This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (ir) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article has a low visible transmission (e.g., no greater than 60%, more preferably no greater than about 55%, and most preferably no greater than about 50%).
|
1. A coated article including a coating supported by a glass substrate, the coating comprising:
a first dielectric layer comprising silicon nitride on the glass substrate;
first and second infrared (ir) reflecting layers comprising silver on the glass substrate and located over the first dielectric layer comprising silicon nitride, the first ir reflecting layer being located closer to the glass substrate than is the second ir reflecting layer,
wherein no metal oxide based layer is located between the glass substrate and the first ir reflecting layer;
a first contact layer comprising ni located over and directly contacting the first ir reflecting layer comprising silver;
a second dielectric layer comprising silicon nitride located over and directly contacting the first contact layer comprising ni;
a second contact layer located over and directly contacting the second dielectric layer comprising silicon nitride;
the second ir reflecting layer comprising silver located over and directly contacting the second contact layer;
a third contact layer comprising ni located over and directly contacting the second ir reflecting layer;
a third dielectric layer comprising silicon nitride located over and directly contacting the third contact layer comprising ni;
a layer comprising zirconium oxide located over the third dielectric layer comprising silicon nitride;
wherein each of the first and second ir reflecting layers comprising silver is at least twice as thick as the layer comprising zirconium oxide; and
wherein the coated article has a visible transmission, measured monolithically, of from about 20-55%.
2. The coated article of
3. The coated article of
4. The coated article of
5. The coated article of
|
This application is a continuation of application Ser. No. 15/846,320, filed Dec. 19, 2017, which is a continuation of application Ser. No. 14/910,766 filed Feb. 8, 2016 (now U.S. Pat. No. 9,873,634), which is a 371 (national stage) of PCT/US2013/055357 filed Aug. 16, 2013, the entire disclosures of which are hereby incorporated herein by reference in this application in their entireties.
This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article (monolithic form and/or in IG window unit form) has a low visible transmission (e.g., no greater than 60%, more preferably no greater than about 55%, and most preferably no greater than about 50%). In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered and/or heat bent), and is designed to be substantially thermally stable upon heat treatment (HT) in that its ΔE* value (glass side reflective) due to HT is no greater than 5.0, and more preferably no greater than 4.5. Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, vehicle windows, other types of windows, or in any other suitable application.
Coated articles are known in the art for use in window applications such as insulating glass (IG) window units, vehicle windows, and/or the like. It is known that in certain instances, it is desirable to heat treat (e.g., thermally temper, heat bend and/or heat strengthen) such coated articles for purposes of tempering, bending, or the like. Heat treatment (HT) of coated articles typically requires use of temperature(s) of at least 580 degrees C., more preferably of at least about 600 degrees C. and still more preferably of at least 620 degrees C. Such high temperatures (e.g., for 5-10 minutes or more) often cause coatings to break down and/or deteriorate or change in an unpredictable manner. Thus, it is desirable for coatings to be able to withstand such heat treatments (e.g., thermal tempering), if desired, in a predictable manner that does not significantly damage the coating.
In certain situations, designers of coated articles strive for a combination of desirable visible transmission, desirable color, low emissivity (or emittance), and low sheet resistance (Rs). Low-emissivity (low-E) and low sheet resistance characteristics permit such coated articles to block significant amounts of IR radiation so as to reduce for example undesirable heating of vehicle or building interiors.
U.S. Pat. No. 7,521,096, incorporated herein by reference, discloses a low-E coating which uses zinc oxide (ZnO) contact layers below the silver-based IR reflecting layers, and above the bottom silver (Ag) based IR reflecting layer uses a NiCrOx contact layer followed by a center tin oxide (SnO2) dielectric layer. While the ZnO contact layers below the silver IR reflecting layers provide good structural properties for the growth of silver, the ZnO has been found to degrade the chemical, environmental and mechanical durability of the coating in certain instances. Moreover, the thick SnO2 dielectric layer has been found to show micro crystallization and stress upon HT which causes rough interfaces between the SnO2, the ZnO and the Ag, which can lead to degradation of durability and affect transmitted color.
U.S. Pat. No. 5,557,462 discloses a low-E coating with a layer stack of SiN/NiCr/Ag/NiCr/SiN/NiCr/Ag/NiCr/SiN. However, the coated article of the '462 patent is designed for a high visible transmission of at least 63%. The '462 patent at column 3, lines 12-15, teaches that visible transmission below 70% (monolithic coated article) and below 63% (IG window unit) are undesirable. Thus, the '462 patent teaches directly away from coated articles with visible transmission lower than 63%. Moreover, as largely explained in U.S. Pat. No. 8,173,263, coated articles of the '462 patent are not heat treatable because upon heat treatment sheet resistance (Rs) goes way up such as from about 3-5 to well over 10, haze tends to set in, and the glass side reflective ΔE* value is undesirable because it is over 5.0.
Accordingly, it would be desirable to provided a coated article that is characterized by one or more of: (i) low visible transmission, (ii) good durability, and (iii) thermal stability upon HT so as to realize a glass side reflective ΔE* value no greater than about 5.0, more preferably no greater than about 4.5.
The term ΔE* (and ΔE) is well understood in the art and is reported, along with various techniques for determining it, in ASTM 2244-93 as well as being reported in Hunter et. al., The Measurement of Appearance, 2nd Ed. Cptr. 9, page 162 et seq. [John Wiley & Sons, 1987]. As used in the art, ΔE* (and ΔE) is a way of adequately expressing the change (or lack thereof) in reflectance and/or transmittance (and thus color appearance, as well) in an article after or due to heat treatment. ΔE may be calculated by the “ab” technique, or by the Hunter technique (designated by employing a subscript “H”). ΔE corresponds to the Hunter Lab L, a, b scale (or Lh, ah, bh). Similarly, ΔE* corresponds to the CIE LAB Scale L*, a*, b*. Both are deemed useful, and equivalent for the purposes of this invention. For example, as reported in Hunter et. al. referenced above, the rectangular coordinate/scale technique (CIE LAB 1976) known as the L*, a*, b* scale may be used, wherein: L* is (CIE 1976) lightness units; a* is (CIE 1976) red-green units; b* is (CIE 1976) yellow-blue units; and the distance ΔE* between L*o a*o b*o and L*1 a*1 b*1 is: ΔE*=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2, where: ΔL*=L*1−L*o; Δa*=a*1−a*o; Δb*=b*1−b*o; where the subscript “o” represents the coating (coated article) before heat treatment and the subscript “1” represents the coating (coated article) after heat treatment; and the numbers employed (e.g., a*, b*, L*) are those calculated by the aforesaid (CIE LAB 1976) L*, a*, b* coordinate technique. When, for example, glass side reflective ΔE* values are measured, then glass side reflective a*, b* and L* values are used. In a similar manner, ΔE may be calculated using the above equation for ΔE*, i.e., ΔE*=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2, by replacing a*, b*, L* with Hunter Lab values ah, bh, Lh. Also within the scope of this invention and the quantification of ΔE* are the equivalent numbers if converted to those calculated by any other technique employing the same concept of ΔE* as defined above.
This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article has a low visible transmission (e.g., no greater than 60%, more preferably no greater than about 55%, more preferably no greater than about 50%. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered and/or heat bent), and is designed to be substantially thermally stable upon heat treatment (HT) in that its ΔE* value (glass side reflective) due to HT is no greater than 5.0, more preferably no greater than 4.5. Such a low ΔE* value indicates that the coated article has approximately the same transmission and color characteristics as viewed by the naked eye both before and after heat treatment (e.g., thermal tempering). Coated articles according to certain example embodiments of this invention may be used in the context of insulating glass (IG) window units, vehicle windows, other types of windows, or in any other suitable application.
Moreover, in certain example embodiments in this invention, the coating includes a layer (e.g., overcoat) of or including zirconium oxide and/or zirconium oxynitride. In certain example embodiments, this layer of or including zirconium oxide and/or zirconium oxynitride is substantially thinner than each of the IR reflecting layers comprising silver in the coating.
It is desired to provide a coated article that is characterized by one, two, or all three of: (i) low visible transmission, (ii) good durability, and (iii) thermal stability upon HT so as to realize a glass side reflective ΔE* value no greater than 5.0, more preferably no greater than 4.5.
