Techniques for forming an enclosure comprised of aluminum zirconium alloy layer are disclosed. In some embodiments, aluminum ions and zirconium ions can be dissolved in a non-aqueous ionic liquid in an electrolytic plating bath. A reverse pulsed electric current can facilitate in co-depositing the aluminum ions and the zirconium ions onto a metal substrate. The resulting aluminum zirconium alloy layer can include nanocrystalline grain structures, which can impart the alloy layer with increased hardness and increased resistance to scratching, denting, and abrasion. In some embodiments, the aluminum zirconium alloy layer can be anodized to form an aluminum oxide layer. Subsequent to the anodization operation, the oxidized layer is able to retain its substantially neutral color.
|
1. A consumer electronic product, comprising:
an enclosure comprising:
an aluminum alloy layer having (i) nanocrystalline structures that have a grain size of less than 1 micrometer, and (ii) alloying element ions that include between 1 atomic percent to 12 atomic percent of zirconium.
10. An article of manufacture, comprising:
an aluminum alloy layer having alloying element ions that inhibit recrystallization of grain structures having a size greater than 100 nanometers, wherein the alloying element ions include between 1 atomic percent to 12 atomic percent of zirconium.
11. An article of manufacture, comprising:
a metal substrate; and
an aluminum alloy layer overlaying the metal substrate, wherein the aluminum alloy layer includes (i) nanocrystalline structures having a grain size of less than 100 nanometers, and (ii) alloying element ions that include between 1 atomic percent to 12 atomic percent of zirconium.
12. A method of forming a consumer electronic product enclosure including a metal substrate, the method comprising:
forming an aluminum zirconium alloy layer by co-depositing aluminum ions and zirconium ions onto the metal substrate, wherein the aluminum zirconium alloy layer includes between 1 atomic percent to 12 atomic percent of the zirconium ions.
7. A consumer electronic product, comprising:
an enclosure comprising:
a metal substrate, and
an aluminum alloy layer bonded to the metal substrate, wherein the aluminum alloy layer includes (i) nanocrystalline structures having a grain size of less than 100 nanometers, and (ii) alloying element ions having between 1 atomic percent to 12 atomic percent of zirconium so as to inhibit recrystallization of grain structures having a size greater than 100 nanometers.
2. The consumer electronic product of
3. The consumer electronic product of
4. The consumer electronic product of
5. The consumer electronic product of
6. The consumer electronic product of
9. The consumer electronic product of
13. The method of
oxidizing at least a portion of the aluminum zirconium alloy to form an aluminum oxide layer.
14. The method of
15. The method of
16. The method of
17. The method of
applying a cathodic pulse current to the metal substrate such as to deposit the zirconium ions onto the metal substrate; and
applying an anodic pulse current to the metal substrate such as to re-dissolve a portion of the aluminum zirconium alloy layer.
18. The method of
19. The method of
20. The method of
|
The present application claims the benefit of U.S. Provisional Application No. 62/357,700, entitled “NANOSTRUCTURED ALUMINUM ZIRCONIUM ALLOYS FOR IMPROVED ANODIZATION” filed on Jul. 1, 2016, the contents of which are incorporated by reference in its entirety for all purposes.
This application is related to U.S. patent application Ser. No. 15/482,678, entitled “NANOSTRUCTURED ALUMINUM ALLOYS FOR IMPROVED HARDNESS”, by Evgeniya Freydina et al., filed Apr. 7, 2017, the contents of which are incorporated by reference herein in their entirety for all purposes.
The described embodiments relate to metal alloys and methods for forming aluminum zirconium alloys. More specifically, aluminum zirconium alloys having nanocrystalline structures for improved hardness and post-anodizing results are described.
Metal alloys are a mixture of metals and other materials, such as other trace amounts of metals. Pure aluminum is generally soft and highly ductile material. In particular, aluminum alloys can increase the mechanical strength and improve the scratch and dent resistance of a part. In general, pure aluminum can be anodized to form a relatively translucent and cosmetically appealing aluminum oxide coating. Some aluminum alloys can be anodized to form aluminum oxide coatings with satisfactory appearance—that is, having relatively translucent aluminum oxide coating. However, anodizing some aluminum alloys having a particular alloying element, or alloying elements in higher concentrations, can result in aluminum oxide coatings having a discolored appearance—such as a yellowed appearance. Thus, despite the mechanical advantages of using aluminum alloys compared to pure aluminum, some aluminum alloys cannot be anodized to form an aluminum oxide coating having a satisfactory appearance using conventional techniques.
This paper describes various embodiments that relate to forming aluminum zirconium alloys. In particular embodiments, the aluminum zirconium alloy is formed onto a substrate as an aluminum zirconium alloy layer. The aluminum zirconium alloys can be characterized as having a nanocrystalline structure that enhances the hardness of the aluminum zirconium alloys. In addition, the aluminum zirconium alloys can be anodized to provide a cosmetically appealing aluminum oxide protective coating.
According to one embodiment, a method of forming a consumer electronic product enclosure including an aluminum zirconium alloy is described. The method involves co-depositing aluminum ions and zirconium ions onto a metal substrate.
According to another embodiment, a consumer electronic product enclosure is described. The consumer electronic product enclosure includes an aluminum zirconium alloy having between about 1 atomic percent to about 12 atomic percent of zirconium.
According to another embodiment, a part of a consumer electronic product is described. The part includes a metal substrate and an aluminum zirconium alloy bonded to the metal substrate. The aluminum zirconium alloy includes nanocrystalline structures having a grain size of less than 1 micrometer.
According to another embodiment, an article is described. The article includes an aluminum zirconium alloy layer having between about 1 atomic percent to about 12 atomic percent of zirconium.
According to another embodiment, an article is described. The article includes a metal substrate, and an aluminum zirconium alloy layer bonded to the metal substrate, wherein the aluminum zirconium alloy layer includes nanocrystalline structures having a grain size of less than 1 micrometer.
Any publications, patents, and patent applications referred to in the instant specification are herein incorporated by reference in their entireties. To the extent that the publications, patents, or patent applications incorporated by reference contradict the disclosure contained in the instant specification, the instant specification is intended to supersede and/or take precedence over any such contradictory material.
The described embodiments may be understood by reference to the following description and the accompanying drawings. Additionally, advantages of the described embodiments may be understood by reference to the following description and accompanying drawings.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements.
Those skilled in the art will appreciate and understand that, according to common practice, various features of the drawings discussed below are not necessarily drawn to scale, and that dimensions of various features and elements of the drawings may be expanded or reduced to more clearly illustrate the embodiments of the present invention described herein.
The following disclosure describes various embodiments of metal alloys and methods for forming metal alloys. Certain details are set forth in the following description and figures to provide a thorough understanding of various embodiments of the present technology. Moreover, various features, structures, and characteristics of the present technology can be combined in other suitable structures and environments. In other instances, well-known structures, materials, operations, or systems are not shown or described in detail in the following disclosure to avoid unnecessarily obscuring the description of the various embodiments of the technology. Those of ordinary skill in the art will recognize, however, that the present technology can be practiced without one or more of the details set forth herein, or with other structures, methods, components, and so forth.
This application describes aluminum zirconium alloys and methods for forming aluminum zirconium alloys. In particular embodiments, the aluminum zirconium alloys are composed primarily of aluminum with zirconium added in lesser amounts. Methods described herein detail forming nanocrystalline structures in the aluminum zirconium alloy layer, which is associated with improved hardness and therefore improved resistance to scratches and dents. Furthermore, methods described herein can improve corrosion-resistance by avoiding coarse iron-based constituent particles present in conventionally-melted aluminum alloys.
One technique for forming an aluminum zirconium alloy involves electroplating aluminum ions and zirconium ions onto a metal substrate such that the aluminum ions and zirconium ions are co-deposited onto the metal substrate. In some cases, this technique involves providing the aluminum ions and zirconium ions in a non-aqueous ionic liquid plating bath. Upon applying an electric current to the plating bath, an aluminum zirconium layer is formed as a coating on the metal substrate.
In addition, the aluminum zirconium alloys can be anodized to provide aluminum oxide films having improved cosmetic appearances compared to other types of aluminum alloys. The anodized aluminum zirconium alloys are well suited for providing protective and attractive surfaces for various consumer products. For example, methods described herein can be used for providing protective and cosmetically appealing exterior portions of metal enclosures and casings for electronic devices.
As used herein, the terms anodic film, anodized film, anodic layer, anodized layer, anodic oxidized layer, oxide film, oxidized layer, oxide layer, etc. are used interchangeably and can refer to any suitable oxide layer. The oxide layers are formed on metal surfaces of a metal substrate. The metal substrate can be made of any suitable type of metal. As described herein, the term “alloy” refers to a mixture of a metal and another element that are joined through metallic bonds. As described herein, the term “co-deposition” refers to the metal ions (e.g., aluminum and zirconium) being plated together onto the metal substrate.
The methods described herein can be used to form durable and cosmetically appealing metallic surfaces for various products in a number of different applications, including consumer electronic products, general metal parts, magnets, marine industry parts, automotive industry parts, aerospace industry parts, and the like.
While many conventional aluminum alloys can have high strength and corrosion resistance, these alloys can produce discolored and cosmetically unappealing surface finishes once anodized, making them ill-suited for many types of consumer electronic products. This discoloration can be due, in part, to the presence of certain alloying elements, such as copper and zinc, when in relatively high concentrations. That is, these alloying elements, which can provide a desired high strength to the aluminum alloy, can be associated with an undesired appearance when anodized. Accordingly, it is difficult to create a strong aluminum alloy having a high scratch and dent resistance while also having an aesthetically pleasing color and appearance, using conventional techniques. Described herein are material processing techniques for providing an aluminum zirconium alloy that provides improved dent and scratch resistance, as well as aesthetic qualities suitable for a consumer electronic device, such as the housing of devices 102, 104, 106 and 108.
Metal substrate 202 can have any suitable thickness suitable for a subsequent electroplating process, whereby a coating is plated or deposited onto an upper surface 212 of the metal substrate layer. In some embodiments, metal substrate 202 has a near net shape of a final part. For example, metal substrate 202 can have a general shape of a housing, such as one of the housing of devices 102, 104, 106 and 108.
In some embodiments, the metal substrate 202 can be subjected to a surface treatment prior to the electroplating process. In some embodiments, the surface treatment can be a process that eliminates or minimizes any passivation oxide layer that may be present. In some examples, where the metal substrate 202 is aluminum or an aluminum alloy, exposure to air and/or water can lead to formation of a thin and persistent natural oxide layer. The presence of the oxide layer on the metal substrate can be detrimental to providing a good adhesion to a subsequently electro-plated metal layer because the metal oxide layer can include microscopic fissures which can lead to both premature corrosion of the layer as well as cause the metal oxide layer to become susceptible to chemical dissolution. Furthermore, the presence of the oxide layer can lead to delamination of the subsequently electro-plated metal layer from the metal substrate. In some embodiments, techniques for providing a surface treatment to the metal substrate 202 can include cleaning (e.g., degreasing) the upper surface 212 of the metal substrate 202 prior to the electroplating process. In some embodiments, the metal substrate 202 may also undergo one or more texturing processes, such as one or more of a polishing, etching or blasting processes. Details as to some suitable surface treatment processes will be described in detail below with reference to
In some embodiments, the aluminum zirconium alloy layer 204 is a coating that provides structural properties, such as hardness, rigidity, and increased resistance to deformation and scratches to the metal substrate 202. Moreover, the combination of zirconium and aluminum provides the metal substrate 202 with an increased hardness and resistance to torsional stress as provided by the addition of the zirconium
In particular embodiments, aluminum zirconium alloy layer 204 is characterized as having nanocrystalline structures that increase the strength of the aluminum zirconium alloy layer 204 compared to an aluminum zirconium alloy layer 204 without such nanocrystalline structures. For example, while it can be possible to form an aluminum zirconium alloy layer 204 having mainly amorphous structures (i.e., lack of nanocrystalline structures), such aluminum zirconium alloy layer 204 has significantly reduced strength relative to an aluminum zirconium alloy layer 204 with nanocrystalline structures. The term “nanocrystalline” structures can refer to crystalline grain structures having an average size of less than 1 micrometer. In some embodiments, the nanocrystalline structures have an average size of less than 1 micrometer. The atomic percentage of zirconium available in the aluminum zirconium alloy layer 204 can be associated with the amount of nanocrystalline structures. In addition, the plating process for plating aluminum zirconium alloy layer 204 can also be used to control the quantity of nanocrystalline structures within aluminum zirconium alloy layer 204.
It should be noted, however, that embodiments presented herein are not limited to aluminum zirconium alloy layer 204 having nanocrystalline structures. For example, in some embodiments, the aluminum zirconium alloy layer 204 includes a combination (or “dual phase”) of nanocrystalline and amorphous structures. As used herein, the term “amorphous” refers to a non-crystalline structure having no symmetry in the atomic positions. In some embodiments, the aluminum zirconium alloy layer 204 only includes amorphous structures (i.e., without substantial presence of nanocrystalline grains).
In some embodiments, an anodizing process is used to form the aluminum oxide layer 206 from the aluminum zirconium alloy layer 204. Any suitable anodizing process can be used. In some embodiments, a type II (sulfuric acid bath based) anodizing process is used. In some embodiments, the composition of aluminum zirconium alloy layer 204 is chosen such that an amount of discoloration of aluminum oxide layer 206 is minimized. For example, in some embodiments, aluminum zirconium alloy layer 204 can have little or no alloying elements other than zirconium. As described above, higher levels of certain elements (e.g., copper) can be associated with a yellowing of a resultant oxide layer. Thus, in some cases aluminum zirconium alloy layer 204 is substantially free of copper. In some embodiments, aluminum zirconium alloy layer 204 is substantially free of zinc. In some embodiments, aluminum zirconium alloy layer 204 includes other alloying elements other than zirconium but that do not result in the aluminum oxide layer 206 having substantial discoloration. In some embodiments, the resultant oxide layer can be intentionally anodized to form a yellow color as a matter of individual preference.
The aluminum oxide layer 206 can provide a hard scratch and dent resistant coating for the part 200. In some embodiments, the aluminum oxide layer 206 can be dyed to impart a desired color to a surface of the part 200. For example, a dye or metal colorant can be infused within pores of aluminum oxide layer 206. It should be noted, however, that this type of coloration is different than the discoloration described above, which is associated with certain alloying elements within aluminum zirconium alloy layer 204. In some embodiments, the aluminum oxide layer 206 is not dyed. In some embodiments, it is desirable for aluminum oxide layer 206 to have a substantially transparent or translucent quality. That is, aluminum oxide layer 206 can be at least partially transparent to visible light such that underlying aluminum zirconium alloy layer 204 can be visible through aluminum oxide layer 206.
In some embodiments, the aluminum oxide layer 206 can be characterized as being an electrical insulator or dielectric. In some examples, anodizing the aluminum zirconium alloy layer 204 to form the aluminum oxide layer 206 can result in an external barrier having dielectric properties, which can be beneficial for electrically shielding electrical components (e.g., processor, circuits, etc.) included within portable electronic device enclosures, such as the exemplary devices shown in
In some embodiments, the scratch and dent resistant properties of the aluminum oxide layer 206 can be directly attributed to the thickness of the aluminum oxide layer 206. In some examples, the aluminum oxide layer 206 has a thickness between about 5 micrometers to about 25 micrometers. In some embodiments, an aluminum oxide layer 206 having a thickness of 25 micrometers may have a greater hardness value (Hv) than an aluminum oxide layer 206 having an identical chemical composition, but only having a thickness of 5 micrometers.
In some embodiments, electrolytic bath 304 corresponds to a non-aqueous ionic liquid. Unlike aqueous solutions, non-aqueous ionic liquids are capable of electroplating metals such as aluminum onto a metal substrate because metallic ions are reduced at the cathode instead of the hydrogen ions. Thus, an electrolytic bath 304 that is a non-aqueous ionic liquid can provide an oxide-free environment such that aluminum ions 318, along with zirconium ions 310, can plate onto metal substrate 306. In some embodiments, the non-aqueous ionic liquid can include one or more co-solvents and/or additives that may influence electric conductivity, viscosity, surface tension of the electrolytic bath 304, and/or diffusion of aluminum ions 318 and/or zirconium ions 310 within electrolytic bath 304.
The presence of water in the plating bath can impart the production of hydrogen. During an electroplating process, hydrogen can cause non-uniform electroplated metal coatings, which can cause the electroplated metal to be brittle and include cracks. In contrast, non-aqueous ionic liquids can produce a negligible amount of hydrogen, and thus can facilitate in forming a continuous and uniform electroplated coating, i.e., without significant cracks or voids.
In some embodiments, the ionic liquid is a mixture of aluminum chloride (AlCl3) and 1-ethyl-3-methylimidazolium chloride (EMIM-Cl), which is capable of transferring an electric current from the aluminum substrate at the anode to the metal substrate at the cathode. In some embodiments, the ratio of AlCl3 relative to EMIM-Cl is between about 1.1:1 to about 2:1. In some embodiments, 1-Ethyl-3-methylimidazolium tetrafluoroborate and 1-Ethyl-3-methylimidazolium trifluoromethylsulfonate can also be used as ionic liquids in the plating bath. Process conditions for the electroplating process can vary. In some embodiments, the temperature of the plating bath can be less than 100° Celsius as ionic liquids are generally in a liquid state at room temperature. In some embodiments, the ionic liquids can be operated in a plating bath having a temperature between about −20° Celsius to about 250° Celsius. In some embodiments, the plating bath can have an operating range between about 20° Celsius to about 100° Celsius. In some embodiments, the concentration of dissolved zirconium ions in the ionic liquid can be between about 0.1 g/kg to about 5 g/kg. In some embodiments, the concentration of dissolved zirconium ions in the ionic liquid can be between about 1 g/kg to about 3 g/kg. In some embodiments, the concentration of dissolved zirconium ions in the ionic liquid can be between about 1 g/kg to about 2 g/kg.
In some embodiments, the composition of electrolytic bath 304 is chosen so as to optimize co-deposition of the zirconium ions 310 and the aluminum ions 318. For example, zirconium metal can be reduced by electroplating when in a 4+ valence state (Zr4+ ions). Thus, in some embodiments, the composition of electrolytic bath 304 is chosen to maximize Zr4+ions. In some embodiments, the Zr4+ ions can be prepared by providing zirconium chloride (ZrCl4) into the electrolytic bath 304. Zirconium ions can also be introduced by applying an anodic current to the zirconium metal, in accordance with some embodiments.
As described above, the resulting aluminum zirconium alloy can include crystalline structures having a grain size of less than one micrometer, which can enhance the strength of the aluminum zirconium alloy. Furthermore, tailoring the crystalline grain size within the aluminum zirconium alloy can reduce the occurrence of macroscopic defects, such as cracks, in the aluminum zirconium alloy. The size and quantity of nanocrystalline structures can be controlled, in part, by adjusting relative amounts of zirconium ions 310 dissolved in the electrolytic bath 304. In some embodiments, a high concentration of zirconium ions 310 is associated with smaller nanocrystalline grain sizes. In some embodiments, an even higher concentration of zirconium ions 310 can lead to formation of amorphous crystal structures throughout the aluminum zirconium alloy. However, the formation of amorphous crystal structures formed throughout the aluminum zirconium alloy can compromise or reduce the strength of the aluminum zirconium alloy. In contrast, in some embodiments, nanocrystalline structures having a grain size of less than 1 micrometer were found to provide optimal strength to the aluminum zirconium alloy.
In some embodiments, the power supply 320 can be electrically coupled to a rectifier (not shown). The rectifier is a device that converts alternating current (AC) to direct current (DC) so that the electric current flows in only a single direction. By using a rectifier, a cathodic electric current can be directed in a single direction towards the cathode 306, thereby causing aluminum ions 318 and zirconium ions 310 to plate onto metal substrate 306. In some embodiments, the rectifier is configured to switch the direction of the electric current such that an anodic electric current is directed towards the metal substrate 306, which can cause some of the plated aluminum and zirconium on metal substrate 306 to dissolve as ions back into electrolytic bath 304. Changing the direction of the electric current towards the metal substrate 306 can also facilitate removing contaminants that could be plated onto the metal substrate 306. In some embodiments, the anodic electric current density can be of similar magnitude to the cathodic electric current density. Reversing the electric pulse again such that the cathodic electric current is directed towards the cathode 306 can cause aluminum ions 318 and zirconium ions 310 to redeposit onto the metal substrate 306. Thus, by alternating between an anodic electric current and a cathodic electric current, aluminum and zirconium can plate onto metal substrate 306 while reducing the plating of contaminants. In addition, this reverse pulse plating can cause leveling the surface of the metal substrate 306 to provide a more uniform or continuous electroplated layer. In particular, a reverse electric pulsed current can eliminate localized buildup of plated materials even when there is a high concentration of certain ions in the plating bath. In addition, reverse pulse plating can facilitate the growth of finer crystalline structures on the electroplated layer; thus further promoting formation of nanocrystalline structures, which as described above improve mechanical strength of the aluminum zirconium alloy. In addition, nanocrystalline structures in the aluminum zirconium alloy layer can have a high level of electrical conductivity. The high level of electrical conductivity can be beneficial in the manufacture and use of portable electronic device enclosures, such as for establishing a grounding path from the metallic enclosure to a grounding electrode. In contrast, aluminum zirconium alloy layer without nanocrystalline structures can have a low amount of electrical conductivity.
The final thickness of the aluminum zirconium alloy layer can vary depending on a desired thickness and on process parameters. In some embodiments, the aluminum zirconium alloy layer has a final thickness between about 10 micrometers and about 800 micrometers.
As described above, nanocrystalline structures within the aluminum zirconium alloy can increase the hardness and scratch resistance of the aluminum zirconium alloy layer.
The nanocrystalline grain structures 408 can constitute a combination of both aluminum and zirconium that impart to the part 400 an increased hardness and resistance to scratches, abrasions, and damage. A finer grain size of nanocrystalline grain structures 408 can be associated with a harder and more scratch resistant aluminum zirconium alloy layer 404. In some embodiments, the presence of zirconium at grain boundaries can prevent grain growth and/or recrystallization. Hence, the presence of zirconium can enable a more stable, nano-grain size. In some embodiments, the term “recrystallization” can refer to new, larger grains that are formed at the expense of smaller grains. In some examples, larger grain can grow at the expense of smaller grain through the motion of grain boundaries. Recrystallization of aluminum is generally accompanied by a reduction in strength and hardness and an increase in ductility (ability of a metal to deform under torsional stress) of pure aluminum. The addition of zirconium can form nanocrystalline grain structures, thereby providing increased hardness compared to pure aluminum. In addition, nanocrystalline grain structures 408 can also prevent cracks or voids from forming within aluminum zirconium alloy layer 404.
The percentage of zirconium within aluminum zirconium alloy layer 404 can vary; however, certain percentages of zirconium can be associated with reduced grain size of nanocrystalline grain structures 408. In some embodiments, aluminum zirconium alloy layer 404 includes an atomic percentage of zirconium between about 1 percent to about 12 percent. In other examples, the atomic percentage between 7 percent to about 10 percent.
In some embodiments, the aluminum zirconium alloy layer can include amorphous or non-crystalline structures. In some examples, there can be a transition region in the aluminum zirconium alloy layer where nanocrystalline structures are embedded in an amorphous matrix
In some embodiments, as the atomic percentage of zirconium increases, the grain size of the nanocrystalline structures can be reduced until the grain size is but a few nanometers (e.g., about 3 nanometers to about 5 nanometers). In such instance, the grain size transitions to an amorphous state (i.e., non-crystalline structure). For example, an atomic percentage of zirconium in excess of 12 percent can trend towards increased favoring of forming amorphous structures over nanocrystalline structures. Generally, a combination of dual phase nanocrystalline and amorphous structures will impart the alloy layer with a decreased hardness and scratch resistance relative to an alloy layer including only nanocrystal line grain structures. In other examples, the alloy layer can include a combination of both nanocrystalline structures and amorphous structures.
The thickness of the aluminum zirconium alloy layer 404 can be suitable to provide a sufficient barrier to protect the underlying metal substrate from damage. In addition, if anodized, the thickness of aluminum zirconium alloy layer 404 should be thick enough to provide a sufficiently thick protective aluminum oxide layer. For example, for an aluminum oxide layer having a target thickness of about 20 micrometers, aluminum zirconium alloy layer 404 should have a thickness of at least 20 micrometers. It should be noted, however, in some embodiments, the entire thickness or substantially all of the aluminum zirconium alloy layer 404 can be intentionally converted to a corresponding aluminum oxide layer, and optionally even a portion of metal substrate 402 is also converted to metal oxide (e.g., if metal substrate 402 is aluminum or aluminum alloy). In some embodiments, only a partial portion of the aluminum zirconium alloy layer 404 can be intentionally converted to the corresponding aluminum oxide layer. For example, a small portion of the aluminum zirconium alloy layer 404 can be converted to an aluminum oxide layer. In some embodiments, the aluminum zirconium alloy layer 404 can have a thickness between about 10 micrometers and about 800 micrometers. In some embodiments, the aluminum zirconium alloy layer 404 has a thickness between about 100 micrometers to 300 micrometers. In some examples, the resulting aluminum oxide layer can incorporate at least one of amorphous sulfate ions or zirconium ions. Furthermore, the percentage of zirconium ions in the aluminum oxide layer can be substantially similar to the percentage of zirconium ions present in the aluminum zirconium alloy layer 404.
At step 604, the metal substrate is exposed to an ionic liquid having aluminum ions and zirconium ions. In some embodiments, the ionic liquid is a non-aqueous ionic liquid. In some embodiments, the ionic liquid includes a mixture of aluminum chloride (AlCl3) and 1-Ethyl-3-methylimidazolium chloride (EMIM-Cl). Zirconium can be electrochemically dissolved in the ionic liquid to form zirconium ions have a charge of +4. The ionic liquid can act as both a solvent suitable for providing zirconium in a +4 valence state and as an electrically conductive fluid for the electrolytic process. In some embodiments, the zirconium ions are not dissolved in the ionic liquid until an electric current is applied to the metal substrate.
At step 606, aluminum and zirconium are co-deposited onto the metal substrate to form the aluminum zirconium alloy layer. In some embodiments, a electrodeposition process involves applying an anodic electric current to an aluminum anode such that the aluminum is oxidized at the anode to Al+3. The resulting aluminum ions Al+3 are dissolved into the ionic liquid. The Al+3 ions pass through the ionic liquid solution such that aluminum ions are transferred from the anode to the metal substrate at the cathode. At the cathode, the aluminum ions Al are reduced by gaining three electrons at the metal substrate. The result is the effective transfer of aluminum from the anode source to the cathode source. In some embodiments, zirconium ions are supplied within the ionic liquid by the addition of zirconium chloride (ZrCl4). Additionally, in some examples, the zirconium ions can be supplied within the ionic liquid by applying an anodic electric current to a zirconium metal. In some embodiments, the aluminum zirconium alloy layer includes nanocrystalline structures. In some embodiments, a combination of nanocrystalline structures and amorphous structures are formed in the aluminum zirconium alloy layer.
In some embodiments, a rectifier is used to convert alternating current (AC) to direct current (DC) so that the electric current flows in only a single direction. The rectifier can also be configured to switch the direction of the anodic and cathodic current flow, which can facilitate in removing contaminants that could otherwise be deposited on the metal substrates. Applying a reverse pulse electric current to the plating bath can be also used to dissolve metal ions from the metal substrate and re-deposit the dissolved metal ions onto the metal substrate to form a more uniform or continuous aluminum zirconium alloy layer. Applying the reverse pulse electric current can favor the formation of nanocrystalline structures within the aluminum zirconium alloy layer. Moreover, applying the reverse pulse electric current can promote more uniform distribution of nanocrystalline structures within the aluminum zirconium alloy layer. Additionally, applying the reverse pulse electric current can also remove any roughness in the formed nanocrystalline structures.
At step 608, the aluminum zirconium alloy is optionally oxidized to form an aluminum oxide layer. Any suitable oxidizing process can be used, such as a suitable anodizing process. In general, anodizing refers to an electrolytic passivation process that converts a portion of a layer of the aluminum zirconium alloy layer to a corresponding aluminum oxide layer. An exemplary apparatus for anodizing the aluminum zirconium alloy can include a power supply that is electrically coupled to a cathode and anode. The aluminum zirconium alloy layer serves as the anode and is immersed within an electrolytic solution. A direct current from the power supply passes to the anode and through the electrolytic solution to the cathode before returning to the power supply to complete the circuit. The oxidation process results in the release of hydrogen at the cathode and oxygen at the aluminum zirconium alloy to form an oxide layer. In some embodiments, substantially all of the aluminum zirconium alloy layer is converted to an aluminum oxide layer. In some embodiments, only a partial portion of the aluminum zirconium alloy layer can be consumed or converted to an aluminum oxide layer. In some embodiments, a portion of the underlying metal substrate is also converted to a metal oxide (e.g., aluminum oxide).
In general, the visual quality of an aluminum oxide layer can depend, in part, on the type(s) and amount(s) of alloying elements within the aluminum alloy. For example, copper within an aluminum alloy can cause the resultant aluminum oxide layer to have a yellow hue, with the amount of yellowing directly associated with an amount of copper within the aluminum alloy. The aluminum zirconium alloys described herein can be anodized to form aluminum oxides having little discoloration, which can be desirable in certain applications. In addition, the nanocrystalline grain structures can impart hardness to the aluminum zirconium alloys sufficient for use in many applications without the use of other alloying elements that can cause severe discoloration.
At step 610, pores of the aluminum oxide layer can be sealed in a subsequent operation. Sealing the pores of the aluminum oxide layer can impart corrosion resistance as well as prevent further oxidation of the aluminum alloy layer.
In addition, the formation of nanocrystalline structures in the aluminum zirconium alloy layer can be correlated to the atomic percentage of zirconium that is present. In some embodiments, when zirconium has an atomic percentage between about 1 percent to about 12 percent, the nanocrystalline deposits can have relatively fine grain sizes. As shown in
At a threshold atomic percentage, an atomic percentage of zirconium can favor forming amorphous structures over nanocrystalline structures. In some examples, when the atomic percentage of zirconium exceeds about 20 percent, the aluminum zirconium layer can have solely amorphous structures. In some examples, when the atomic percentage of zirconium exceeds 12 percent, the aluminum zirconium layer can have solely amorphous structures. In addition, larger grain size deposits, which can be attributed to amorphous structure formation, may impart a non-uniform or non-continuous alloy layer due to cracks or voids present in the alloy layer.
As shown in
In some examples, these samples showed formation of nanocrystalline grain structures and a general absence of amorphous structures. Thus, it is shown that the aforementioned techniques described herein can produce aluminum zirconium alloys and oxide layers thereof having relatively neutral b* values, while having significantly improved hardness values relative to other types of aluminum alloys due to the presence of nanocrystalline structures and/or a uniformly deposited aluminum zirconium alloy layer.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
Wright, James A., Lund, Alan C., Ruan, Shiyun, Curran, James A., Freydina, Evgeniya, Hilty, Robert Daniel, Abbott, Joshua Garth, Reese, Jason, Chan, Lisa J.
Patent | Priority | Assignee | Title |
11661665, | Apr 30 2020 | The Boeing Company | Aluminum and aluminum alloy electroplated coatings |
Patent | Priority | Assignee | Title |
4875983, | May 13 1987 | CENTRO SVILUPPO MATERIALI SPA, VIA DI CASTEL ROMANO 100 102 - 00129 ROME, ITALY | Process for continuous electrodeposition of chromium metal and chromium oxide on metal surfaces |
7608301, | Apr 02 2003 | SAFRAN AIRCRAFT ENGINES | Process for forming a protective coating containing aluminium and zirconium on a metal |
8500986, | May 18 2006 | Xtalic Corporation | Methods for the implementation of nanocrystalline and amorphous metals and alloys as coatings |
8815342, | Jul 09 2010 | SAFRAN AIRCRAFT ENGINES | Process for forming a protective coating on the surface of a metal part |
8821707, | Aug 04 2010 | DIPSOL CHEMICALS CO , LTD ; HONDA MOTOR CO , LTD | Electric Al or Al alloy plating bath using room temperature molten salt bath and plating method using the same |
20060290000, | |||
20100285322, | |||
20140272458, | |||
20150322582, | |||
20170067179, | |||
20180087173, | |||
WO2008157612, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 07 2017 | Xtalic Corporation | (assignment on the face of the patent) | / | |||
Apr 11 2017 | FREYDINA, EVGENIYA | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Apr 11 2017 | ABBOTT, JOSHUA GARTH | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Apr 11 2017 | LUND, ALAN C | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Apr 11 2017 | HILTY, ROBERT DANIEL | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Apr 13 2017 | REESE, JASON | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Apr 18 2017 | CURRAN, JAMES A | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0351 | |
Apr 19 2017 | WRIGHT, JAMES A | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0351 | |
Apr 21 2017 | RUAN, SHIYUN | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Aug 16 2017 | CHAN, LISA J | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0293 | |
Nov 09 2017 | Apple Inc | Xtalic Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045615 | /0363 |
Date | Maintenance Fee Events |
Nov 06 2023 | REM: Maintenance Fee Reminder Mailed. |
Feb 14 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 14 2024 | M1554: Surcharge for Late Payment, Large Entity. |
Date | Maintenance Schedule |
Mar 17 2023 | 4 years fee payment window open |
Sep 17 2023 | 6 months grace period start (w surcharge) |
Mar 17 2024 | patent expiry (for year 4) |
Mar 17 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 17 2027 | 8 years fee payment window open |
Sep 17 2027 | 6 months grace period start (w surcharge) |
Mar 17 2028 | patent expiry (for year 8) |
Mar 17 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 17 2031 | 12 years fee payment window open |
Sep 17 2031 | 6 months grace period start (w surcharge) |
Mar 17 2032 | patent expiry (for year 12) |
Mar 17 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |