A gas turbine compressor having at least one airfoil tip (10) and a flow duct wall (20) which is disposed radially opposite thereto and has a circumferential groove (31-33) therein in which is disposed at least one web (40) having a radial cutback (44) is provided. An upstream beginning (41) of the cutback is located axially downstream of an upstream groove edge (21) between this groove edge and an upstream leading edge (11) of the airfoil tip, and a downstream end (42) of the cutback is located in an airfoil-tip-proximal half (34) of a radial height (35) of the circumferential groove.
|
20. A gas turbine compressor comprising:
at least one airfoil tip;
a flow duct wall disposed radially opposite thereto and having a circumferential groove therein;
at least one web disposed in the circumferential groove and having a radial cutback;
an upstream beginning of the cutback being located axially downstream of an upstream groove edge between this groove edge and an upstream leading edge of the airfoil tip, and a downstream end of the cutback being located at the circumferential groove in an airfoil-tip-proximal half of a radial height of the circumferential groove;
wherein the web merges into a downstream groove flank of the circumferential groove, wherein, in at least one meridional section, the web has a cross-sectional area which is at least 70% of a cross-sectional area of the circumferential groove.
19. A gas turbine compressor comprising:
at least one airfoil tip;
a flow duct wall disposed radially opposite thereto and having a circumferential groove therein;
at least one web disposed in the circumferential groove and having a radial cutback;
an upstream beginning of the cutback being located axially downstream of an upstream groove edge between this groove edge and an upstream leading edge of the airfoil tip, and a downstream end of the cutback being located at the circumferential groove in an airfoil-tip-proximal half of a radial height of the circumferential groove;
wherein, in at least one meridional section, the web has a cross-sectional area which is at least 75% of a cross-sectional area of the circumferential groove; and
wherein the web merges into a downstream groove flank of the circumferential groove.
1. A gas turbine compressor comprising:
at least one airfoil tip;
a flow duct wall disposed radially opposite thereto and having a circumferential groove therein;
at least one web disposed in the circumferential groove and having a radial cutback;
an upstream beginning of the cutback being located axially downstream of an upstream groove edge between this groove edge and an upstream leading edge of the airfoil tip, and a downstream end of the cutback being located at the circumferential groove in an airfoil-tip-proximal half of a radial height of the circumferential groove;
wherein the web merges into an upstream groove flank and a downstream groove flank of the circumferential groove, wherein, in at least one meridional section, the web has a cross-sectional area which is at least 70% of a cross-sectional area of the circumferential groove.
2. The gas turbine compressor as recited in
3. The gas turbine compressor as recited in
4. The gas turbine compressor as recited in
5. The gas turbine compressor as recited in
6. The gas turbine compressor as recited in
7. The gas turbine compressor as recited in
8. The gas turbine compressor as recited in
9. The gas turbine compressor as recited in
10. The gas turbine compressor as recited in
11. The gas turbine compressor as recited in
12. The gas turbine compressor as recited in
13. The gas turbine compressor as recited in
14. The gas turbine compressor as recited in
15. The gas turbine compressor as recited in
17. The gas turbine compressor of
18. A method for designing a gas turbine compressor as recited in
locating the upstream beginning of the cutback axially downstream of the upstream groove edge between the upstream groove edge and the upstream leading edge of the airfoil tip, and
locating the downstream end of the cutback in the airfoil-tip-proximal half of the radial height of the circumferential groove.
|
This claims the benefit of European patent application EP14163465.9, filed on Apr. 3, 2014 and hereby incorporated by reference herein.
The present invention relates to a gas turbine compressor and an aircraft engine having such a gas turbine compressor, and to a method for designing such a gas turbine compressor.
A gas turbine compressor having a casing treatment (CT) is known from U.S. 2010/0014956 A1. The casing treatment includes a continuous or interrupted circumferential groove which is axially disposed in the region of a rotating airfoil tip and has deflecting means in the form of webs. In various exemplary embodiments, the webs have arbitrary radial cutbacks.
It is an object of an embodiment of the present invention to improve a gas turbine compressor.
