In various implementations, a fan system may include a housing and a fan. The fan may reside in an orifice of the housing. The fan system may include a grate disposed proximate a top surface and an ice deflector. The ice deflector may inhibit ice formation on portions of the housing, orifice, and/or fan residing in the orifice.

Patent
   10519981
Priority
Nov 22 2013
Filed
Nov 10 2017
Issued
Dec 31 2019
Expiry
Apr 24 2034
Extension
153 days
Assg.orig
Entity
Large
0
20
currently ok
6. A fan system comprising:
a housing comprising:
an orifice adapted to receive a fan,
a top surface comprising one or more flanges;
a solid side wall configured to allow airflow through a top and a bottom of the orifice;
an ice deflector comprising:
a base comprised a sloped portion; and
an annular protrusion coupled to the base;
a grate disposed between the housing and the ice deflector; and
wherein the grate is adapted to cover the orifice and at least a portion of one or more of the flanges.
1. A fan system for use with a heating, ventilation, air conditioning system or refrigeration system, the fan system comprising:
a housing formed with an orifice, the housing having a top surface:
at least one flange formed on the top surface of the housing;
a grate sized and configured to cover the orifice and disposed proximate the top surface over at least a portion of the at least one flange;
an ice deflector disposed above the top surface of the housing and over at least a portion of the at least one flange;
the ice deflector comprising:
a base having a bottom surface and a sloped portion on a side opposite the bottom surface, and
an annular protrusion defining an opening wherein the opening of the annular protrusion is over at least a portion of the orifice in the housing;
wherein the sloped portion extends radially from the annular protrusion towards an exterior edge of the ice deflector; and
wherein the grate is disposed between at least a portion of the housing and at least a portion of the ice deflector.
2. The fan system of claim 1, wherein the annular protrusion of the ice deflector and the orifice of the housing are disposed about a first axis through a center of the housing, wherein the first axis is perpendicular to a second axis parallel to a top surface of the ice deflector.
3. The fan of claim 1, wherein the annular protrusion comprises a ring shaped protrusion.
4. The fan of claim 1, wherein the housing comprises one or more coupling members adapted to couple the ice deflector to the housing.
5. The fan system of claim 1, wherein the ice deflector comprises one or more coupling members adapted to couple the ice deflector to at least one of the housing or the grate.
7. The fan system of claim 6, wherein the annular protrusion of the ice deflector and the orifice of the housing are disposed about a first axis through a center of the housing, wherein the first axis is perpendicular to a second axis parallel to a top surface of the ice deflector.
8. The fan of claim 6, wherein the annular protrusion comprises a ring shaped protrusion.
9. The fan of claim 6, wherein the housing comprises one or more coupling members adapted to couple the ice deflector to the housing.
10. The fan system of claim 6, wherein the ice deflector comprises one or more coupling members adapted to couple the ice deflector to at least one of the housing or the grate.

This application is a Continuation of U.S. application Ser. No. 14/087,196 filed on Nov. 22, 2013, entitled, “Ice Deflector for a Fan Housing,” which is hereby incorporated herein by reference for all purposes.

The present disclosure relates to an ice deflector for a fan housing.

Fans are utilized in a wide variety of operations. For example, fans may be utilized in heat pumps, in air conditioning systems, and/or in refrigeration systems. The types of fans utilized in such systems may include mechanical fans, such as axial flow fans and/or cross-flow fans. The fan type and/or size may be selected based on the desired use of the fan.

In various implementations, a fan system may include a housing with an orifice, a grate, and an ice deflector. A fan may reside in the orifice. The grate may be disposed proximate a top surface of the housing and cover the orifice. The ice deflector may be disposed above the grate and the housing. The ice deflector may inhibit ice formation on portions of the housing, orifice, and/or fan residing in the orifice.

In various implementations, a fan system may include a housing, a grate, and an ice deflector. The housing may include an orifice and a top surface, which includes flange(s). The orifice may receive a fan. The orifice may include an orifice length and an orifice width. The grate may be disposed proximate the top surface. The grate may cover the orifice and at least a portion of one or more of the flanges. The ice deflector may include a base and an annular protrusion. The annular protrusion may be coupled to the base. The annular protrusion may include an inner annular width approximately similar to the orifice width and an inner annular length approximately similar to the orifice length.

Implementations may include one or more of the following features. The base of the ice deflector may include a sloped portion adapted to cover the one or more flanges of the housing. The base of the ice deflector may include a sloped portion coupled to an exterior surface of the annular protrusion. The base of the ice deflector may include a sloped portion. The sloped portion may slope approximately 30 degrees to approximately 60 degrees from an axis parallel to a top surface of the annular protrusion. The ice deflector may include one or more coupling members adapted to couple the ice deflector to the grate. In some implementations, the ice deflector may include one or more coupling members adapted to couple the ice deflector to at least a portion of the housing. The ice deflector may include a height of approximately 2 inches to approximately 3 inches.

In various implementations, a fan system may include a housing, a grate, and an ice deflector. The housing may include an orifice adapted to receive a fan. The orifice may include an orifice length and an orifice width. The housing may include a top surface that includes one or more flanges. The grate may be disposed proximate a top surface and may cover the orifice and at least a portion of one or more of the flanges. The ice deflector may include a base and an annular protrusion. The base may include a sloped portion and an annular protrusion, which is coupled to the base. The annular protrusion may include an inner annular width less than or approximately similar to the orifice width and an inner annular length less than or approximately similar to the orifice length.

Implementations may include one or more of the following features. The grate may be disposed between the ice deflector and a fan of the fan system. The ice deflector may be adapted to cover at least a portion of one or more of the flanges of the housing. The housing may include four corners and four flanges. Each flange may be disposed proximate a corner of the housing and the base may cover each of the flanges. In some implementations, a bottom portion of the ice deflector may have approximately the same shape and approximately the same dimension as a top surface of the housing. The bottom surface of the ice deflector may reside on a top surface of the grate. The ice deflector may include one or more protrusions extending from the base. The top surface of the housing may be disposed between one or more of the protrusions (e.g., when the ice deflector is coupled to and/or positioned on the housing). In some implementations, the ice deflector may include at least one coupling member to couple the ice deflector to the grate and/or the housing.

In various implementations, the fan system may include a housing, an ice deflector, and a grate. The housing may include an orifice, which is adapted to receive a fan. The orifice may include a top surface, which includes flange(s). The ice deflector may include a base and an annular protrusion coupled to the base. The base may include a sloped portion. The grate may be disposed between the housing and the ice deflector. The grate may cover the orifice and at least a portion of one or more of the flanges.

Implementations may include one or more of the following features. The annular protrusion of the ice deflector and the orifice of the housing may be disposed about a first axis through a center of a housing. The first axis may be perpendicular to a second axis parallel to a top surface of the ice deflector. The annular protrusion may include a ring-shaped protrusion. The housing may include one or more coupling members to couple the ice deflector to the housing. In some implementations, the ice deflector may include one or more coupling members to couple the ice deflector to the housing and/or the grate.

The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the implementations will be apparent from the description and drawings.

For a more complete understanding of this disclosure and its features, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:

FIG. 1A illustrates a cutaway side view of an implementation of an example portion of a fan system.

FIG. 1B illustrates a top view of an implementation of the example portion of the fan system illustrated in FIG. 1A.

FIG. 2A illustrates a cutaway side view of an implementation of an example portion a fan system.

FIG. 2B illustrates a top view of an implementation of the example portion of the fan system illustrated in FIG. 2A.

FIG. 3A illustrates a cutaway side view of an implementation of an example portion a fan system.

FIG. 3B illustrates a top view of an implementation of the example portion of the fan system illustrated in FIG. 3A.

FIG. 4A illustrates a cutaway side view of an implementation of an example portion an ice deflector.

FIG. 4B illustrates a top view of an implementation of the example portion of the ice deflector illustrated in FIG. 4A.

FIG. 4C illustrates a cutaway side view of an implementation of an example portion an ice deflector.

FIG. 5A illustrates a cutaway side view of an implementation of an example portion a fan system.

FIG. 5B illustrates a top view of an implementation of the example portion of the fan system illustrated in FIG. 5A.

Like reference symbols in the various drawings indicate like elements.

In various implementations, fan systems are utilized to provide a fluid flow (e.g., air flow) in a variety of applications, such as air conditioning (e.g., heat pump) and/or refrigeration. For example, fan systems may be utilized with outdoor and/or indoor coils in air conditioning systems. The fan systems may be utilized with heat exchangers in refrigeration units.

Fan systems may include a housing with an orifice, a fan disposed at least partially within the orifice, and a motor that drives the fan. The motor may cause blades of the fan to rotate and cause movement of the air proximate the fan blades. Thus, the movement of the fan blades may generate airflow through an opening in the orifice.

In some implementations, fan system, for example as part of an air conditioner, may be allowed to operate in conditions favorable for ice accumulation (e.g., moist and/or cold environment). Ice may accumulate on portions of the fan system (e.g., fan housing, grates, orifice, and/or fan).

Ice accumulation may be reduced, in some implementations, by utilizing the ice deflector. The ice deflector may inhibit precipitation (e.g., rain, sleet, freezing rain, ice) from accumulating on surfaces of the fan housing such as flanges and/or from dripping from flanges into an orifice of the fan system. The reduction of dripping of precipitation down the walls of the orifice of the fan system may inhibit ice bridge formation and/or ice accumulation on various other portions. For example, an ice bridge may form between an inner wall of the orifice and a tip of a fan blade, and the rotation of the fan may inhibit and/or break the ice bridge. One or more defrost operations may be allowed during ice conditions to reduce ice accumulation (e.g., reversing valve may be energized and/or de-energized to heat the outdoor coil).

FIG. 1A illustrates a cutaway side view of an implementation of an example portion 100 of a fan system. FIG. 1B illustrates a top view of an implementation of the example portion 100 of the fan system illustrated in FIG. 1A. As illustrated, the fan system includes a housing 105 and a fan 110. The housing 105 may have a width 106, a length 107, and a height 108. The housing 105 includes an orifice 115. The orifice may have a length 116, a width 117, and a height 118. The fan 110 may be disposed in the orifice 115. The size and/or shape of the housing and/or orifice may be any appropriate size and/or shape.

As illustrated the housing may include a top surface 120. The top surface may include one or more flanges 125. The flanges 125 may be coupled to the orifice 115. A flange 125 may be coupled to the orifice 115 such that if water, ice, etc. accumulates on a flange, it may drip, fall, and/or flow down a wall of the orifice. The top surface may be a recessed portion disposed between protrusion(s) 130 of the housing 105. For example, a recessed portion of the top surface 120 may be adapted to receive a grate. The recessed portion may include the flange(s). In some implementations, the flange(s) may include the corners and sides of the top surface that form the recessed portion.

FIG. 2A illustrates a cutaway side view of an implementation of an example portion 200 of a fan system with a grate. FIG. 2B illustrates a top view of an implementation of the example portion 200 of the fan system illustrated in FIG. 2A. As illustrated, a grate 205 may be disposed proximate a top surface 120 of the housing. The grate 205 may have a width 206, a length 207, and a height 208. The height 208 of the grate may be approximately similar to a height of a protrusion. The width 206 of the grate may be greater than an orifice width 116 and/or less than a width 106 of the housing. The length 208 of the grate may be greater than an orifice length 117 and/or less than a length 107 of the housing. For example, the grate may reside in the recessed portion of the top surface and/or rest on the flanges 125 of the top surface 120 of the housing 105.

In some implementations, the grate may be coupled (e.g., via coupling members such as bolts and/or screws) to the housing. For example, the flange may include an opening and a grate may include an opening and a coupling member such as a bolt may be disposed at least partially through the openings to couple the grate and the housing.

The fan system may include an ice deflector to inhibit ice formation on portions of the fan system. FIG. 3A illustrates a cutaway side view of an implementation of an example fan system 300 with an ice deflector. FIG. 3B illustrates a top view of an implementation of the fan system 300 illustrated in FIG. 3A. As illustrated, the fan system 300 includes an ice deflector 305 coupled to at least a portion of the of the fan system. The ice deflector 305 may be disposed above a top surface 120 of the housing 105 such that the grate 205 is disposed between at least a portion of the orifice 115 housing 105 and at least a portion of the ice deflector 305.

FIG. 4A illustrates a cutaway side view of an implementation of an example ice deflector 400. FIG. 4B illustrates a top view of an implementation of the example ice deflector 400 illustrated in FIG. 4A. As illustrated, the ice deflector 400 includes a width 401, a length 402, and a height 403. The width 401 of the ice deflector 400 may be approximately similar to a width 106 of a housing 105 and/or a width 206 of a grate 205. The length 402 of the ice deflector 400 may be approximately similar to the length 107 of the housing 105 and/or a length of a grate 205. The height of the ice deflector 400 may be approximately 2 inches to approximately 3 inches, in some implementations.

As illustrated, the ice deflector 400 includes a base 405 and an annular protrusion 410. The base may include sloped portions 415. For example, at least a portion of the base 405 may slope as the base extends radially from the annular protrusion 410. In some implementations, the sloped portion may extend from a top surface of the annular protrusion to the edge(s) of the base. The sloped portion 415 may be sloped at an angle 420. The angle 420 may be the angle formed between a first axis 425 parallel to the sloped portion and a second axis 430 parallel to a top surface of the ice deflector. At least a portion of the sloped portion 415 may be slanted and/or curved. The angle may be approximately 30 degrees to approximately 60 degrees.

In some implementations, at least a portion of the base (e.g., sloped portions) may cover at least a portion of the flanges 125 of the top surface 120 of the housing 105. By covering the flanges 125, ice and/or other precipitation may be inhibited from accumulating on the flanges of the housing. By inhibiting precipitation, such as ice from accumulating and/or dripping down into the orifice of the fan system, ice accumulation in the fan orifice and/or the fan may be inhibited. Inhibiting ice accumulation in the fan orifice and/or fan (e.g., blades of the fan) may inhibit wear on components, inhibit ice bridge formation, and/or increase user satisfaction (e.g., since fan may continue operation during an ice storm and/or since fan longevity may be maintained by inhibiting wear on components).

The annular protrusion 410 may be coupled to the base 405. The annular protrusion 410 may include any shape and/or size as appropriate. For example, the annular protrusion may be ring shaped. The inner surface of the annular protrusion 410 may have a width 411, a length 412, and a height. The annular protrusion 410 may have a width 411 that is less than or approximately similar to an orifice width 116. The annular protrusion 410 may have a length 412 that is less than or approximately similar to the orifice length 117. In some implementations, the annular protrusion 410 may have a shape and/or size similar to the orifice of the fan. Thus, an efficiency rating (e.g., IEER, integrated energy efficiency ratio; EER, energy efficiency ratio; SEER, seasonal energy efficiency ratio; and/or COP, coefficient of performance) may be maintained (e.g., when compared to the fan without the ice deflector).

An opening 440 may be formed by the annular protrusion 410 in the base 405 of the ice deflector 400. The opening 440 may have smaller or similar cross-sectional dimensions as the orifice of the housing 105 (e.g., width and/or length). For example, by allowing the opening cross-sectional dimensions to be smaller than or similar to the cross-sectional dimensions of the orifice (e.g., an inner surface of the orifice), precipitation may be inhibited from traveling down an inner wall of the annular protrusion to the flange and then to the inner wall of the orifice. When the annular protrusion and/or opening includes cross-sectional dimensions (e.g., width and/or length) that are smaller or similar to the cross-sectional dimensions (e.g., width and/or length) of the orifice (e.g., an inner surface of the orifice), precipitation may be allowed to fall into the orifice and strike a fan blade during operation. By allowing at least a portion of the precipitation to strike a fan blade, ice accumulation may be inhibited.

The ice deflector 400 may include a bottom surface 445 opposing to the top surface 435. The bottom surface 445 may be at least partially planar. The bottom surface may rest on the top surface of the grate 205.

In some implementations, the bottom surface may include curved portions. FIG. 4C illustrates a cutaway side view of an implementation of an example ice deflector 450 with a curved bottom surface 455. As illustrated, coupling members 460 may be coupled to at least a portion of the bottom portion 455. The annular protrusion 410 may extend past a coupling point with a base such that a bottom surface of the annular protrusion may rest on a grate surface during use.

As illustrated in FIG. 3A the ice deflector may include coupling members 310. The coupling members 310 may allow the ice deflector to be coupled to at least a portion of the housing 105 of the fan system. As illustrated, a coupling member 310 of an ice deflector 305 may couple the ice deflector to a grate 205 of the fan system. For example, the coupling member may include a clip that can removably couple with the grate. The coupling member may allow the ice deflector to be snapped into place and unsnapped for removal.

In some implementations, the housing 105 of the fan system may include coupling members to facilitate coupling the ice deflector to the housing. For example, the housing may include a recess adapted to receive a protrusion or clip of the ice deflector. The housing may include an opening and/or the ice deflector may include an opening and a fastener may be disposed through the opening(s) to couple the housing and the ice deflector. For example, a fastener may be disposed through an opening of the ice deflector and contact a surface of the housing to retain the ice deflector. In some implementations, a fastener, such as a bolt, may be disposed through an opening in the ice deflector and an opening in the housing and retained with a threaded nut.

In some implementations, the ice deflector may include protrusions that facilitate placement and/or retention of the ice deflector on the housing of the fan system. FIG. 5A illustrates a cutaway side view of an implementation of an example fan system 500. FIG. 5B illustrates a top view of an implementation of the example fan system 500 illustrated in Figure SA. As illustrated, the fan system 500 includes a fan housing 505, a fan 510, and an ice deflector 515. A grate 520 may be disposed between at least a portion of the ice deflector 515 and the fan 510. The fan 510 may be disposed in an orifice 525 of the housing 505.

As illustrated, the grate 520 may be disposed in a recessed portion 530 of a top surface of the housing. The grate 520 may rest and/or be coupled with the housing 505. The ice deflector 515 may be disposed such that it rests and/or at least partially contacts the grate 520. In some implementations, a gap or clearance may exist between the ice deflector 515 and the grate 520. At least a portion of the grate 520 may be covered by at least a portion of the base 535 of the ice deflector 515. The base 535 of the ice deflector 515 may cover one or more of the flanges or portions thereof in the recessed portion 530 of the housing. Covering at least a portion of one or more of the flanges may inhibit icing (e.g., when compared with using a fan system without an ice deflector). By at least partially covering a flange, ice accumulation on the flange may be inhibited and/or allowing precipitation to flow from the flange down the inner wall of the orifice may be inhibited (e.g., since the base may shield the flange from precipitation).

The sloped portions of the base 535 may direct fluid flow (e.g., precipitation) away from the annular protrusion and/or orifice. The sloped portions of the base 535 may direct fluid flow towards exterior surfaces 540 of the housing.

As illustrated, in some implementations, the ice deflector 515 may include protrusions 545. The protrusions 545 may be coupled to the base of the ice deflector. The protrusions 545 may extend from the base and form a recessed portion in a bottom surface of the ice deflector 515. A housing 105 of the fan system 500 may be disposed in the recessed portion of the base 535. For example, the housing 105 may be at least partially disposed between the protrusions of the ice deflector. In some implementations, the protrusions may form a second annular ring on an opposing side of the ice deflector and the housing may be disposed in the second annular ring. The size and/or shape of the recessed portion formed by the protrusions 545 (e.g., second annular ring) may be selected based on the size and/or shape of the exterior of the housing. For example, the size and/or shape of the ice deflector may be selected such that the width and length of the base is greater than a width and a length of the housing.

In some implementations, the protrusions of the ice deflector may include a coupling member. For example, the protrusion(s) may include openings through which a fastener may be disposed to couple the ice deflector to the housing (e.g., by disposing the fastener in an opening in the housing and/or by contacting the housing with an end of a fastener to retain the ice deflector on the housing).

In some implementations, the ice deflector may include installation guides to guide proper positioning of the annular protrusion above the orifice. For example, the installation guide may be a protrusion adapted to extend in an opposing direction as the annular protrusion and be disposed in the office. During installation, a user may position the installation guide(s) in the orifice to ensure proper positioning. For example, two opposing protrusions may be spaced such that at least one may contact an inner surface of the orifice. In some implementations, the installation guides may include recesses (e.g., grooves) in the housing. During installation, a user may position the edges of the ice deflector in the installation guides to ensure proper positioning.

In some implementations, the ice deflection may include installation guides, such as openings (e.g., an opening proximate each corner of the ice deflector). The housing may include openings that align with the openings in the ice deflector, when properly positioned. A fastener (e.g., screw) may be disposed at least partially through the openings in the ice deflector and openings of the housing to ensure proper positioning.

In some implementations, the ice deflector may be removably coupled to the housing and/or grate of the fan system.

The ice deflector may be installed at a factory and/or field installed (e.g., by a field technician and/or by a homeowner on a fan of an air conditioner). For example, a fan system may be coupled with an ice deflector prior to installation at a site. In some implementations, a user may snap on an ice deflector to an existing fan system. For example, a retrofit kit may be available for existing fan systems.

A retrofit kit may include an ice deflector and/or fasteners. For example, the retrofit kit may include an ice deflector that is coupleable to a range of sizes of existing fan systems (e.g., exterior housing sizes and/or interior orifice size). The user may select the appropriate retrofit kit and couple the ice deflector to a grate of the fan system, for example with fasteners, such as clips. In some implementations, the retrofit kit may include an ice deflector with a base that includes an expandable portion. The expandable portion may allow the ice deflector to expand to cover a wider range of fan system sizes. For example, the expandable portion may include an accordion folded plastic. The accordion folded plastic of the base may expand to fit the exterior of a user's fan system housing. The base may include protrusions and the housing may be disposed between the protrusions. By utilizing an expandable portion, the ice deflector may be selected for orifice size and stretched or contracted to fit a range of housing sizes.

In various implementations, an ice deflector may be disposed proximate a grate of a fan system. The ice deflector may be disposed such that a grate of the fan system may be disposed between the ice deflector and a fan and/or at least a portion of the orifice of the fan system.

The opening formed by the annular protrusion of the ice deflector may be positioned. For example, the opening may be aligned with the orifice of the fan system. In some implementations, a center of the opening and the center of the orifice may be disposed on the same first axis. The first axis may be approximately perpendicular to a top surface of the ice deflector.

At least a portion of the ice deflector may be coupled to at least a portion of the fan system. For example, the ice deflector and/or the housing may include coupling members. In some implementations, the ice deflector and the housing may be coupled using a hinged coupler. For example, the ice deflector and the housing may include coupling members that when aligned and secured with a fastener form a hinge. The ice deflector may then be rotated up along the rotation of the hinge to allow access to the orifice. The grate may be removed from the housing prior to accessing the orifice and/or fan. The ice deflector may include a clip that fastens to the grate, in some implementations. In some implementations, the air conditioner may include a recess in which at least a portion of the ice deflector (e.g., a protrusion of the ice deflector) may be retained. The exterior surface of the housing may be frictionally fit between protrusions that extend from a base of the ice deflector.

Ice accumulation may be inhibited from forming on at least a portion of the fan system. For example, ice accumulation may be inhibited from forming on at least a portion of the flange, grate, orifice, and/or fan by coupling the ice deflector and the fan system. In some implementations, ice bridge formation may be inhibited by allowing the ice deflector to be coupled to the fan system.

The ice deflector may be removed from the fan system. The ice deflector and the fan system may be uncoupled and/or the ice deflector may be removed, in some implementations. For example, the ice deflector may be unsnapped from a grate and/or unscrewed from a housing of the fan system.

Once the ice deflector has been removed, access to the grate, orifice, and/or fan may be allowed (e.g., for maintenance; for problem solving; since the probability of icing events has been reduced below a predetermined level, such as in the summer; and/or for any other appropriate purpose). For example, to allow access to the fan, the ice deflector may be removed and then the grate may be removed. Thus, a user may access the orifice and/or the fan.

In some implementations, during use of a fan system with an ice deflector, an efficiency rating may be maintained (e.g., a reduction in efficiency, such as IEER, may be inhibited).

Although FIGS. 1A-5B illustrate various implementations of fan systems, features from systems such as system 100 may be combined with the one or more of the features from other systems, such as system 200, 300, 400, 450, and/or 500. In addition, various features may be added, deleted, and/or modified. For example, other implementations of housings and/or grates may be utilized. For example, an orifice of a housing may be oval. In some implementations, the grates may include other types of appropriate grate shapes and/or patterns of intersection. In some implementations, the housing may be oriented differently. For example, the housing may be disposed on its side and the top surface of the ice deflector may be oriented vertically.

In various implementations, portions of the fan system may be coupled. For example, the motor may be coupled to the fan. The fan may be disposed and/or coupled at least partially in the orifice at one or more predetermined positions.

The fan system may be coupled to at least a portion of an air conditioner (e.g., in a housing of an outdoor coil). The air conditioner may be allowed to operate utilizing the fan system.

Although fan systems in heat pump air conditioning systems have been described, the fan systems may be utilized in other appropriate applications, such as other air conditioning systems and/or refrigeration systems.

Although certain fan shapes are illustrated, other fan shapes and/or configurations may be utilized as appropriate.

In various implementations, references to a top, a side, and/or a bottom are to indicate relative locations and not orientation in an application. For example, the top surface of the fan system may be oriented in a sideways manner in a heat pump. In some implementations, the bottom surface of the fan may be oriented towards the top of a unit containing the fan system.

It is to be understood that the implementations are not limited to particular systems or processes described which may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular implementations only, and is not intended to be limiting. As used in this specification, the singular forms “a”, “an” and “the” include plural referents unless the content clearly indicates otherwise. Thus, for example, reference to “fan” includes a combination of two or more fans and reference to “grate” includes different types and/or combinations of grates. As another example, “coupling” includes direct and/or indirect coupling of members.

Although the present disclosure has been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

McHugh, Chris, Crawford, Carl T.

Patent Priority Assignee Title
Patent Priority Assignee Title
1121542,
2561592,
4252547, Feb 15 1979 Gas cleaning unit
4385911, Jan 22 1982 Ronco Acquisition Corporation Air filtering device
5433661, Dec 30 1991 Samsung Electronics Co., Ltd. Air flow direction adjusting apparatus
6464579, Jun 01 2001 Rotatable air vent
7908879, Nov 03 2009 Multifunctional ceiling air-conditioning circulation machine
8357031, Sep 29 2008 Outdoor air conditioner cover assembly
9175874, Sep 10 2010 Chien Luen Industries Co., Ltd., Inc.; CHIEN LUEN INDUSTRIES CO , LTD , INC 70 CFM bath ventilation fans with flush mount lights and motor beneath blower wheel
20030217563,
20070125593,
20080170940,
20090053990,
20090317239,
20100081371,
20100319380,
20120047931,
CA2577154,
CA2754514,
CN2835859,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 21 2013CRAWFORD, CARL T LENNOX INDUSTRIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0464340948 pdf
Nov 21 2013MCHUGH, CHRISLENNOX INDUSTRIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0464340948 pdf
Nov 10 2017Lennox Industries, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 10 2017BIG: Entity status set to Undiscounted (note the period is included in the code).
Jun 30 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Dec 31 20224 years fee payment window open
Jul 01 20236 months grace period start (w surcharge)
Dec 31 2023patent expiry (for year 4)
Dec 31 20252 years to revive unintentionally abandoned end. (for year 4)
Dec 31 20268 years fee payment window open
Jul 01 20276 months grace period start (w surcharge)
Dec 31 2027patent expiry (for year 8)
Dec 31 20292 years to revive unintentionally abandoned end. (for year 8)
Dec 31 203012 years fee payment window open
Jul 01 20316 months grace period start (w surcharge)
Dec 31 2031patent expiry (for year 12)
Dec 31 20332 years to revive unintentionally abandoned end. (for year 12)