In certain example embodiments of this invention, there is provided a coated article including a coating supported by a glass substrate, the coating comprising: first and second infrared (IR) reflecting layers comprising silver, the first IR reflecting layer being located closer to the glass substrate than is the second IR reflecting layer; a first contact layer comprising NiCr located over and directly contacting the first IR reflecting layer comprising silver; a dielectric layer comprising silicon nitride located over and directly contacting the first contact layer comprising NiCr; a second contact layer comprising NiCr located over and directly contacting the layer comprising silicon nitride; the second IR reflecting layer comprising silver located over and directly contacting the second contact layer comprising NiCr; a third contact layer comprising NiCr located over and directly contacting the second IR reflecting layer; another dielectric layer comprising silicon nitride located over and directly contacting the third contact layer comprising NiCr; a layer comprising zirconium oxide located over and directly contacting the another dielectric layer comprising silicon nitride; wherein the second IR reflecting layer comprising silver is thicker than is the first IR reflecting layer comprising silver; wherein each of the first and second IR reflecting layers comprising silver is at least twice as thick as the layer comprising zirconium oxide; and wherein the coated article has a visible transmission, measured monolithically, of no greater than 60%.
Coated articles herein may be used in applications such as IG window units, laminated window units (e.g., for use in vehicle or building applications), vehicle windows, monolithic architectural windows, residential windows, and/or any other suitable application that includes single or multiple glass substrates.
In certain example embodiments of this invention, the coating includes a double-silver stack. Referring to
In order to increase durability, along with optics and thermal properties, and avoid significant structural changes before and after HT, coated articles according to certain example embodiments of this invention have a center dielectric layer 14 of or including silicon nitride and lower contact layers 7, 17 are based on NiCr (as opposed to ZnO). It has also been found that using metallic or substantially metallic NiCr (possibly partly nitrided) for layer(s) 7, 11, 17 and/or 21 improves chemical, mechanical and environmental durability (compared to using ZnO lower contact layers below silver and/or highly oxided NiCr upper contact layers above silver). It has also been found that sputter-depositing silicon nitride inclusive layer 14 in an amorphous state, so that it is amorphous in both as-coated and HT states, helps with overall stability of the coating. For example, 5% HCl at 65 degrees C. for one hour will remove the coating of U.S. Pat. No. 7,521,096, whereas the coating shown in
In certain example embodiments of this invention such as
In monolithic instances, the coated article includes only one glass substrate 1 as illustrated in
In certain example embodiments of this invention, one, two, three, or all four of contact layers 7, 11, 17, 21 may be of or include NiCr (any suitable ratio of Ni:Cr), and may or may not be nitrided (NiCrNx). In certain example embodiments, one, two, three or all four of these NiCr inclusive layers 7, 11, 17, 21 is substantially or entirely non-oxidized. In certain example embodiments, layers 7, 11, 17 and 21 may all be of metallic NiCr or substantially metallic NiCr (although trace amounts of other elements may be present). In certain example embodiments, one, two, three or all four of NiCr based layers 7, 11, 17, 21 may comprise from 0-10% oxygen, more preferably from 0-5% oxygen, and most preferably from 0-2% oxygen (atomic %). In certain example embodiments, one, two, three or all four of these layers 7, 11, 17, 21 may contain from 0-20% nitrogen, more preferably from 1-15% nitrogen, and most preferably from about 1-12% nitrogen (atomic %). NiCr based layers 7, 11, 17 and/or 21 may or may not be doped with other material(s) such as stainless steel, Mo, or the like. It has been found that the use of NiCr based contact layer(s) 7 and/or 17 under the silver-based IR reflecting layer(s) 9, 19 improves durability of the coated article (compared to if layers 7 and 17 were instead of ZnO).
Dielectric layers 3, 14, and 24 may be of or include silicon nitride in certain embodiments of this invention. Silicon nitride layers 3, 14 and 24 may, among other things, improve heat-treatability of the coated articles and protect the other layers during optional HT, e.g., such as thermal tempering or the like. One or more of the silicon nitride of layers 3, 14, 24 may be of the stoichiometric type (i.e., Si3N4), or alternatively of the Si-rich type of silicon nitride in different embodiments of this invention. The presence of free Si in a Si-rich silicon nitride inclusive layer 3 and/or 14 may, for example, allow certain atoms such as sodium (Na) which migrate outwardly from the glass 1 during HT to be more efficiently stopped by the Si-rich silicon nitride inclusive layer(s) before they can reach silver and damage the same. Thus, it is believed that the Si-rich SixNy can reduce the amount of damage done to the silver layer(s) during HT in certain example embodiments of this invention thereby allowing sheet resistance (Rs) to decrease or remain about the same in a satisfactory manner. Moreover, it is believed that the Si-rich SixNy in layers 3, 14 and/or 24 can reduce the amount of damage (e.g., oxidation) done to the silver and/or NiCr during HT in certain example optional embodiments of this invention. In certain example embodiments, when Si-rich silicon nitride is used, the Si-rich silicon nitride layer (3, 14 and/or 24) as deposited may be characterized by SixNy layer(s), where x/y may be from 0.76 to 1.5, more preferably from 0.8 to 1.4, still more preferably from 0.82 to 1.2. Any and/or all of the silicon nitride layers discussed herein may be doped with other materials such as stainless steel or aluminum in certain example embodiments of this invention. For example, any and/or all silicon nitride layers 3, 14, 24 discussed herein may optionally include from about 0-15% aluminum, more preferably from about 1 to 10% aluminum, in certain example embodiments of this invention. The silicon nitride of layers 3, 14, 24 may be deposited by sputtering a target of Si or SiAl, in an atmosphere having argon and nitrogen gas, in certain embodiments of this invention. Small amounts of oxygen may also be provided in certain instances in the silicon nitride layers.
Infrared (IR) reflecting layers 9 and 19 are preferably substantially or entirely metallic and/or conductive, and may comprise or consist essentially of silver (Ag), gold, or any other suitable IR reflecting material. IR reflecting layers 9 and 19 help allow the coating to have low-E and/or good solar control characteristics.
Other layer(s) below or above the illustrated coating may also be provided. Thus, while the layer system or coating is “on” or “supported by” substrate 1 (directly or indirectly), other layer(s) may be provided therebetween. Thus, for example, the coating of
While various thicknesses and materials may be used in layers in different embodiments of this invention, example thicknesses and materials for the respective layers on the glass substrate 1 in the
Example Materials/Thicknesses; FIG. 1 Embodiment
Layer
Preferred
More
Example
Glass (1-10 mm thick)
Range ({acute over (Å)})
Preferred ({acute over (Å)})
(Å)
SixNy (layer 3)
100-500
Å
250-450
Å
320
Å
NiCr or NiCrN (layer 7)
10-30
{acute over (Å)}
11-20
{acute over (Å)}
12
Å
Ag (layer 9)
100-170
{acute over (Å)}
110-145
{acute over (Å)}
127
Å
NiCr or NiCrN (layer 11)
10-30
{acute over (Å)}
11-20
{acute over (Å)}
10
Å
SixNy (layer 14)
300-1400
{acute over (Å)}
700-1100
{acute over (Å)}
865
Å
NiCr or NiCrN (layer 17)
10-30
{acute over (Å)}
11-20
{acute over (Å)}
11
Å
Ag (layer 19)
140-225
{acute over (Å)}
150-215
{acute over (Å)}
164
Å
NiCr or NiCrN (layer 21)
8-30
{acute over (Å)}
10-20
{acute over (Å)}
10
Å
Si3N4 (layer 24)
120-360
{acute over (Å)}
250-340
{acute over (Å)}
304
Å
ZrO2 (layer 27)
25-80
{acute over (Å)}
25-50
{acute over (Å)}
35
Å
The second IR reflecting layer comprising silver 19 is at least as thick as the first IR reflecting layer comprising silver 9. In certain preferred embodiments, it has been found that surprisingly beneficial results can be achieved when the second IR reflecting layer comprising silver 19 is thicker than the first IR reflecting layer comprising silver 9, more preferably when second IR reflecting layer 19 is at least 10 angstroms (Å) thicker (more preferably at least 20 angstroms thicker) than the first IR reflecting layer comprising silver 9.
In certain example embodiments, the layer of or including zirconium oxide and/or zirconium oxynitride 27 is thinner than each of the IR reflecting layers 9, 19 comprising silver in the coating 30. In certain example embodiments of this invention, each of the IR reflecting layers comprising silver 9 and 19 is at least twice as thick, and more preferably at least three times as thick, as the layer 27 or including zirconium oxide and/or zirconium oxynitride.
In certain example embodiments, the center silicon nitride based layer 14 is thicker than each of the other silicon nitride based layers 3 and 24, preferably by at least 100 angstroms, more preferably by at least 300 angstroms, and most preferably by 400 angstroms. Moreover, in certain example embodiments, each of the silicon nitride based layers 3, 14 and 24 is at least two times as thick as the zirconim oxide inclusive layer 27, more preferably at least three times as thick, and most preferably at least four or five times as thick.
The coating 30 offers good durability and allows for lower inside and outside reflection compared to a single-silver based low-E coating. However, delta-E* values are typically in the 4-5 range. The coating, and coated articles including the coating, may be designed to appear light blue in transmission and reflection, but may become slightly more neutral after optional HT.
In certain example embodiments of this invention, coated articles herein may have the following optical and solar characteristics set forth in Table 2 when measured monolithically (before and/or after optional HT). The sheet resistances (Rs) herein take into account all IR reflecting layers (e.g., silver layers 9, 19). Note that “before heat treatment” means as annealed, but before high temperature heat treatment such as thermal tempering as described herein.
Optical/Solar Characteristics (Monolithic - Before Heat Treatment)
Characteristic
General
More Preferred
Most Preferred
Rs (ohms/sq.):
<=5.0
<=4.0
<=3.0
En:
<=0.08
<=0.05
<=0.04
Tvis (Ill. C 2°):
30-63%
45-60%
50-59%
Optical/Solar Characteristics (Monolithic - Post Heat Treatment)
Characteristic
General
More Preferred
Most Preferred
Rs (ohms/sq.):
<=5.0
<=4.0
<=3.0
En:
<=0.08
<=0.05
<=0.04
Tvis (Ill. C 2°):
30-63%
48-61%
52-60%
It can be seen from the above that the heat treatment (e.g., thermal tempering) slightly increases the visible transmission of the coated article.
In certain example laminated embodiments of this invention, coated articles herein which have been optionally heat treated to an extent sufficient for tempering, and which have been coupled to another glass substrate to form an IG unit, may have the above recited Optical/Solar characteristics in a structure as shown in
The following examples are provided for purposes of example only, and are not intended to be limiting unless specifically claimed.
The following Examples 1-3 were made via sputtering coatings on 6 mm thick clear/transparent glass substrates so as to have approximately the layer stacks set forth in
Set forth below are the optical characteristics of Examples 1-3 measured for a monolithic coated article as shown in
Monolithic (Pre-HT)
Characteristic
Ex. 1
Ex. 2
Ex. 3
Tvis (or TY)(Ill. C 2°):
52.3%
54%
54.5%
a*t (Ill. C 2°):
−2.8
−4.0
−3.6
b*t (Ill. C 2°):
−5.2
−4.6
−6.1
RfY (Ill. C, 2 deg.):
10.3%
8.4%
7.1%
a*f (Ill. C, 2°):
−10.5
−5.4
−5.1
b*f (Ill. C, 2°):
8.5
1.8
1.9
RgY (Ill. C, 2 deg.):
9.8
8.7%
8.0%
a*g (Ill. C, 2°):
−4.3
−1.9
−1.3
b*g (Ill. C, 2°):
−5.7
−9.3
−9.4
It can be seen from the above the examples above that the coated articles measured monolithically had desirable low visible transmission, and had fairly desirable glass side reflective color. In particular, monolithic a*g (glass side reflective a* color) was in a desirable range of from about −1 to −5, and b*g (glass side reflective b* color) was in a desirable range of from about −5 to −10. Moreover, glass side reflection (RgY) was good in that it was below 10%, more preferably no greater than 9%. These are desirable characteristics, especially when the coated article is to be put in an IG window unit as shown in
Set forth below are the optical characteristics of Examples 1-3 measured for a monolithic coated article after thermal tempering.
Monolithic (Post-HT)
Characteristic
Ex. 1
Ex. 2
Ex. 3
Tvis (or TY)(Ill. C 2°):
59.8%
55.6%
54.2%
a*t (Ill. C 2°):
−3.9
−5.3
−4.8
b*t (Ill. C 2°):
−5.0
−6.2
−6.6
RfY (Ill. C, 2 deg.):
10.4%
6.1%
6.7%
a*f (Ill. C, 2°):
−14.8
−5.3
−6.4
b*f (Ill. C, 2°):
8.2
−0.3
−0.6
RgY (Ill. C, 2 deg.):
9.7
9.0%
9.1%
a*g (Ill. C, 2°):
−9.6
−0.9
−0.9
b*g (Ill. C, 2°):
−3.9
−10.9
−10.2
It can be seen from the above the examples above that the coated articles measured monolithically had desirable low visible transmission, and had fairly desirable glass side reflective color. In particular, monolithic a*g (glass side reflective a* color) was in a desirable range in Examples 2-3 of from about 0 to −2, and b*g (glass side reflective b* color) was in a desirable range in Examples 2-3 of from about −8 to −12. Moreover, glass side reflection (RgY) was good in that it was below 10%. These are desirable characteristics, especially when the coated article is to be put in an IG window unit as shown in
Set forth below are the optical characteristics of IG window units including the coated articles of Examples 1-3, namely when the coated articles are located in IG window units as shown in
IG Unit (non-HT)
Characteristic
Ex. 1
Ex. 2
Ex. 3
Tvis (or TY) (Ill. C 2°):
47.1%
48.4%
48.4%
a*t (Ill. C 2°):
−4.1
−5.1
−4.6
b*t (Ill. C 2°):
−4.6
−4.3
−5.4
RfY (Ill. C, 2 deg.):
16.3%
14.8%
13.5%
a*f (Ill. C, 2°):
−7.2
−4.1
−4.3
b*f (Ill. C, 2°):
4.3
0.7
1.5
RgY (Ill. C, 2 deg.):
12.0%
11.0%
10.0%
a*g (Ill. C, 2°):
−4.4
−2.7
−2.4
b*g (Ill. C, 2°):
−6.3
−9.3
−9.2
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Dietrich, Anton, Disteldorf, Bernd, Swamynaidu, Krishna
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5557462, | Jan 17 1995 | GUARDIAN GLASS, LLC | Dual silver layer Low-E glass coating system and insulating glass units made therefrom |
6632491, | May 21 2002 | GUARDIAN GLASS, LLC | IG window unit and method of making the same |
7005190, | Dec 20 2002 | GUARDIAN GLASS, LLC | Heat treatable coated article with reduced color shift at high viewing angles |
7138182, | Jul 31 2003 | CARDINAL CG COMPANY | Temperable high shading performance coatings |
7166360, | Dec 15 2000 | Saint-Gobain Glass France | Glazing provided with a stack of thin layers for solar protection and/or heat insulation |
7419725, | Sep 01 2004 | GUARDIAN GLASS, LLC | Coated article with low-E coating including IR reflecting layer(s) and corresponding method |
8263227, | Jun 25 2008 | GUARDIAN GLASS, LLC | Coated article with low-E coating including zirconium oxide and/or zirconium silicon oxynitride and methods of making same |
8445112, | Mar 20 2008 | AGC Glass Europe | Film coated glazing having a protective layer of mixed titanium oxide |
8940399, | Oct 04 2012 | GUARDIAN GLASS, LLC | Coated article with low-E coating having low visible transmission |
9873634, | Aug 16 2013 | GUARDIAN GLASS, LLC | Coated article with low-E coating having low visible transmission |
20030194570, | |||
20040043226, | |||
20040121163, | |||
20050196622, | |||
20060046018, | |||
20070036987, | |||
20090324967, | |||
20100279144, | |||
20110097590, | |||
20110135955, | |||
20110261442, | |||
20110262726, | |||
20120219821, | |||
20120225224, | |||
EP722913, | |||
EP2284135, | |||
RU2011102564, | |||
RU94035687, | |||
WO248065, | |||
WO2005091864, | |||
WO2006063171, | |||
WO2011133201, | |||
WO2012050596, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 02 2019 | GUARDIAN GLASS, LLC. | (assignment on the face of the patent) | / | |||
May 02 2019 | GUARDIAN EUROPE S.À R.L. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 02 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Aug 09 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 25 2023 | 4 years fee payment window open |
Aug 25 2023 | 6 months grace period start (w surcharge) |
Feb 25 2024 | patent expiry (for year 4) |
Feb 25 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 25 2027 | 8 years fee payment window open |
Aug 25 2027 | 6 months grace period start (w surcharge) |
Feb 25 2028 | patent expiry (for year 8) |
Feb 25 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 25 2031 | 12 years fee payment window open |
Aug 25 2031 | 6 months grace period start (w surcharge) |
Feb 25 2032 | patent expiry (for year 12) |
Feb 25 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |