systems and methods are described for tracking information of an equipment including a telematics device configured to receive data from the equipment to determine a telematics information. The telematics information includes at least two of an equipment type, a location, a duration in the location, and miles traveled. A transmission device is configured to transmit the vehicle telematics information to at least one of a third party entity device, a government device and a mobile device.
|
1. A system for tracking local information of an equipment on a vehicle, comprising:
a telematics device on the vehicle configured to receive at variable data sampling rate, raw data of vehicle telematics information comprising at least two of: electrical charge consumed, equipment type, a vehicle location, a duration of vehicle in the location, and miles travelled on the vehicle; and
a transmission device configured to compress the raw data of the vehicle telematics information and directly transmit through a network, the compressed raw data of the vehicle telematics information to at least one of a third party entity device, a government device and a mobile device to determine a usage charge based on the vehicle telematics information.
8. A method for tracking local information of an equipment on a vehicle, comprising:
receiving by a server, compressed raw data of vehicle telematics information which are compressed before being transmitted from a transmission device of a vehicle, the raw data of vehicle telematics information indicates energy and equipment use on the vehicle over a period of time, wherein the raw data of vehicle telematics information are received at variable data sampling rate by a telematics device, and the raw data of vehicle telematics information includes at least two of: electrical charge consumed, equipment type, vehicle location, duration of vehicle in the location, or miles travelled by the vehicle, wherein the raw data;
processing the raw data of the vehicle telematics information to determine a usage charge or a tax; and
directly transmitting through a network, the usage charge or the tax to at least one of a third party entity device, a government device and a mobile device in order to determine a usage charge based on the vehicle telematics information.
2. The system of
3. The system of
4. The system of
5. The system of
7. The system of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
|
This disclosure generally relates to systems and methods for equipment telematics, and in some examples to equipment telematics for tracking equipment usage and controlling and/or charging the equipment, e.g., for charging taxes.
Telematics is an interdisciplinary field that can encompass telecommunications, vehicular technologies, road transportation, road safety, electrical engineering, e.g., sensors, instrumentation, wireless communications, etc., and/or computer science, e.g., multimedia, Internet, etc.
According to some aspects, systems and methods provide for tracking information of an equipment including a telematics device configured to receive data from the equipment to determine a telematics information. The telematics information includes at least two of an equipment type, a location, a duration in the location, and miles travelled. The telematics device is configured to transmit the vehicle telematics information to at least one of a third party entity device, a government device and a mobile device.
Other systems, methods, features, and advantages is or will become apparent upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description and be protected by the accompanying claims.
The disclosure generally relates to systems and methods for providing a telematics system for equipment for efficiently receiving and processing information, e.g., to charge usage and/or tax the equipment. In some examples, information, including one or more of miles travelled, energy consumed, location information, type of equipment, charging details, etc., can be tracked and processed by the telematics system. In some examples, the tracked and processed information can be used to efficiently determine usage charges and/or pay road taxes and/or other usage, e.g., based on rentals, drone usage, etc., e.g., based on local, municipal, state and/or federal regulations, etc., and/or company/organization fees, etc.
The telematics device 114 includes, and/or is connected with, a transmission device 115, that provides a communication link between the equipment 102a-n and a communication network/environment 130 and/or other equipment 102a-n. The communication network 130 can connect the telematics device 114 to one or more of third party entity devices 140, government entity devices 150, user devices 160, etc., Other types of communication networks/environments include, but are not limited to, vehicle to vehicle (V2V) and/or vehicle to infrastructure (V2I) communications. The communication network/environment 130 can include wireless and/or wired communication mediums, including but not limited to, cellular communications, satellite communications, WiFi, Bluetooth, Ethernet, etc. The third party entity devices 140 can include one or more servers 142, memory 144 and computers 146. The servers 142 and/or the memory 144 can be located on-site and/or located remotely from offices of the electric vehicle infrastructure companies 140, e.g., located in a remote computing environment, for example, a private or public cloud environment, e.g., AMAZON WEB SERVICES, INC. (AWS) or other cloud environment. The government entities 150 can include one or more servers 152, memory 154 and computers 156. The servers 152 and/or the memory 154 can be located on-site and/or located remotely from offices of the government entities 150, e.g., located in a remote computing environment, for example, a private or public cloud environment. The user device 160 can include one or more mobile a processor 162, a memory 164, a browser 166, a display 168 and a user interface (U/I) 170. In some examples, the user device 160 is a mobile device, including, but not limited to, smart phones, tablets, personal digital assistants, etc. In other examples, the user device 160 is a personal computer.
The telematics device 114 can collect information from one or more of the ECU 106, sensors 110, battery 116, location device 117, etc. of the equipment 102a-n. The collected information can include one or more of miles travelled, location, miles/time within geo-fenced area, energy usage, size of the equipment 102a-n, etc. Additionally or alternatively, the collected information can be processed by one or more of the telematics device 114, the third party entity device 140, government entity device 150, the mobile device 160, etc., to determine one or more of, miles travelled, location, miles/time within geo-fenced area, energy usage, size of the equipment 102a-n, etc. Energy usage can include one or more of, but is not limited to, hydrogen, electric, natural gas, diesel fuel, solar, gasoline, etc. In some examples, e.g., for vehicle type equipment, the miles travelled can be linked to the geo-fenced areas and reported for direct charging/taxation. In some example, the size of vehicle can be included in the determination of taxes. In some examples, taxes can include state, federal, and/or municipality taxes, or other taxes e.g., depending on the needs of organizations and/or geographic concerns.
In some examples, the telematics information to determine and report road conditions, as well as road usage statistics for use in developing applications or services. In some examples, the telematics information can include parameters recorded by the equipment 102a-n, including but not limited to, duty cycle information, equipment identification information, miles travelled, and miles travelled in geographic areas. In some examples, the telematics information can be sent to other applications, e.g., to help determine one or more of traffic information, weather information, etc. In some examples, a charging/taxation structure can utilize telematics data to derive charges/taxes specifically tailored to specific device types and distance utilization, e.g., accounting for differences in size and weight of the equipment 102a-n.
In some examples, the telematics device 114 can process the telematics information and send processed information to one or more of the third party entity device 140, the government entity device 150 and/or the mobile device 160 (204). Additionally or alternatively, the telematics device 114 sends raw data to the third party entity device 140, the government device 150 and/or the mobile device 160 to be stored by the memory 144, 154, 164 and/or processed by the servers 142, 152 or processor 162, to determine charge/tax related information for the equipment 102a-n. Additionally or alternatively, the memories 144, 154, 164 can store instructions which when executed by the servers 142, 152 and/or processor 162 perform some or all of the logic described herein.
In some examples, the telematics device 114, or other processor of the equipment 102a-n, can determine a fuel source being used by the equipment 102a-n within a determined geo-fenced area, e.g., based on the current telematics information indicating a location of the equipment 102a-n. In some examples, the ECU 106, or other control module of the equipment 102a-n, can restrict a use of the fuel source based on the current location of the equipment 102a-n within a determined geo-fenced area. For example, for a hybrid type vehicle, a state or municipality may require that only electric power can be used in certain areas, while allowing gasoline or other non-electric power in other areas. The ECU 106, or other control module of the equipment 102a-n can control the power source used by the equipment 102a-n based on information from the state or municipality. The information from the state or municipality can be stored on the equipment 102a-n and/or accessed by the equipment 102a-n, e.g., via the communication network/environment 130.
Additionally or alternatively, the telematics device 114 can send the raw or processed information to user device 160 for processing and/or display. In some examples, the telematics device 114 communicates the raw and/or processed data to one or more of the third party entity device 140, the government entity device 150, and the mobile device 160, e.g., to use the information to charge and/or determine charges/taxes, as described in more detail below (206). For example, the third party entity device 140 can determine charges/taxes based on received raw and/or processed telematics information, and send the determined charges/taxes to the government entity device 150 for charging to the owner and/or user of the equipment 102a-n. Additionally or alternatively, the raw and/or processed telematics information is sent directly to the government entity device 150 for processing and/or charging organizational charges/taxes.
In some examples, the telematics device 114 can associate vehicle identification information, e.g., vehicle identification number (VIN) and vehicle description, or other information to identify the equipment, e.g., serial numbers, with the monitored/determined telematics information, including, but not limited to, miles travelled, energy consumed, location of charge information, other charging details, e.g., amount of charge, etc., for sending to the third party entity 140, the government entity 150 and/or the mobile device 160, etc. The devices 140, 150, 106 can receive the vehicle identification and other information directly and/or indirectly from the telematics device 114, and associate the received information with individual owners and/or drivers of the equipment 102a-n. The telematics device 114 and/or the device 140, 150, 160 can associate a credit card, debit card bank account, etc. of the individual with the telematics information. The devices 140, 150, 160 can charge the individual based on the received information for charges including, but not limited to, usage charges, state and/or federal taxes, autonomous driving and/or car sharing charges, etc. In some examples, the equipment 102a-n can include readers for credit card chips for purpose of payment, in autonomous or other vehicles.
The telematics device 114 to provide the processed information to the third party entity device 104, the government entity device 150 and/or the mobile device 160 (304). In some examples, the telematics device 114 sends raw telematics related data to the servers 142, 152 and/or processor 162 to process the information. The telematics device 114 can vary data sampling rates and/or compress the raw and/or processed data, e.g., including the vehicle telematics information, before storing the data and/or sending the data to the devices 140, 150, 160. In this way, the determined sampled and/or compressed data can be optimized for processing and/or storage based on determined algorithms. The determined sampled and/or compressed data can minimize cost of data transmission, e.g., to cloud storage and/or processing services, to the entity devices and/or other remote data locations. In this way, the environment 100 for tracking information related to usage and/or tax charges can automatically handle tracking and charging at the equipment level, e.g., without the need for third party applications. In some examples, the servers 142, 152 and/or processor 162 can then charge back to an account of the equipment user and/or owner for payment and other interactions.
In some examples, the processing circuitry 510 is configurable to perform actions in accordance with one or more examples disclosed herein. In this regard, the processing circuitry 510 may be configured to process tracked vehicle telematics information. The processing circuitry 510 may be configured to perform data processing, application execution and/or other processing and management services according to one or more examples. In some examples, the processing circuitry 510 or a portion(s) or component(s) thereof, may include one or more chipsets and/or other components that may be provided by integrated circuits.
The processor 512 may be embodied in a variety of forms. For example, the processor 512 may be embodied as various hardware-based processing means such as a microprocessor, a coprocessor, a controller or various other computing or processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), some combination thereof, or the like. Although illustrated as a single processor, it will be appreciated that the processor 512 may comprise a plurality of processors. The plurality of processors may be in operative communication with each other and may be collectively configured to perform one or more functionalities of the ECU 106, servers 142, 152, fleet manager devices 120 and/or the mobile device 160 as described herein. In some examples, the processor 512 may be configured to execute instructions that may be stored in the memory 514 or that may be otherwise accessible to the processor 512. As such, whether configured by hardware or by a combination of hardware and software, the processor 512 is capable of performing operations according to various examples while configured accordingly.
In some examples, the memory 514 may include one or more memory devices. Memory 514 may include fixed and/or removable memory devices. In some examples, the memory 514 may provide a non-transitory computer-readable storage medium that may store computer program instructions that may be executed by the processor 512. In this regard, the memory 514 may be configured to store information, data, applications, instructions and/or the like for enabling the ECU 106, servers 142, 152, fleet manager devices 120 and/or the mobile device 160 to carry out various functions in accordance with one or more examples. In some examples, the memory 514 may be in communication with one or more of the processor 512, the user interface 516 for passing information among components of the ECU 106, servers 142, 152, fleet manager devices 120 and/or the mobile device 160.
It is noted that the terms “substantially” and “about” may be utilized herein to represent an inherent degree of uncertainty that can be attributed to any quantitative comparison, value, measurement, or other representation. These terms are also utilized herein to represent a degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
While particular examples above have been illustrated and described herein, it should be understood that various other changes and modifications may be made without departing from the spirit and scope of the claimed subject matter. Moreover, although various aspects of the claimed subject matter have been described herein, such aspects need not be utilized in combination. It is therefore intended that the appended claims cover all such changes and modifications that are within the scope of the claimed subject matter.
Lockwood, Frances E., England, Roger D., Sworski, Adam E., Caudill, Timothy L., Baker, Jeffrey S., Torkelson, Jeffrey R.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7865391, | Jan 18 2006 | GMV, S A | Automatic road charging system based only on satellite navigation with guaranteed performance and method for its analysis and design |
8054048, | Oct 04 2007 | GM Global Technology Operations LLC | Power grid load management for plug-in vehicles |
8433471, | May 18 2010 | General Motors LLC | Pre-filling vehicle data check |
8538621, | Sep 15 2010 | General Motors LLC | Charge reminder notification to increase electric only efficiency |
8577528, | Nov 16 2010 | Honda Motor Co., Ltd.; HONDA MOTOR CO , LTD | System and method for updating charge station information |
8610401, | Oct 12 2010 | Hyundai Motor Company; Kia Motors Corporation | Telematics device for remote charging control and method of providing service thereof |
8718844, | Jul 19 2010 | General Motors LLC | Charge notification method for extended range electric vehicles |
8941463, | Mar 20 2012 | Toyota Jidosha Kabushiki Kaisha | Electric vehicle reserve charge authorization and distribution |
9037507, | Apr 28 2009 | GM Global Technology Operations LLC | Method to facilitate opportunity charging of an electric vehicle |
9137364, | May 13 2011 | General Motors LLC | Methodologies for implementing smart control of vehicle charging |
9174548, | Aug 15 2012 | Honda Motor Co., Ltd. | Renewable energy power depositing/charging management system |
9176680, | Jul 26 2011 | GOGORO INC. | Apparatus, method and article for providing vehicle diagnostic data |
9406033, | Oct 31 2011 | Cellco Partnership | Toll history recording method and device |
9796286, | Jan 15 2015 | GM Global Technology Operations LLC | Energy use aggregation and charge control of a plug-in electric vehicle |
9821677, | Mar 10 2015 | Hyundai Motor Company | System and method for charging electric vehicle |
20110106336, | |||
20130006718, | |||
20130031029, | |||
20130096995, | |||
20140164196, | |||
20140337253, | |||
20140354228, | |||
20140358749, | |||
20150206356, | |||
20150242969, | |||
20160282514, | |||
20160375783, | |||
20170053459, | |||
20170151917, | |||
20170323244, | |||
20170365169, | |||
20180009325, | |||
20180011483, | |||
20180137494, | |||
20180150776, | |||
20180328794, | |||
20180350162, | |||
20180357898, | |||
20190019362, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 28 2018 | Valvoline Licensing and Intellectual Property, LLC | (assignment on the face of the patent) | / | |||
Sep 04 2018 | SWORSKI, ADAM E | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046965 | /0186 | |
Sep 04 2018 | CAUDILL, TIMOTHY L | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046965 | /0186 | |
Sep 13 2018 | LOCKWOOD, FRANCES E | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046965 | /0186 | |
Sep 13 2018 | TORKELSON, JEFFREY R | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046965 | /0186 | |
Sep 18 2018 | ENGLAND, ROGER D | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046965 | /0186 | |
Sep 18 2018 | BAKER, JEFFREY S | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046965 | /0186 | |
Feb 28 2023 | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | VGP IPCO LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 063411 | /0655 | |
Mar 01 2023 | VALVOLINE LICENSING AND INTELLECTUAL PROPERTY LLC | VGP IPCO LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 063174 | /0450 |
Date | Maintenance Fee Events |
Aug 28 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 03 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 14 2023 | 4 years fee payment window open |
Oct 14 2023 | 6 months grace period start (w surcharge) |
Apr 14 2024 | patent expiry (for year 4) |
Apr 14 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 14 2027 | 8 years fee payment window open |
Oct 14 2027 | 6 months grace period start (w surcharge) |
Apr 14 2028 | patent expiry (for year 8) |
Apr 14 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 14 2031 | 12 years fee payment window open |
Oct 14 2031 | 6 months grace period start (w surcharge) |
Apr 14 2032 | patent expiry (for year 12) |
Apr 14 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |