Provided is an apparatus and method for a digital power supply that can provide independent power control, and control variable power, for two or more electrical loads. Disclosed embodiments may reduce the magnitude of harmonic currents and/or flicker introduced into a power system. Embodiments include a microprocessor that delivers power to electric loads using phase-controlled AC current. The microprocessor may calculate a power array corresponding to a requested power for each electric load. Logic is provided for populating the power array in a pattern that reduces the magnitude of harmonic currents and flicker.
|
1. A method of delivering power, comprising the steps of:
using one or more user input devices to select a first and second power setting for a first and second heating element, respectively;
electronically communicating the power settings to a microprocessor and using the microprocessor to calculate a total amount of power requested;
using the microprocessor to populate, and store in a memory, a first and second power array corresponding to the first and second heating element, respectively;
using the microprocessor to calculate a first and second phase angle array corresponding to the first and second power array;
causing the microprocessor to receive a zero crossing signal from a zero crossing detection unit; and
for a first time period, activating a first triac to deliver a phase-controlled AC wave pattern comprising phase-controlled AC wave cycles corresponding to the first phase angle array to the first heating element and delivering a phase-controlled AC wave pattern comprising phase-controlled AC wave cycles corresponding to the second phase angle array to the second heating element.
2. The method of
for a second time period, activating a second triac to deliver a phase-controlled AC wave pattern represented by the first phase angle array to the second heating element and delivering a phase controlled AC wave pattern represented by the second phase angle array to the first heating element.
4. The method of
populating a first cell of the first power array with the same value as a third cell of the first power array;
populating a second cell of the first power array with the same value as a fourth cell of the first power array;
populating a first cell of the second power array with the same value as a third cell of the second power array; and
populating a second cell of the second power array with the same value as a fourth cell of the second power array.
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
|
The present inventions relate to a digital power supply for independently controlling two or more high-powered loads with reduced harmonic and flicker introduction. In a non-limiting embodiment, a digital power supply may be used in an electric grill to independently control two or more heating elements while reducing harmonics and flicker introduced to the power system.
There is an increasing desire for a power supply that can independently control two or more high-powered loads using an AC wall outlet while introducing a reduced amount of harmonics and/or flicker into the power grid. The urban population is increasing, and with it there is an increasing desire for high powered loads that can be plugged into an AC wall outlet. By way of example, urban dwellers live in apartment or condominium buildings where they would like to use a grill. Because of smoke, gas, or other concerns, use of typical charcoal or gas grills may not be permitted or desirable.
There are a number of available electric cooking devices, such as the George Foreman Plate Grill (and similar devices), Panini presses, electric griddles and the like. However, these prior art devices generally do not deliver variable power. Moreover, these prior art electric cooking devices typically cannot generate enough power to match a gas or electric grill.
Some prior art devices may use variable resistors in series with electric loads to control an amount of power delivered to the load. For example, as the resistance of a variable resistor increases, the variable resistor restricts power from being delivered to an electric load. The use of variable resistors to control power delivery to electric loads is well known. But variable resistors come with disadvantages. For example, disadvantages may include the introduction of harmonics onto the electrical system, which translates to electromagnetic emissions that can create interference and other unpredictable electromagnetic fields. Moreover, variable resistors may be inefficient because they burn a lot of power.
Other prior art devices may use a bi-metal thermometer which opens and closes to control power delivery. Disadvantages of using a bi-metal thermometer include the fact that it allows for less discrete (i.e., less precise) control over power delivered and is usually associated with a relatively long lag in response time. A long lag time causes a negative cooking experience because it leads to poor control over temperature. Moreover, a long lag time is disadvantageous because long on/off duty cycles are known to shorten the life span of a heating element
Some devices may use half-wave control techniques to deliver power. For example, U.S. Pat. No. 6,772,475, titled “Heating Control System Which Minimizes AC Power Line Voltage Fluctuations,” discloses half wave AC control devices to control delivery of AC current. This control method is associated with significant disadvantages because it delivers power only in stages, not in a continuous range from 0-100%. By contrast, embodiments of the present invention allow continuous variable power delivery.
Yet other prior art devices may include a digital control for limiting the in-rush of electric current when an electric load in turned on. For example, U.S. Pat. No. 6,111,230, titled “Method and apparatus for supplying AC power while meeting the European flicker and harmonic requirements,” describes a method for limiting the in-rush of current to a printing device when it is first turned on. However, the disclosed devices do not provide for independently controlling multiple electric loads, much less for reducing harmonic currents and flicker while independently controlling multiple loads.
Thus, there is a need for a digital power supply that can independently control two or more electric loads while introducing only reduced harmonic and flicker interference to the power system.
The present inventions overcome many of the deficiencies of known power supplies and provide new features and advantages for devices such as electric grills. For example, embodiments of the present invention provide digital power controls that can deliver more precise amounts of power to electric loads. Moreover, embodiments of the present invention allow a plurality of electric loads to be controlled independently. Yet further embodiments of the present invention reduce the harmonic currents and flicker that may result from plugging a power supply into a wall outlet.
In accordance with a preferred embodiment of the present invention, a method of delivering power is provided. The method may include the steps of using one or more user input devices to select a first and second power setting for a first and second heating element, respectively; electronically communicating the power settings to a microprocessor and using the microprocessor to calculate a total amount of power requested; using the microprocessor to populate a first and second power array corresponding to the first and second heating element, respectively; using the microprocessor to calculate a first and second phase angle array corresponding to the first and second power array; causing the microprocessor to receive a zero crossing signal from a zero crossing detection unit; and for a first time period, delivering a phase-controlled AC wave pattern represented by the first phase angle array to the first heating element and delivering a phase-controlled AC wave pattern represented by the second phase angle array to the second heating clement. Additional embodiments of the inventions comprise the step of, for a second time period, delivering a phase-controlled AC wave pattern represented by the first phase angle array to the second heating element and delivering a phase controlled AC wave pattern represented by the second phase angle array to the first heating element.
Further, each power array may contain four cells. Additionally, the step of using the microprocessor to populate a first and second power array may further comprise the steps of populating the first cell of the first power array with the same value as the third cell of the first power array; populating the second cell of the first power array with the same value as the fourth cell of the first power array; populating the first cell of the second power array with the same value as the third cell of the second power array; and populating the second cell of the second power array with the same value as the fourth cell of the second power array.
In embodiments of the inventions, each cell of each power array represents a power percentage and ranges from 0≤x≤1.0. Every alternate cell in the first power array may be populated with a “0” or a “1”. Moreover, every alternate cell in the second power array may be populated with a “0” or a “1”. In some embodiments of the inventions, the first and second phase angle arrays are calculated using the microprocessor to apply the equation angle=arccos(2x−1) to the first and second power array, respectively. In further embodiments, the first time period is calculated as a ratio of the first power setting to the total amount of power requested and the second time period is calculated as a ratio of the second power setting to the total amount of power requested. Further, embodiments may include the step of activating a triac connected to a heating element.
Also provided are embodiments of a digital power supply, having a first and second user input; a first and second triac connected to a voltage line; a first and second triac driver respectively in communication with the first and second triac; a microprocessor in communication with the first and second triac drivers and in communication with the first and second user input; wherein the microprocessor is specifically configured to calculate a total power requested by the first and second user inputs and to populate a first and second power array based on the total power requested; and wherein the microprocessor is specifically configured to calculate a first and second array of phase angles based on the respective values of the first and second power array.
In embodiments of the invention the first and second power array each have four cells. The microprocessor may be specifically configured to populate at least one power array's cells with two alternating values. In further embodiments, the microprocessor may be configured turn on the first and second triacs in a timing pattern that corresponds to a phase-controlled wave form in the first and second phase angle arrays.
Still further embodiments include an electric grill, having a first knob, a second knob, and a display mounted on a housing; a power cable connected to a voltage line and a neutral line; a first and second heating element inside the housing, the first and second heating elements being connected to the voltage line and the neutral line; a first and second triac connected between the voltage line and the first and second heating elements respectively; a first and second triac driver respectively in communication with the first and second heating elements; a zero crossing detection unit configured to detect zero crossings of AC current in the voltage line; and a microprocessor in communication with the first and second knob, the first and second triac drivers, and the zero crossing detection unit, wherein the microprocessor further communicates with a clock signal generator and a memory.
Moreover, in some embodiments the memory contains a first and second power array. The first power array may be populated with two alternating values. The second power array may be populated with two alternating values. One of the two alternating values in the first power array may represent a full “on” wave. In yet further embodiments, one of the two alternating values in the first power array may represent a full “off” wave.
Accordingly, it is an object of the present invention to provide a digital power supply that provides precise power control, may independently control multiple loads, and may reduce harmonic currents and flicker introduced by the power supply into a wall outlet.
Another object of the invention is to provide an improved power supply, including but not limited to one that may be used with an electric grill.
It is an additional object of the invention to provide a digital power supply that can be used in an electric grill to provide independent control over two or more heating elements.
It is an additional object of the invention to provide a digital power supply that introduces fewer harmonic currents into a wall outlet.
It is an additional object of the invention to provide a digital power supply that introduces less flicker into a wall outlet.
It is an additional object of the invention to provide a digital power supply for use in an electric grill that complies with standard limits and/or regulations on harmonic currents and flicker.
It is an additional object of the invention to provide a digital power supply for use in an electric grill to deliver variable power to two or more heating elements.
It is an additional object of the invention to provide a digital power supply that uses phase cutting techniques to deliver variable power.
It is an additional object of the invention to provide a digital power supply that delivers continuous variable power in a range of 0-100%.
It is an additional object of the invention to improve a heating element's life span by providing short duty cycles.
The following terms which may be used in the various claims or specifications of this patent are intended to have their broadest meaning consistent with the requirement of law:
As used herein, a “power array” is defined to be an array of values, each value representing a percentage (0.0≤x≤1.0) of power delivery in one wave cycle. Exemplary power arrays are described as having four cells, but it should be understood that arrays of other sizes are possible.
As used herein, a “phase angle array” is defined to be an array of values, each value representing the phase angle “cut” in one wave cycle. Exemplary phase angle arrays have four cells, but it should be understood that arrays of other sizes are possible.
As used herein, a “timing pattern” is defined to be a pattern of “on” and “off” signals that create phase-controlled AC wave forms.
Where alternative meanings are possible, in either the specifications of claims, the broadest meaning is intended consistent with the understanding of a person of ordinary skill in the art. All of the words used in the claims are intended to the use in the normal, customary usage of grammar, the trade and the English language.
Set forth below is a description of what is currently believed to be the preferred embodiments or best representative examples of the inventions claimed. Future and present representative or modifications to the embodiments and preferred embodiments are contemplated. Any alterations or modifications which make insubstantial changes in function, purpose, structure or result are intended to be covered by the claims of this patent. The present inventions may be used on and/or part of electric grills with current protection circuitry as discussed in the co-pending patent application entitled “Electric Grill With Current Protection Circuitry” filed by Applicants on the same day as this application and assigned to Weber-Stephen Products LLC, and which is incorporated herein by reference in its entirety.
The present inventions generally include a digital power supply that can provide independent power control, and continuous variable power, for two or more electrical loads. Embodiments of the present inventions may reduce the amount of harmonics and/or flicker introduced into a power system. A person of ordinary skill in the art would recognize that the digital power supply may be used to supply any electrical load or combinations of loads, including heaters, motors, and the like. In a preferred embodiment described herein, exemplary loads are heating elements found in an electric grill.
Electric grills are a suitable application for a digital power supply with independent load control because a user may wish to have higher heat on one side of an electric grill and lower heat on the other side of the grill. Such an arrangement allows a user to simultaneously grill various foods requiring different temperatures, or to use indirect grilling methods. Examples of indirect grilling methods include placing foods on one side of a cooking surface while heating another side, thereby avoiding direct contact between the food and the heat source. A further benefit of variable power is that it allows a user to input a power setting and achieve targeted temperatures. This makes it possible to cook at low temperatures for prolonged periods of time.
Referring now to the drawings,
As shown in
Using knobs 101 and 102, or any other input device such as a touch screen or buttons, a user may select an operating mode for each heating element 203 and 204. The operating mode may include a desired temperature or power setting for the heating element. Microprocessor 213, described in further detail herein, controls the electric current delivered to heating elements 203 and 204 in order to deliver the selected power. Microprocessor 213 can achieve a desired temperature for each heating element 203 and 204 using a feedback loop in which it receives a current temperature reading from thermocouples 221 and 222, which are proximally positioned by respective heating elements 203 and 204. A person of ordinary skill in the art would recognize that various types and numbers of knobs, heating elements, temperature sensors and/or displays may be used.
The electric grill 110 may optionally include a display 103 or other user interface. In one example the display 103 may be connected to microprocessor 213 and display information relating to the current settings or operation of one or more of the heating elements 203, 204. For example, the display 103 may show the current temperature in the proximity of heating elements 203 and 204 (as measured by thermocouples 221 and 222), as well as the desired temperature or power setting a user has selected via knobs 101 and/or 102.
Turning now to
As shown in the embodiment of
Specifically, triacs 208 and 209 turn “on” when they are triggered by a pulse from microprocessor 213. Current continues to flow until an AC current wave crosses zero. After a zero crossing, a triac turns off and remains off until the next time microprocessor 213 turns it on. In an example where AC current is 60 Hz, such as a typical wall outlet, a zero crossing occurs every 1/120th of a second. A zero crossing detection unit 210 is provided to communicate a signal to microprocessor 213 each time an AC wave crosses zero. Using this signal, microprocessor 213 can synchronize its timing to the alternating current's zero crossings.
Instead of permitting direct communication between microprocessor 213 and triacs 208 and 209, triac drivers 211 and 212 are used to interface between microprocessor 213 and triacs 208 and 209. Triac drivers can control a high voltage triac with a low voltage DC source (such as a microprocessor) (
An “on” triac allows current to flow through it, whereas an “off” triac does not allow current to flow. Thus, an “on” triac 208 permits AC current to flow (from voltage line 201) through first heating element 203 and an “on” triac 209 permits AC current to flow (from voltage line 201) through second heating element 204. To say that microprocessor 213 delivers power to a heating element 203 and/or 204 implies that microprocessor 213 enables the respective triac driver, which turns the relevant triac “on” and allows AC current to flow from line 201. Throughout this disclosure, it should be understood that references to microprocessor 213 delivering power to a heating element mean that microprocessor 213 is activating a given heating element's triac Driver via an “on” or “enable” pulse signal.
As a person of ordinary skill would understand, triacs are three electrode devices, or triodes, that conduct alternating current. Triacs are a type of solid state bidirectional switch. Although this disclosure describes a digital power supply that uses triacs, it should be understood that any solid state bidirectional switch may be used instead of a triac. Heating elements 203 and 204 may be resistive heaters which increase in temperature as more current passes through them. Exemplary heating elements may draw 1150 Watts. Other heating elements 203, 204 may also be used as will be understood by those of skill in the art.
In embodiments of the invention, microprocessor 213 may optionally receive temperature feedback from one or more thermocouples 221 and 222 located proximately to each heating element 203 and 204 in order to recognize when a desired temperature has been achieved.
Turning next to the operation of microprocessor 213, microprocessor 213 may be configured to deliver an appropriate amount of power (as selected by the user) by toggling triacs 208 and 209 between “on” and “off.” As described above, an enabled (or “on”) triac 208 or 209 allows AC current to flow from line 201 through heating elements 203 or 204, respectively. Therefore it follows that a longer “on” period allows more AC current to flow and therefore delivers more power. Conversely, a longer “off” period results in lower power delivery.
In embodiments of the invention, microprocessor 213 may use phase angle control techniques to create a pattern of toggling between “on” and “off.” The control pattern created by toggling between “on” and “off” controls the phase angle of AC current (and by extension, power) flowing from voltage line 201 through heating elements 203 and 204. This type of control pattern is sometimes referred to as “phase cutting,” because AC current's wave forms may be “cut” off. Waves are cut by disabling the flow of current during part of an AC wave cycle. In this way, part of the wave becomes “cut” off. The timing pattern of “on” and “off” creates a phase-controlled wave. To determine the correct angle at which to cut a wave for a desired power delivery, microprocessor 213 solves the equation:
(angle)=arccos(2x−1)
where x is the desired powder delivery (expressed as a percentage: 0.0≤x≤1.0). Microprocessor 213 is programmed to solve for the angle at which to cut the AC sine wave delivered to heating elements 203 and 204. This disclosure refers to angles in “degrees,” but a person of skill in the art would understand that every angle measurement may be converted into the unit “radians.”
An example is provided in
In sum,
Turning now to
Therefore, embodiments of the inventions include a microprocessor 213 specially configured to deliver power to electric loads using wave cuts that induce harmonic currents having reduced magnitudes. As an initial matter, Applicants' testing has shown harmonic currents' magnitudes are reduced when a wave cut is immediately followed by a full wave cycle “on” or a full wave cycle “off,” Applicants' test results are shown in
Therefore, embodiments of the inventions include a microprocessor 213 specifically configured to follow a cut wave with either a full “on” or a full “off” wave. Moreover, microprocessor 213 may be specifically configured to draw current in a pattern that reduces harmonic currents while still managing to split the drawn current among two independent heating elements 203, 204. In other words, microprocessor 213 must manage the pattern of the overall current drawn by the electric grill 110 while simultaneously satisfying the power requirements of both independent heating elements 203, 204. The pattern of the overall current drawn by electric grill 110 may be referred to as the electric grill 110's total power array. The electric grill 110's total power array is the sum of the first heating element 203's power array plus the second heating element 204's power array. An exemplary power array may be four cells, each cell containing a value (0.0≤x≤1.0) representing a percentage of power to deliver in a wave form. Thus, an exemplary power array may represent a pattern of four waves. It will be understood that the total power (or, current) drawn by electric grill 110 is the sum of the power (current) drawn by the heating elements. The wave form patterns delivered to the heating elements 203, 204 may likewise be represented as four-celled power arrays. The first heating element's power array summed with the second heating element's power array equals the electric grills total power array. The same holds true for any number of heating elements in an electric grill 110. The electric grill 110's harmonic currents depend on the pattern of waves drawn by the electric grill 110, represented in the total power array. To reduce harmonic currents, electric grill 110's total power array should represent a pattern where each “cut” wave is followed by a full “on” or a full “off” cycle.
Addressing
At 605, where a user's selected total power is less than 50%, microprocessor 213 begins filling (or, “populating”) the cells of the first power array.
Again by reference to
Power is delivered by microprocessor 213 to a triac driver based on the values in the four cell power arrays. As described above, each cell represents one full wave cycle, and the cell's numeric value represents the percentage of power to deliver in that wave cycle. As also described above, embodiments of the inventions may use phase cutting techniques to control power. Thus, at step 609, microprocessor 213 is configured to calculate the phase angle at which to “cut” a wave in order to achieve the power represented by a cell in a power array. Microprocessor 213 is configured to solve the equation:
(angle)=arccos(2*power−1),
where “power” is the power represented by a number in a power array's cell. Microprocessor 213 uses this angle to deliver a wave cycle having power that corresponds to the cell's numeric value. The calculation may be repeated for each cell in each power array. Each cell of each power array may be converted into a corresponding phase angle 610 and 611. The corresponding phase angle arrays contain phase angles, rather than power percentages, and may be stored in the same format at the power arrays.
At step 614, microprocessor 213 may synchronize its timing to the phase angle of AC current in line 201. As described above, microprocessor 213 receives a zero crossing signal from zero crossing detection 210 each time the AC current crosses zero from zero crossing detection unit 210. The zero crossing signal can thus synchronize microprocessor 213's timing (and therefore by extension, the angle) of an AC wave. For example, a person of skill in the art would then recognize that a wave of AC current has the following angles at the indicated points in time:
TABLE 1
Desired phase
60 Hz AC current: Time
angle “cut”
(where zero crossing is t = 0)
0°
0 seconds
10°
0.000462963 seconds
20°
0.000925926 seconds
30°
0.001388889 seconds
40°
0.001851852 seconds
50°
0.002314815 seconds
60°
0.002777778 seconds
70°
0.003240741 seconds
80°
0.003703704 seconds
90°
0.004166667 seconds
Using this information, microprocessor 213 may use an internal timing mechanism, such as a clock signal generator or any other appropriate mechanism, to send the “on” or “enable” pulse at an instance corresponding to the angle required for the correct “cut.” For example, Table 1 shows that a 90 degree cut would be made by activating a triac 0.00416666 seconds after a zero crossing. Microprocessor 213 may use a clock signal to enable a triac at the appropriate point in time. A person of skill in the art reading this disclosure would understand how to calculate the timing for any desired wave “cut.”
Turning now to steps 612 and 613, the first power array is delivered to the first triac driver 211 and the second power array is delivered to the second triac driver 212 for a period of time equal to T1. This power delivery continues repeatedly for a first time period T1, after which microprocessor 213 delivers the first power array to the second triac driver 211 and delivers the second power array to the first triac driver 212 repeatedly for a second time period T2. After T1, delivery is “flipped” and the first triac driver 211 receives the second power array for duration of T2. The first and second power array, summed together, equal the electric grill 110's total power array—thus, by definition, the first and second power array must always be delivered simultaneously.
The discussion now turns to the calculation of time periods T1 and T2 at 615 and 616. The purpose of time periods T1 and T2 is to “split,” or pro-rate, the total power drawn by the electric grill (or any other device using embodiments of the invention) between the two heating elements (or any other electric load) according to the independently selected power for each respective heating element. The power arrays created at steps 605 through 608 create an acceptable wave pattern for the electric grill as a whole. The sum of the power arrays, which is the electric grill 110's total power array, will have a full “on” or full “off” wave following each cut wave, which reduces the magnitude of harmonic currents. It is additionally necessary to calculate the delivery time of each power array to the respective heating elements 203, 204.
The time period T1 is calculated by taking the power setting for the first heating element 203 and dividing it by the total power selected, 603. That ratio is then multiplied by the power delivery phase, which is 2 seconds in this example but may be varied, T1 and T2 are simple ratios of a given heating element's power setting compared to the total requested power. The calculation may be summarized by the following equation:
T1=2 seconds*(power selection for first heating element)/((power selection for first heating element)+(power selection for second heating element)).
Similarly, T2 is the same calculation, this time for the second heating element 204;
T2=2 seconds*(power selection for second heating element)/((power selection for first heating element)+(power selection for second heating element)).
Embodiments of the present invention may be scaled to independently deliver power to more than two loads. In an embodiment where a digital power supply independently controls “n” number of loads, n power arrays are required. Moreover, the decision at 604 would compare the total power to 100%/n. The technique for filling the power arrays of
The present inventions also provide methods for independently controlling two heating elements and providing variable power while providing reduced harmonic currents and flicker. In an embodiment of the invention, a user activates electric grill 110 and selects a first and second power level, for example by controlling knobs 101 and 102. By activating an electric grill 110, a user controls microprocessor 213 to execute the following steps for the benefit of controlling one or more heating elements. It is understood that some embodiments may include any number of knobs or other user inputs. By activating the electric grill 110, a user turns on microprocessor 213. Microprocessor 213 receives the user's selected power settings and performs the above-described calculations to activate triac drivers 211 and 212 in a control pattern that delivers phase-controlled wave forms to heating elements 203 and 204.
In embodiments of the invention, microprocessor 213 performs the step of calculating the appropriate phase controlled wave forms by populating two power arrays 605-608. Each power array may have four cells. Each cell contains a number “n,” where 0.0≤n≤1.0. The number “n” represents a wave form having “n”-percentage of power. The waves are cut to eliminate “excess” power. Microprocessor 213 performs the step of filling in the power arrays by calculating the total power requested by all heating elements 203, 204, which may be expressed as a percentage of selected power as compared overall available power (in decimal form).
If the total power requested (i.e. the total requested power for all heating elements) by the user is less than 50% of the overall available power, microprocessor 213 performs the step of filling in the first power array (605). The power array is populated by distributing the total power number into the power arrays four cells. At 606, microprocessor 213 performs the step of filling all zeros into the second power array (i.e. “0000”). If the total power requested by the user is greater than, or equal to, 50% of the overall power, microprocessor 213 performs the steps of fillings the first power array with 1's (i.e. “1|1|1|1”) and the second power array is filled (with Total Power—50%, i.e. [702] minus 4) according to the steps of
Once the first and second power array are calculated, microprocessor 213 delivers wave forms corresponding to the cells of each power array. In particular, each cell's value represents the percentage of power to deliver in one wave cycle. To deliver a wave having any given percentage of power, microprocessor 213 calculates a phase angle=arccos(2*x−1), where x is the power percentage described in any given cell. Microprocessor 213 uses the calculated angle to deliver an “on” signal to triac Drivers 211 or 212 at a point in time corresponding to the calculated phase angle. Microprocessor 213 may use a zero crossing signal and the above-described Table 1 to determine the correct timing.
Microprocessor 213 repeatedly delivers the first power array to the first triac driver 211 and the second power array to the second triac driver 212 for a time period T1. After T1 has passed, microprocessor 213 “flips” the first and second power array for a time period T2. In other words, as seen in
Microprocessor 213 performs the step of calculating T1 and T2 as:
T1=2 seconds*(First heater total power/Combined heater total power)
T2=2 seconds*(Second heater total power/Combined heater total power).
Mathematically, it follows that the power delivery phase of T1+T2=2 seconds.
In this way, the power arrays are delivered for a combined power delivery phase of 2 seconds. It is contemplated that longer or shorter power delivery phases may be used. After 2 seconds, microprocessor 213 may re-calculate the power arrays. By re-calculating the power arrays, microprocessor 213 may account for a change in user settings, or to switch from raising a heating element's temperature to maintaining a temperature.
An operating example applying the devices and methods described above is provided. For example, a user may wish to use the grill 110 with different power levels for the first and second heating elements 203 and 204—for instance, microprocessor 213 may determine that a first heating element 203 should have 17.5% of its maximum power, and a second heating element 204 should have only 5% of its maximum power. In accordance with the embodiments described herein, microprocessor 213 is configured to deliver 17.5% and 5% power, respectively, while drawing power in a pattern that reduces the harmonic currents introduced by the electric grill into the AC wall outlet.
In this example, the first and second power arrays are calculated as follows: the first and second selected power levels are combined to arrive at a total selected power: 17.5%+5%=22.5%, or 0.225 (See 603). Because this is less than 50%, microprocessor 213 proceeds with step 605. Using the techniques described herein, microprocessor 213 multiplies by eight (8) to arrive at 0.225*8=1.8. Next, microprocessor 213 fills the value 1.8 into the first power array. In particular, the first cell and third cells receive the value of (1.8)/2=0.9. The second and fourth cells remain “0.” Thus, the first power array is “0.9|0|0.9|0” and the second power array is “0|0|0|0.”
For a time period T1, the first power array is delivered to the first triac driver 211 and the second power array is simultaneously delivered to the second triac driver 212. In delivering the first and second power array, microprocessor 213 sends an “on” signal to the respective triac driver 211 and/or 212 at a time that corresponds to the “cut” of the wave. For example, the first power array's first cell dictates that a 90% power wave (i.e. 0.9) is delivered. A 90% power wave requires a “cut” angle of arccos (2*9−1)=36.86°. Microprocessor 213 delivers a 90% power wave by turning triac driver 211 “on” at 36.86°. Similar to the values of Table 1, a 36.86° cut can be made by delivering power 0.0017 seconds after a zero crossing. Subsequently, the second cell dictates that an “off” wave having 0% is delivered. The third wave is the same as the first wave, i.e. cut at 36.86°, and the fourth wave is the same as the second wave, i.e. “off.” The second power array in this example is “0|0|0|0,” thus the second triac driver 212 is never activated.
This delivery pattern is continued for a time period T1 as described at 612 and 613. Here, T1 is calculated as T1=2 seconds*(First heater total power/Combined heater total power)=2*(0.175/0.225)=2*0.78=1.56 seconds. Similarly, T2=2*(0.05/0.225)=0.44 seconds. In this example, the first power array (“0.9|0|0.9|0”) is delivered to the first heating element 203 and the second power array (“0|0|0|0”) is delivered to the second heating element 204 for T1=1.56 seconds. After 1.56 seconds, microprocessor “flips” the delivery of the first and second power array for a period of 0.44 seconds. After a combined 2 seconds have passed, microprocessor 213 may begin by re-filling the first and second power array according to the power needs at that point in time.
It will be understood that microprocessor 213 may include internal or external memory 1000 for reading and/or writing in connection with executing the steps and configurations described herein. Moreover, it will be understood that microprocessor 213 may have an internal or external clock signal that may be used to time the “on” signal sent to a triac. The clock signal may be generated by an on-board clock signal generator 1001, or by an external clock.
An additional benefit of embodiments of the devices and methods described herein is a reduction in flicker introduced by the digital power supply 200 into a wall outlet. Flicker is undesirable because, at certain frequencies, it will cause lights connected to an outlet to flicker or dim.
Embodiments of the present invention may reduce flicker levels to a wall outlet based on voltage changes resulting from wave-cuts within a single power delivery phase. A person of skill in the art would recognize that flicker is commonly measured during a devices “steady state.”
The voltage changes within a single power deliver phase comply with the flicker regulations. As seen at 1101 (and further described in the standard), the IEC 61000-3-3 requirement's last data point occurs at 2875 voltage changes per minute. This equates to a cycling frequency of 23.96 Hz. In other words, voltage changes occurring at a frequency above 23.96 Hz have no flicker requirement because they are beyond human perception. Embodiments of the devices and methods disclosed herein create a wave pattern in which electric grill 110 alternates between a cut wave and a full “on” or a full “off” wave. Following this pattern, electric grill 110 would create 25 voltage changes per second (25Hz) at 50 Hz AC and 30 voltage changes per second (30 Hz) at 60 Hz AC. A cut wave followed by a full wave counts as one voltage change. The 25 Hz and 30 Hz cycling frequencies are above the standard's last data point of 23.96 Hz and therefore comply with flicker requirement.
An additional benefit of embodiments of the invention comes from splitting power into multiple power arrays and delivering them to multiple heating elements. Using the techniques described in
Embodiments of the disclosed digital power supply and method for delivering power may optionally be implemented in the circuitry of an electric grill.
Further optional embodiments include a full wave rectifier 216 that feeds to a ground fault detection unit 217, which in turn communicates with a trip controller 218 for tripping an electromechanical latch 206 or 207. Ground fault detection unit 217 may receive a signal indicating a current imbalance between line 201 and neutral 202 and cause the latches to trip to prevent hazardous current situations.
Additional optional embodiments include a watchdog monitor 220 which monitors the operation of microprocessor 213 and may disable triac drivers 211 and 212 in the event of a failure of microprocessor 213. Also provided are AC/DC power converters 214 which may be used to power the microprocessor 213, and a current sensor, such as Hall Effect sensor 219, which may be used by microprocessor 213 to monitor the current flowing to heating elements 203 and 204.
For the reasons described above, some embodiments of the inventions may provide a digital power supply that increases a heating element's lifespan; complies with flicker requirements, and also complies with harmonic requirements. These benefits may be accomplished using the devices and methods described herein. For example, using a power delivery phase of 2 seconds prevents the heating elements from ever fully expanding or fully contracting. Lengthy power delivery phases that allow a heating element to fully expand or contract are very detrimental to the heating element's lifespan. The flicker requirement is satisfied by creating a total power array that describes an alternating wave pattern which has a cycling frequency of 25-30 Hz depending on the AC current. Moreover, the total power array that may be created using devices and methods of the invention follow every cut wave with a full “on” or full “off” wave, thus reducing harmonic currents. Harmonic currents are also reduced by splitting the combined load of electric grill 110 to two or more elements.
The above description is not intended to limit the meaning of the words used in or the scope of the following claims that define the invention. Rather the descriptions and illustrations have been provided to aid in understanding the various embodiments. It is contemplated that future modifications in structure, function or result will exist that are not substantial changes and that all such insubstantial changes in what is claims are intended to covered by the claims. Thus, while preferred embodiments of the present inventions have been illustrated and described, one of skill in the art will understand that numerous changes and modifications can be made without departing from the claimed invention. In addition, although the term “claimed invention” or “present invention” is sometimes used herein in the singular, it will be understood that there are a plurality of inventions as described and claimed.
Various features of the present inventions are set forth in the following claims.
Knappenberger, Eric, Zuleta, Julio C., Lerch, Matthew, Emmerich, Jeffery C.
Patent | Priority | Assignee | Title |
11454677, | Jul 01 2016 | WEBER-STEPHEN PRODUCTS LLC | Wireless control and status monitoring for electric grill with current protection circuitry |
11622420, | Jul 01 2016 | WEBER-STEPHEN PRODUCTS LLC | Electric grill with current protection circuitry |
11860240, | Jul 01 2016 | WEBER-STEPHEN PRODUCTS LLC | Wireless control and status monitoring for electric grill with current protection circuitry |
12070042, | Dec 12 2022 | SHARKNINJA OPERATING LLC | Grill systems |
12070158, | Jun 11 2021 | W C BRADLEY CO | Electric grill control system |
12105572, | Jul 01 2016 | WEBER-STEPHEN PRODUCTS LLC | Digital power supply with wireless monitoring and control |
ER4244, | |||
ER513, | |||
ER6251, | |||
ER7176, |
Patent | Priority | Assignee | Title |
3775591, | |||
5171973, | Jan 31 1991 | Ceramaspeed Limited | Radiant electric heaters |
5302857, | May 11 1990 | Charles Industries, Ltd. | Portable power adapter |
5524528, | Aug 24 1995 | Quality & Strength Inc. | Electric griller |
5578230, | Jun 09 1994 | Heater system having housing with chamber for creating a turbulent spinning air vortex | |
5606245, | Jun 18 1994 | GE Aviation UK | Power supply systems |
5986242, | Jun 02 1997 | Sharp Kabushiki Kaisha | Heater control device using phase angle control |
6037571, | Jul 21 1997 | Dual power high heat electric grill | |
6111230, | May 19 1999 | CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT | Method and apparatus for supplying AC power while meeting the European flicker and harmonic requirements |
6727475, | Jul 27 2001 | CARESTREAM HEALTH, INC | Heating control system which minimizes AC power line voltage fluctuations |
6849833, | Feb 13 2003 | CARESTREAM HEALTH, INC | Logical flicker suppression for a temperature controlled heater load |
6927368, | Mar 27 2003 | CHINA CITIC BANK CORPORATION LIMITED, GUANGZHOU BRANCH, AS COLLATERAL AGENT | Method and apparatus for controlling power to a heater element using dual pulse width modulation control |
7131549, | Oct 18 2002 | WENDY S SPV GUARANTOR, LLC; WENDY S FUNDING, LLC; QUALITY IS OUR RECIPE, LLC | Double sided grill with automated control including localized prompting and confirmation of manual operations |
7312426, | Feb 06 2003 | Samsung Electronics Co., Ltd. | Cooking apparatus |
7342202, | Mar 17 2004 | The Outdoor Greatroom Company LLLP | Electric grill |
7368686, | Sep 06 2006 | Haier US Appliance Solutions, Inc | Apparatus and methods for operating an electric appliance |
7825353, | Oct 05 2005 | EVO AMERICA, LLC | Electric cooking apparatus |
8030598, | Mar 17 2004 | The Outdoor Greatroom Company LLLP | Electric grill |
8097835, | Dec 28 2009 | Hon Hai Precision Industry Co., Ltd. | Temperature control circuit |
8141478, | May 07 2004 | Tsann Kuen Enterprises Co., Ltd. | Grill device with a removable grill plate |
8263911, | May 25 2009 | PEGATRON CORPORATION | Electronic device with heating protection circuit and heating protection method thereof |
8680440, | Sep 14 2007 | E2IP TECHNOLOGIES INC | Control circuit for controlling heating element power |
8927908, | Apr 05 2012 | MULTI-TECHNOLOGY HEALTH CARE INC | Temperature control circuit for two heating devices |
20090167085, | |||
20150312964, | |||
20160044745, | |||
20160196739, | |||
CN102193443, | |||
CN103416104, | |||
CN203785271, | |||
EP804049, | |||
EP2214458, | |||
GB2067857, | |||
GB2339348, | |||
JP1010917, | |||
JP2004164431, | |||
JP2005085514, | |||
JP2246769, | |||
JP3251618, | |||
JP4336608, | |||
JP473523, | |||
JP56140422, | |||
JP60129813, | |||
JP6129916, | |||
JP960888, | |||
WO2014079493, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 29 2016 | KNAPPENBERGER, ERIC | WEBER-STEPHEN PRODUCTS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039066 | /0320 | |
Jun 29 2016 | ZULETA, JULIO C | WEBER-STEPHEN PRODUCTS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039066 | /0320 | |
Jun 29 2016 | LERCH, MATTHEW | WEBER-STEPHEN PRODUCTS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039066 | /0320 | |
Jun 30 2016 | EMMERICH, JEFFERY C | WEBER-STEPHEN PRODUCTS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039066 | /0320 | |
Jul 01 2016 | WEBER-STEPHEN PRODUCTS LLC | (assignment on the face of the patent) | / | |||
Mar 20 2020 | WEBER-STEPHEN PRODUCTS LLC | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 052205 | /0329 | |
Oct 30 2020 | WEBER-STEPHEN PRODUCTS LLC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 061300 | /0624 |
Date | Maintenance Fee Events |
Jun 28 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 21 2023 | 4 years fee payment window open |
Jul 21 2023 | 6 months grace period start (w surcharge) |
Jan 21 2024 | patent expiry (for year 4) |
Jan 21 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 21 2027 | 8 years fee payment window open |
Jul 21 2027 | 6 months grace period start (w surcharge) |
Jan 21 2028 | patent expiry (for year 8) |
Jan 21 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 21 2031 | 12 years fee payment window open |
Jul 21 2031 | 6 months grace period start (w surcharge) |
Jan 21 2032 | patent expiry (for year 12) |
Jan 21 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |