, Jul 17 1998 3M Innovative Properties Company Low temperature electron beam polymerization
6234996, Jun 23 1999 Medtronic Ave, Inc Integrated inflation/deflation device and method
6240615, May 05 1998 Advanced Cardiovascular Systems, Inc. Method and apparatus for uniformly crimping a stent onto a catheter
6245102, May 07 1997 Vascular Concepts Holdings Limited Stent, stent graft and stent valve
6247471, Jul 08 1999 SOUTHWEST BANK OF ST LOUIS Smoke hood with oxygen supply device and method of use
6258100, Aug 24 1999 GYRUS ACMI, INC Method of reducing lung size
6270527, Oct 16 1998 CORCYM S R L Elastic valve with partially exposed stent
6280464, Jan 09 1998 LifeShield Sciences LLC Prosthesis gripping system and method
6287290, Jul 02 1999 Pulmonx Corporation Methods, systems, and kits for lung volume reduction
6287315, Oct 30 1995 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
6293951, Aug 24 1999 GYRUS ACMI, INC Lung reduction device, system, and method
6302893, Jul 15 1996 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
6312407, Jun 06 1995 MEDTRONIC AVE INC Occlusion of a vessel
6325777, May 20 1996 MIRAGE IP LLC Low profile catheter valve and inflation adaptor
6325778, May 20 1996 MEDTRONIC AVE INC Low profile catheter valve and inflation adaptor
6327772, Jan 30 1996 Medtronic Ave, Inc Method for fabricating a planar eversible lattice which forms a stent when everted
6328689, Mar 23 2000 GYRUS ACMI, INC Lung constriction apparatus and method
6355014, May 20 1996 MEDTRONIC AVE INC Low profile catheter valve
6398775, Oct 21 1999 Pulmonx Corporation Apparatus and method for isolated lung access
6402754, Oct 20 1999 GYRUS ACMI, INC Apparatus for expanding the thorax
6416554, Aug 24 1999 GYRUS ACMI, INC Lung reduction apparatus and method
6458076, Feb 01 2000 HYDROCISION, INC Multi-lumen medical device
6485407, Mar 23 2000 GYRUS ACMI, INC Tissue resection device, system and method
6491706, Jul 10 2001 GYRUS ACMI, INC Constriction device including fixation structure
6493589, May 07 1998 Medtronic, Inc Methods and apparatus for treatment of pulmonary conditions
6510846, Dec 23 1999 Sealed back pressure breathing device
6527761, Oct 27 2000 Pulmonx Corporation Methods and devices for obstructing and aspirating lung tissue segments
6558318, Feb 22 1993 Edwards Lifesciences, LLC Endoscopic retraction method
6592594, Oct 25 2001 GYRUS ACMI, INC Bronchial obstruction device deployment system and method
6632243, Sep 16 1997 Pulmonx Corporation Body fluid flow control device
6679264, Mar 04 2000 Pulmonx Corporation Methods and devices for use in performing pulmonary procedures
6694979, Mar 04 2000 Pulmonx Corporation Methods and devices for use in performing pulmonary procedures
6699231, Dec 31 1997 PINPOINT THERAPEUTICS, INC Methods and apparatus for perfusion of isolated tissue structure
6837906, Aug 03 2001 GATEWAY MEDICAL, INC Lung assist apparatus and methods for use
6840243, Mar 04 2000 Pulmonx Corporation Methods and devices for use in performing pulmonary procedures
6840957, Oct 21 1999 Boston Scientific Scimed, Inc Implantable prosthetic valve
6878141, Jul 02 1999 Pulmonx Corporation Methods systems and kits for lung volume reduction
6901927, Mar 04 2000 Pulmonx Corporation Methods and devices for use in performing pulmonary procedures
6904909, Mar 04 2000 Pulmonx Corporation Methods and devices for use in performing pulmonary procedures
6905518, Aug 03 2001 GATEWAY MEDICAL, INC Lung assist apparatus and methods for use
6941950, Oct 11 2001 Pulmonx Corporation Bronchial flow control devices and methods of use
7011094, Mar 02 2001 Pulmonx Corporation Bronchial flow control devices and methods of use
7399315, Mar 18 2003 Edwards Lifescience Corporation; Edwards Lifesciences Corporation Minimally-invasive heart valve with cusp positioners
7771472, Nov 19 2004 Pulmonx Corporation Bronchial flow control devices and methods of use
7854228, Oct 11 2001 Pulmonx Corporation Bronchial flow control devices and methods of use
8388682, Nov 19 2004 Pulmonx Corporation Bronchial flow control devices and methods of use
8673020, Jun 20 2008 COLOPLAST A S Esophageal valve device for placing in the cardia
9211181, Nov 19 2004 Pulmonx Corporation Implant loading device and system
9872755, Jun 22 2010 Pulmonx Corporation Implant loading device and system
20010025132,
20010037808,
20010041906,
20010051799,
20010052344,
20010056274,
20020007831,
20020026233,
20020062120,
20020077593,
20020077696,
20020087153,
20020095209,
20020111619,
20020111620,
20020112729,
20020138135,
20030018327,
20030018344,
20030050648,
20030070682,
20030070683,
20030075169,
20030075170,
20030083671,
20030127090,
20030164168,
20030192550,
20030192551,
20030199972,
20030212452,
20030228344,
20040016435,
20040039250,
20040055606,
20040060563,
20040074491,
20040089306,
20040134487,
20040148035,
20040154621,
20040194780,
20040200484,
20040211434,
20050005936,
20050015106,
20050016530,
20050022809,
20050033310,
20050033344,
20050051163,
20050061322,
20050066974,
20050087137,
20050125076,
20050137714,
20050145253,
20050161048,
20050166925,
20050171396,
20050178389,
20050196344,
20050203483,
20060004305,
20060020347,
20060030863,
20060107956,
20060162731,
20080072914,
20080091166,
20080200896,
20080221703,
20080269878,
20080281350,
20100030256,
20100292779,
20100319708,
20110010910,
20110022149,
20110046712,
20110130834,
20110166593,
20110270410,
20130023919,
20130204309,
20150094809,
DE9205797,
EP128433,
EP621015,
EP1078601,
EP1151729,
GB2324729,
RU2140211,
SU1371700,
SU1593651,
SU852321,
WO15149,
WO42950,
WO51510,
WO62699,
WO78386,
WO78407,
WO102042,
WO103642,
WO105334,
WO110313,
WO110314,
WO112104,
WO113839,
WO113908,
WO145590,
WO149213,
WO154585,
WO154625,
WO154685,
WO166190,
WO174271,
WO187170,
WO189366,
WO195786,
WO2056794,
WO205884,
WO2064045,
WO2064190,
WO2069823,
WO2094087,
WO222072,
WO232333,
WO234322,
WO238038,
WO247575,
WO3022124,
WO3030975,
WO3041779,
WO3075796,
WO3099164,
WO2004006767,
WO2004010845,
WO2004049974,
WO2004080347,
WO2005000161,
WO2005006957,
WO2005007023,
WO2005013808,
WO2005013835,
WO2005087137,
WO9426175,
WO9532018,
WO9634582,
WO9639960,
WO9744085,
WO9800840,
WO9814120,
WO9819633,
WO9839047,
WO9844854,
WO9848706,
WO9901076,
WO9913801,
WO9926692,
WO9932040,
WO9942059,
WO9942161,
WO9964109,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 26 2012OLIVERA, RYANPULMONxASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0486430839 pdf
Nov 26 2012NGUYEN, HOANGPULMONxASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0486430839 pdf
Dec 30 2013PULMONxPulmonx CorporationMERGER SEE DOCUMENT FOR DETAILS 0489640563 pdf
Dec 14 2017Pulmonx Corporation(assignment on the face of the patent)
Feb 20 2020Pulmonx CorporationCanadian Imperial Bank of CommerceSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0529160213 pdf
Date Maintenance Fee Events
Dec 14 2017BIG: Entity status set to Undiscounted (note the period is included in the code).
Jan 05 2018SMAL: Entity status set to Small.
Jan 13 2023M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.


Date Maintenance Schedule
Jul 16 20224 years fee payment window open
Jan 16 20236 months grace period start (w surcharge)
Jul 16 2023patent expiry (for year 4)
Jul 16 20252 years to revive unintentionally abandoned end. (for year 4)
Jul 16 20268 years fee payment window open
Jan 16 20276 months grace period start (w surcharge)
Jul 16 2027patent expiry (for year 8)
Jul 16 20292 years to revive unintentionally abandoned end. (for year 8)
Jul 16 203012 years fee payment window open
Jan 16 20316 months grace period start (w surcharge)
Jul 16 2031patent expiry (for year 12)
Jul 16 20332 years to revive unintentionally abandoned end. (for year 12)