It is an object of the present invention to provide a gas turbine compressor, in particular an axial gas turbine compressor including one or more airfoils arranged circumferentially adjacent one another and having tips, in particular shroudless tips, and further including a flow duct wall disposed radially opposite to the airfoil tips.
In one embodiment, the gas turbine compressor is a gas turbine compressor for, or of, an aircraft engine, and may in particular be a low-pressure compressor disposed upstream of another gas turbine compressor or a high-pressure compressor disposed downstream of another gas turbine compressor. In one embodiment, the airfoils are rotor blades which are arranged on a rotatably mounted rotor and rotate during operation, and the flow duct wall, which is fixed relative to the casing, is located radially outwardly of and opposite to the radially outer airfoil tips. In another embodiment, the airfoils are stator vanes which are fixed relative to the casing, and the rotatably mounted flow duct wall is located radially inwardly thereof and opposite thereto and rotates during operation.
The flow duct wall has a circumferential groove therein. In an embodiment, this circumferential groove has an upstream flank which merges into the flow duct wall at an upstream groove edge, a downstream flank which merges into the flow duct wall at a downstream groove edge, and a groove base connecting these groove flanks. In one embodiment, a groove edge may be sharp, i.e., angled, or rounded, i.e., have a radius. In the latter case, for dimensional specifications, the groove edge may be defined by the center point of its radius or the point of intersection of its two outermost tangents.
In one embodiment, the upstream groove flank and/or the downstream groove flank has/have an axial undercut. In a refinement, the cross-sectional area of the axial undercut in a meridional section is less than 10% of a cross-sectional area of the circumferential groove between its upstream and downstream groove edges.
In the context of the present invention, a meridional section is a plane section containing the axis of rotation of the compressor. An axial undercut of the upstream groove flank is a region of this groove flank that is located axially upstream of the upstream groove edge. Correspondingly, an axial undercut of the downstream groove flank is a region of this groove flank that is located axially downstream of the downstream groove edge. A cross-sectional area of the circumferential groove between its upstream and downstream groove edges is accordingly the area which, in a meridional section, is defined by the groove base, a straight connecting line between the upstream and downstream groove edges, and perpendicular lines through the upstream and downstream groove edges.
In one embodiment, the circumferential groove extends in particular continuously or uninterruptedly through the full circumference of the flow duct wall; i.e., through 360°. In other words, in one embodiment, each of the upstream and downstream groove edges is a continuous edge extending uninterruptedly through 360°. In one embodiment, the production and/or the aerodynamics of the circumferential groove can thereby be improved. The circumferential groove has one or more webs arranged therein. In one embodiment, a plurality of adjacent webs, in particular all webs, may be configured identically, and in particular have at least substantially identical dimensions and contours. In one embodiment, the production and/or the aerodynamics of the circumferential groove can thereby be improved. In one embodiment, adjacent webs may also be configured differently, and in particular have different dimensions and/or contours. In one embodiment, this makes it possible to deliberately produce or compensate for asymmetries. Three or more webs, in particular all webs, may be equidistantly spaced in the circumferential direction. Likewise, three or more webs, in particular all webs, may have pairwise different spacings in the circumferential direction.
One or more webs, preferably all webs, have a radial cutback. As used herein, a “radial cutback” is understood to be in particular an empty space between an airfoil-side end face of the web and its projection into a reference plane extending from the upstream groove edge to the downstream groove edge, the curvature of the reference plane in the meridional sections through the end face being infinite or, at the upstream and downstream groove edges, equal to that of flow duct wall and axially continuously linear therebetween. Accordingly, in a meridional section, the radial cutback is understood to be the free area between an airfoil-tip-side upper edge of the cross section of the web and a reference curve extending from the upstream groove edge to the downstream groove edge, the curvature of the reference curve being infinite or, at the upstream and downstream groove edges, equal to that of flow duct wall and axially continuously linear therebetween. In other words, in one embodiment, a “radial cutback” is understood to be the empty space or the free area between the airfoil-side end face or upper edge of the web and a virtual extension of the flow duct contour across the circumferential groove. This virtual extension of the contour may be a straight connecting plane or line or may connect the groove edges with a curvature that corresponds to the curvature of the flow duct contour at the groove edges and interpolates linearly therebetween.
In accordance with one aspect of the present invention, in particular in one or more meridional sections, preferably all meridional sections, through the airfoil-tip-side end face of the web, an upstream beginning of the cutback is located axially downstream of the upstream groove edge between this groove edge and the upstream leading edge of the airfoil tip, and a downstream end of the cutback is located in an airfoil-tip-proximal half of a radial height of the circumferential groove.
Surprisingly, it has been found that in one embodiment, in the case of an inventive cutback which begins downstream of the upstream groove edge and upstream of the upstream leading edge of the airfoil tip, and which ends in the airfoil-tip-proximal half of the circumferential groove, the advantages of the casing treatment during off-design operation are at least substantially retained, while at the same time making it possible to reduce unwanted flow phenomena during design operation; i.e., under nominal operating conditions.
In one embodiment, an “upstream beginning” of the cutback is understood to be the axial position beyond which the airfoil-side end face or upper edge of the web deviates from the virtual extension of the flow duct contour or the reference plane or curve in a direction away from the airfoil tip and toward the groove base. In another embodiment, an “upstream beginning” of the cutback is understood to be the axial position beyond which the airfoil-side end face or upper edge of the web deviates from the straight reference plane or curve in the radial direction toward the groove base by at least 1%, in particular at least 5%, of a maximum radial distance between the groove base and a groove edge that is closer to the airfoil tip.
In accordance with the preceding aspect, the upstream beginning of the cutback is located downstream of the upstream groove edge and upstream of the upstream leading edge of the airfoil tip. In one embodiment, the airfoil-side end face (or, in one or more meridional sections, preferably all meridional sections, through the airfoil-tip-side end face of the web, the upper edge) of the web continues the flow duct contour to the beginning of the cutback with a continuous curvature; i.e., without abrupt changes in the curvature.
Correspondingly, in one embodiment, a “downstream end” of the cutback is understood to be the axial position at which the airfoil-side end face or upper edge of the web merges back into the reference plane or curve or into the downstream groove flank. In another embodiment, a “downstream end” of the cutback is understood to be the axial position beyond which the airfoil-side end face or upper edge of the web once again deviates from the straight reference plane or curve in the radial direction toward the groove base by less than 5%, in particular less than 1%, of a maximum radial distance between the groove base and the groove edge that is closer to the airfoil tip.
In accordance with the preceding aspect, the downstream end of the cutback is located in an airfoil-tip-proximal half of a radial height of the circumferential groove. In the context of the present invention, a “radial height” of the circumferential groove is understood to be in particular a maximum distance between the groove base and the reference plane or curve; i.e., in particular, a maximum distance between the groove base and the groove edge that is closer to the airfoil tip, in the radial direction or a direction perpendicular to the connecting line between the upstream and downstream groove edges. Such a distance perpendicular to the connecting line may also be referred to in a generalized way as a radial height of the circumferential groove.
In one embodiment, the radial cutback ends in the reference plane or curve; in a refinement axially upstream or downstream of the upstream leading edge of the airfoil tip. In one embodiment, the airfoil-side end face (or, in one or more meridional sections, preferably all meridional sections, through the airfoil-tip-side end face of the web, the upper edge) of the web continues the flow duct contour in an upstream direction from the downstream groove edge to the end of the cutback with a continuous curvature; i.e., without abrupt changes in the curvature.
In another embodiment, the radial cutback ends in the radially upper half of the downstream groove flank, and the web is continuously cut back radially, starting at the beginning of the cutback. The term “radially upper half” is used in a generalized way to refer to the portion of the downstream groove flank that extends in the radial direction or a direction perpendicular to the connecting line between the upstream and downstream groove edges over 50% of the maximum distance of the downstream groove edge from the groove base in this direction.
In one embodiment, the web merges into the upstream flank and/or the downstream flank of the circumferential groove, and thus may in particular extend axially through the groove or the maximum axial length thereof. In this case, in one or more meridional sections, in particular all meridional sections, through the airfoil-tip-side end face of the web, as described earlier herein, an airfoil-tip-side upper edge of the web may, at the upstream groove edge, have the same curvature as the flow duct contour; i.e., at the upstream groove edge, it may have a continuous curvature and smoothly continue this curvature to the beginning of the cutback.
In a developed view, the web may be straight or curved; i.e., extend in a straight or curved manner. In particular, in one embodiment, the airfoil-side end face of the web may merge at least substantially axially with the upstream groove edge. In addition or alternatively, the airfoil-side end face may merge into the downstream groove flank with a curvature in or opposite to a direction of rotation of the airfoil tip.
Preferably, the area of the cutback in at least one meridional section is limited to no more than 30%, in particular no more than 25%, of the cross-sectional area of the circumferential groove. Accordingly, in one embodiment, in one or more meridional sections, in particular all meridional sections, through the airfoil-tip-side end face of the web, the web has a cross-sectional area which is at least 70%, in particular at least 75%, of the cross-sectional area of the circumferential groove in this meridional section.
According to the above definition, a cross-sectional area of the circumferential groove is the area which, in a meridional section, is defined by the groove base, the groove flanks and a straight connecting line between the upstream and downstream groove edges.
In one embodiment, in one or more meridional sections, in particular all meridional sections, through the airfoil-tip-side end face of the web, the circumferential groove forms an angle of between 60° and 90° with the flow duct wall at the upstream groove edge. This makes it possible in particular to produce an advantageous axial undercut.
In one embodiment, an axial distance between the upstream groove edge and the leading edge of the airfoil tip disposed downstream thereof is greater than an axial distance between the downstream groove edge and the leading edge of the airfoil tip disposed upstream thereof. In other words, the leading edge of the airfoil tip is located between the upstream and downstream groove edges and is closer to the downstream groove edge.
In one embodiment, an axial distance between the upstream and downstream groove edges is at least 25% of an axial distance between the upstream leading edge and a downstream trailing edge of the airfoil tip.
In a section perpendicular to an axis of rotation of the compressor, the web may be straight or curved. The web; i.e., its tangents, may extend radially or be inclined to the radial direction. Accordingly, in one embodiment, in one or more sections, in particular all sections, perpendicular to an axis of rotation of the compressor through the airfoil-tip-side end face of the web, the web is inclined toward the base of the circumferential groove in the direction of rotation of the airfoil tip, in particular by at least 25° and/or no more than 65° to the radial direction.
Further advantageous refinements of the present invention will be apparent from the dependent claims and the following description of preferred embodiments.
To this end, the only drawing,
The gas turbine compressor includes rotor blades arranged adjacent one another in the circumferential direction (perpendicular to the plane of the drawing of
The flow duct wall has a circumferential groove formed therein, the circumferential groove having an upstream flank 31 which merges into the flow duct wall at an upstream groove edge 21, a downstream flank 32 which merges into the flow duct wall at a downstream groove edge 22, and a groove base 33 connecting these groove flanks.
The upstream groove flank has an axial undercut whose cross-sectional area in the meridional section is less than 10% of a cross-sectional area of the circumferential groove between its upstream and downstream groove edges. This cross-sectional area of the circumferential groove between its upstream and downstream groove edges is the area which, in the meridional section of
A plurality of webs are arranged in the circumferential groove and spaced apart in the circumferential direction (perpendicular to the plane of the drawing of
As explained earlier herein, reference numeral 24 denotes a straight connecting line 24 between upstream and downstream groove edges 21, 22. Thus, this line represents a reference curve which extends from the upstream groove edge to the downstream groove edge and whose curvature is infinite.
Reference numeral 23 in
In the meridional section of
As can be seen in the meridional section of
Furthermore, starting at the point or circumferential line 41, the airfoil-side end face or upper edge 43 deviates from reference plane or curve 24 toward the groove base by at least 1% of a maximum radial distance between groove base 33 and groove edge 22 (i.e., the one closer to the airfoil tip).
Thus, the point or circumferential line 41 defines an upstream beginning of a radial cutback 44 of the web.
The airfoil-side end face or upper edge of the web continues flow duct contour 20 to this beginning 41 of cutback 44 with a continuous curvature. The point or circumferential line 42 defines a downstream end of radial cutback 44, where the airfoil-side end face or upper edge 43 of the web merges into downstream groove flank 32.
In a modification, the airfoil-side end face or upper edge 43 of the web merges back into reference plane or curve 23. In this case, the point or circumferential line where the airfoil-side end face or upper edge 43 of the web merges back into reference plane or curve 23, or the point or circumferential line beyond which the airfoil-side end face or upper edge of the web once again deviates from the straight reference plane or curve 24 toward groove base 33 by less than 1% of the maximum radial distance between groove base 33 and groove edge 22 (i.e., the one closer to the airfoil tip) represents the downstream end of the radial cutback.
In this modification, the airfoil-side end face or upper edge of the web may continue the flow duct contour with a continuous curvature from downstream groove edge 22 in an upstream direction (toward the left in
Thus, the empty space or the free area between the airfoil-side end face or upper edge 43 of the web and reference plane or curve 23 defines radial cutback 44 with its upstream beginning 41 and its downstream end 42.
As can be seen in the meridional section of
The radial height may be defined as the maximum distance between groove base 33 and groove edge 22 (i.e., the one closer to the airfoil tip) in the radial direction (vertical in
In the embodiment shown, the radial cutback ends in the radially upper half 34′ of downstream groove flank 32, and the web is continuously cut back radially, starting at beginning 41. The term “radially upper half” is used to refer to the portion or region of downstream groove flank 32 that extends in the radial direction or a direction perpendicular to connecting line 24 between the upstream and downstream groove edges over 50% of the maximum distance of downstream groove edge 22 from groove base 33 in this direction.
In the embodiment of
As explained earlier herein, the airfoil-tip-side end face or upper edge of the web has, at upstream groove edge 21, the same curvature as flow duct contour 20 and smoothly continues this curvature to beginning 41 of cutback 44.
In the embodiment of
In the embodiment of
In the embodiment of
In the embodiment of
As shown in
Although the above is a description of exemplary embodiments, it should be noted that many modifications are possible. It should also be appreciated that the exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing detailed description provides those skilled in the art with a convenient road map for implementing at least one exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described without departing from the scope of protection set forth in the appended claims and their equivalent combinations of features.
Brignole, Giovanni, Mayenberger, Tobias
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6290458, | Sep 20 1999 | HITACHI PLANT TECHNOLOGIES, LTD | Turbo machines |
6935833, | Feb 28 2002 | MTU Aero Engines GmbH | Recirculation structure for turbo chargers |
7186072, | Aug 03 2002 | MTU Aero Engines GmbH | Recirculation structure for a turbocompressor |
8257022, | Jul 07 2008 | Rolls-Royce Deutschland Ltd Co KG | Fluid flow machine featuring a groove on a running gap of a blade end |
8915699, | Feb 21 2008 | MTU Aero Engines GmbH | Circulation structure for a turbo compressor |
20040156714, | |||
20050019152, | |||
20100014956, | |||
FR2989743, | |||
GB2408546, | |||
WO3072910, | |||
WO2004018844, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 27 2015 | BRIGNOLE, GIOVANNI | MTU AERO ENGINES AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035288 | /0901 | |
Mar 27 2015 | MAYENBERGER, TOBIAS | MTU AERO ENGINES AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035288 | /0901 | |
Mar 30 2015 | MTU AERO ENGINES AG | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 06 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 22 2022 | 4 years fee payment window open |
Apr 22 2023 | 6 months grace period start (w surcharge) |
Oct 22 2023 | patent expiry (for year 4) |
Oct 22 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 22 2026 | 8 years fee payment window open |
Apr 22 2027 | 6 months grace period start (w surcharge) |
Oct 22 2027 | patent expiry (for year 8) |
Oct 22 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 22 2030 | 12 years fee payment window open |
Apr 22 2031 | 6 months grace period start (w surcharge) |
Oct 22 2031 | patent expiry (for year 12) |
Oct 22 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |